Skip to main content

LCTF Hyperspectral Imaging for Vegetable Quality Evaluation

  • Chapter
Hyperspectral Imaging Technology in Food and Agriculture

Part of the book series: Food Engineering Series ((FSES))

  • 2682 Accesses

Abstract

This chapter discusses the liquid crystal tunable filter (LCTF)-based hyperspectral imaging technology and its application in vegetable quality inspection by using onion as a case study. A brief overview is provided on using the destructive and nondestructive methods for vegetable quality measurement. A detailed description of the LCTF technology, including system components and calibration, is presented. Two examples are given on using the LCTF technology for onion quality evaluation: one is to detect sour skin disease on the onion surface, and the other is to predict onion internal quality (soluble solid content and dry matter content) using the LCTF system. A brief conclusion is provided at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald D, Thai C, Dowell F (1999) Development of short-wavelength near-infrared spectral imaging for grain color classification. Proc SPIE 3543:189–198

    Article  Google Scholar 

  • Ariana D, Lu R, Guyer DE (2006) Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput Electron Agric 53:60–70

    Article  Google Scholar 

  • Birth G, Dull G, Magee J, Chan H, Cavaletto C (1984) An optical method for estimating papaya maturity. J ASHS 109(1):62–66

    Google Scholar 

  • Birth G, Dull G, Renfroe W, Kays S (1985) Nondestructive spectrophotometric determination of dry matter in onions. J ASHS 110(2):297–303

    Google Scholar 

  • Boyhan GE, Torrance RL (2002) Vidalia onions–sweet onion production in southeastern georgia. HortTechnology 12(2):196–202

    Google Scholar 

  • van de Broek W, Wienke D, Melssen W, de Crom C, Buydens L (1995) Identification of plastics among nonplastics in mixed waste by remote sensing near-infrared imaging spectroscopy. 1. Image improvement and analysis by singular value decomposition. Anal Chem 67(20):3753–3759

    Article  Google Scholar 

  • Burden D (2008) Onion profile. http://www.agmrc.org. Retrieved on 6 Aug 2008

  • Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40(1):115

    Google Scholar 

  • Ceponis M, Cappellini R, Lightner G (1986) Disorders in onion shipments to the New York market, 1972–1984. Plant Dis 70(10):988–991

    Article  Google Scholar 

  • Chen C (2007) Image processing for remote sensing. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Cho SI, Krutz GW, Gibson HG, Haghighi K (1990) Magnet console design of an NMR-based sensor to detect ripeness of fruit. Trans ASAE 33(4):1043–1050

    Article  Google Scholar 

  • Cogdill RP, Hurburgh Jr, CR, Rippke GR (2004) Single-kernel maize analysis by near-infrared hyperspectral imaging. Trans ASAE 47(1):311–320

    Article  Google Scholar 

  • Cubero S, Aleixos N, Moltó E, Gómez-Sanchis J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol 4:487–504

    Article  Google Scholar 

  • Dull G, Birth G, Leffler R (1989) Use of near infrared analysis for the nondestructive measurement of dry matter in potatoes. Am Potato J 66:215–225

    Article  Google Scholar 

  • Dull GG, Birth GS, Smittle DA, Leffler RG (1989) Near infrared analysis of soluble solids in intact cantaloupe. J Food Sci 54(2):393–395

    Article  CAS  Google Scholar 

  • ElMasry G, Wang N, ElSayed A, Ngadi M (2007) Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J Food Eng 81(1):98–107

    Article  CAS  Google Scholar 

  • ElMasry G, Wang N, Vigneault C, Qiao J, ElSayed A (2008) Early detection of apple bruises on different background colors using hyperspectral imaging. LWT - Food Sci Technol 41:337–345

    Article  CAS  Google Scholar 

  • Evans M, Thai C, Grant J (1998) Development of a spectral imaging system based on a liquid crystal tunable filter. Trans ASAE 41(6):1845–1852

    Article  Google Scholar 

  • Ezzati M, Riboli E (2012) Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science 337:1482–1487

    Article  Google Scholar 

  • Fernandes A, Oliveira P, Moura J, Oliveira A, Falco V, Correia M, Melo-Pinto P (2011) Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. J Food Eng 105(2):216–226

    Article  CAS  Google Scholar 

  • Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE (2009) Postharvest handling a system approach, 2nd edn. Academic, New York

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2012) World onion production 2010. http://faostat.fao.org/site/567/default.aspx. Retrieved 10 Nov 2012

  • Gat N (2000) Imaging spectroscopy using tunable filters: a review. Proc SPIE 4056:50–64

    Article  Google Scholar 

  • Gómez-Sanchis J, Gomez-Chova L, Aleixos N, Camps-Valls G, Montesinos-Herrero C, Molt E, Blasco J (2008) Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. J Food Eng 89(1):80–86

    Article  Google Scholar 

  • Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4(2):221–227

    Article  CAS  Google Scholar 

  • Jiang L, Zhu B, Rao X, Berney G, Tao Y (2007) Discrimination of black walnut shell and pulp in hyperspectral fluorescence imagery using gaussian kernel function approach. J Food Eng 81:108–117

    Article  Google Scholar 

  • Kazemi S, Wang N, Ngadi M, Prasher SO (2005) Evaluation of frying oil quality using VIS/NIR hyperspectral analysis. Agric Eng Int VII

    Google Scholar 

  • Kim MS, Chen YR, Mehl PM (2001) Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans ASAE 44(3):720–729

    Google Scholar 

  • Kim MS, Chao K, Chan DE, Jun W, Lefcourt AM, Delwiche SR, Kang S, Lee K (2011) Line-scan hyperspectral imaging platform for agro-food safety and quality evaluationl system enhancement and characterization. Trans ASABE 54(2):703–711

    Article  Google Scholar 

  • Lawrence KC, Park B, Windham WR, Mao C (2003) Calibration of a pushbroom hyperspectral imaging system for agricultural inspection. Trans ASAE 46(2):513–521

    Article  Google Scholar 

  • Lawrence KC, Park B, Windham G, Thai CN (2007) Evaluation of LED and tungsten-halogen lighting for fecal contaminant detection. Appl Eng Agric 23(6): 811–818

    Article  Google Scholar 

  • Li C, Gitaitis R, Tollner B, Sumner P, MacLean D (2009) Onion sour skin detection using a gas sensor array and support vector machine. Sens Instrumen Food Qual 3(4):193–202

    Article  Google Scholar 

  • Liao K, Paulsen M, Reid J (1994) Real-time detection of colour and surface defects of maize kernels using machine vision. J Agric Eng 59:263–271

    Article  Google Scholar 

  • Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, García-Navarrete O, Blasco J (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technol 5(4):1121–1142

    Article  Google Scholar 

  • Lu R (2001) Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectance spectroscopy. Trans ASAE 44(5):1265–1271

    CAS  Google Scholar 

  • Lu R (2003) Imaging spectroscopy for assessing internal quality of apple fruit. In: ASABE annual international meeting, Las Vegas. Paper Number 036012

    Google Scholar 

  • Lu R (2004) Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol Technol 31(2):147–157

    Article  Google Scholar 

  • Lu R, Chen YR (1998) Hyperspectral imaging for safety inspection of food and agricultural products. Proc SPIE 3544: 121–133

    Article  Google Scholar 

  • Lu R, Peng Y (2006) Hyperspectral scattering for assessing peach fruit firmness. Biosyst Eng 93:161–171

    Article  Google Scholar 

  • Lu R, Guyer D, Beaudry R (2000) Determination of firmness and sugar content of apples using near-infrared diffuse reflectance. J Texture Stud 31(6):615–630

    Article  Google Scholar 

  • Mahesh S, Manickavasagan A, Jayas DS, Paliwal J, White NDG (2008) Feasibility of near-infrared hyperspectral imaging to differentiate canadian wheat classes. Biosyst Eng 101(1):50–57

    Article  Google Scholar 

  • National Onion Association (2008) About onions: bulb onion production. http://www.onions-usa.org/about/season.asp. Retrieved 2 Aug 2008

  • Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46(2):99–118

    Article  Google Scholar 

  • Osborne B, Fearn T (1986) Near infrared spectroscopy in food analysis. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Park B, Lawrence KC, Windham WR, Buhr RJ (2001) Hyperspectral imaging for detecting fecal and ingesta contamination on poultry carcasses. In: ASAE annual international meeting, Sacramento. Paper Number 013130

    Google Scholar 

  • Park B, Lawrence K, Windham W, Buhr R (2002) Hyperspectral imaging for detecting fecal and ingesta contamination on poultry carcasses. Trans ASAE 45(6):2017–2026

    Article  Google Scholar 

  • Park B, Abbott J, Lee K, Choi C, Choi K (2003) Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and gala apples. Trans ASAE 46(6):1721–1732

    Article  Google Scholar 

  • Park B, Yoon SC, Lee S, Sundaram J, Windham WR, Lawrence KC (2012) Acousto-optic tunable filter hyperspectral microscope imaging method for characterizing spectra from foodborne pathogens. Trans ASABE 55(5): 1997–2006

    Article  Google Scholar 

  • Qin J, Lu R (2005) Detection of pits in tart cherries by hyperspectral transmission imaging. Trans ASAE 48(5):1963–1967

    Article  Google Scholar 

  • Rajkumar P, Wang N, EImasry G, Raghavan G, Gariepy Y (2012) Studies on banana fruit quality and maturity stages using hyperspectral imaging. J Food Eng 108:194–200

    Article  Google Scholar 

  • Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143

    Article  CAS  Google Scholar 

  • Schaare P, Fraser D (2000) Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (actinidia chinensis). Postharvest Biol Technol 20(2):175–184

    Article  Google Scholar 

  • Schwartz HF, Mohan SK (2008) Compendium of onion and garlic diseases and pests, 2nd edn. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Shahin MA, Tollner EW, Gitaitis RD, Sumner DR, Maw BW (2002) Classification of sweet onions based on internal defects using image processing and neural network techniques. Trans ASAE 45(5):1613–1618

    Google Scholar 

  • Shewfelt RL, Prussia SE (1993) Postharvest handling a system approach. Academic, San Diego

    Google Scholar 

  • Singh CB, Jayas DS, Paliwal J, White NDG (2009) Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. J Stored Prod Res 45(3):151–158

    Article  Google Scholar 

  • Slaughter D, Barrett D, Boersig M (1996) Nondestructive determination of soluble solids in tomatoes using near infrared spectroscopy. J Food Sci 61(4):695–697

    Article  CAS  Google Scholar 

  • Slaughter D, Crisosto CH (1998) Nondestructive internal quality assessment of kiwifruit using near-infrared spectroscopey. Semin Food Anal 3:131–140

    Google Scholar 

  • Slaughter D, Thompson J, Tan E (2003) Nondestructive determination of total and soluble solids in fresh prune using near infrared spectroscopy. Postharvest Biol Technol 28(3):437–444

    Article  Google Scholar 

  • Tao Y (1998) Closed loop search method for on-line automatic calibration of multi-camera inspection systems. Trans ASAE 41(5):1549–1555

    Article  Google Scholar 

  • USDA-NASS (2008) 2004–2005 statistical highlight of US agriculture: crops. http://www.usda.gov/nass/pubs/stathigh//2005/cropindex.htm. Retrieved 23 July 2008

  • USDA-NASS (2012) U.S. Onion Statistics (94013). http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396. Retrieved 3 Jan 2012

  • Wang W, Li C, Tollner EW, Gitaitis R, Rains G (2012) A liquid crystal tunable filter based shortwave infrared spectral imaging system: design and integration. Comput Electron Agric 80:126–134

    Article  Google Scholar 

  • Wang W, Li C, Tollner EW, Rains GC, Gitaitis RD (2012) A liquid crystal tunable filter based shortwave infrared spectral imaging system: calibration and characterization. Comput Electron Agric 80:135–144

    Article  Google Scholar 

  • Wang W, Li C, Tollner EW, Rains GC (2012) Development of software for spectral imaging data acquisition using LabVIEW. Comput Electron Agric 84:68–75

    Article  Google Scholar 

  • Wang W, Li C, Tollner EW, Gitaitis RD, Rains GC (2012) Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. J Food Eng 109(1):38–48

    Article  Google Scholar 

  • Williams P, Norris K (2001) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St. Pual

    Google Scholar 

  • Williams P, Geladi P, Fox G, Manley M (2009) Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal Chim Acta 653(2):121–130

    Article  CAS  Google Scholar 

  • Yoon SC, Park B, Lawrence KC, Windham WR, Heitschmidt GW (2011) Line-scan hyperspectral imaging system for real-time inspection of poultry carcasses with fecal material and ingesta. Comput Electron Agric 79(2):159–168

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Haihua Wang for his work on some of the data presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, C., Wang, W. (2015). LCTF Hyperspectral Imaging for Vegetable Quality Evaluation. In: Park, B., Lu, R. (eds) Hyperspectral Imaging Technology in Food and Agriculture. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2836-1_14

Download citation

Publish with us

Policies and ethics