Quantile and Expectile Regression

  • Thomas W. Yee
Part of the Springer Series in Statistics book series (SSS)


This chapter looks at several methods for quantile and expectile regression that fall within the VGLM/VGAM framework. The following main categories are described: LMS-type quantile regression methods, the classical method (based on a loss or check function) and its connection with the asymmetric Laplace distributions (ALD), and expectile regression. A parallelism assumption for the ALD and ER allows for one solution to the quantile-crossing problem. The location parameter of the ALD can be modelled using link functions, therefore responses such as counts can be potentially handled. A second solution to the quantile-crossing problem is called the ‘onion’ method, which is likened to estimating successive layers of an onion. The VGAM package is used to illustrate the models.


Quantile Regression Expected Shortfall Constraint Matrice Approximate Likelihood Error Loss Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aigner, D. J., T. Amemiya, and D. Poirer 1976. On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function. International Economic Review 17(2):377–396.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Barrodale, I. and F. D. K. Roberts 1974. Solution of an overdetermined system of equations in the 1 norm. Communications of the ACM 17(6):319–320.CrossRefGoogle Scholar
  3. Davino, C., C. Furno, and D. Vistocco 2014. Quantile Regression: Theory and Applications. Chichester: Wiley.Google Scholar
  4. Efron, B. 1991. Regression percentiles using asymmetric squared error loss. Statistica Sinica 1(1):93–125.zbMATHMathSciNetGoogle Scholar
  5. Efron, B. 1992. Poisson overdispersion estimates based on the method of asymmetric maximum likelihood. Journal of the American Statistical Association 87(417):98–107.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Fahrmeir, L., T. Kneib, S. Lang, and B. Marx 2011. Regression: Models, Methods and Applications. Berlin: Springer.Google Scholar
  7. Fitzenberger, B., R. Koenker, and J. A. F. Machado (Eds.) 2002. Economic Applications of Quantile Regression. Berlin: Springer-Verlag.Google Scholar
  8. Geraci, M. and M. Bottai 2007. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1):140–154.zbMATHCrossRefGoogle Scholar
  9. Green, P. J. and B. W. Silverman 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
  10. Hao, L. and D. Q. Naiman 2007. Quantile Regression. Thousand Oaks, CA, USA: Sage Publications.Google Scholar
  11. He, X. 1997. Quantile curves without crossing. American Statistician 51(2):186–192.Google Scholar
  12. Jones, M. C. 1994. Expectiles and M-quantiles are quantiles. Statistics & Probability Letters 20(2):149–153.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Jones, M. C. 2002. Student’s simplest distribution. The Statistician 51(1):41–49.MathSciNetGoogle Scholar
  14. Koenker, R. 1992. When are expectiles percentiles? (problem). Econometric Theory 8(3):423–424.Google Scholar
  15. Koenker, R. 2005. Quantile Regression. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  16. Koenker, R. 2013. Discussion: Living beyond our means. Statistical Modelling 13(4):323–333.MathSciNetCrossRefGoogle Scholar
  17. Koenker, R. and G. Bassett 1978. Regression quantiles. Econometrica 46(1):33–50.zbMATHMathSciNetCrossRefGoogle Scholar
  18. Kotz, S., T. J. Kozubowski, and K. Podgórski 2001. The Laplace Distribution and Generalizations: a Revisit with Applications to Communications, Economics, Engineering, and Finance. Boston, MA, USA: Birkhäuser.CrossRefGoogle Scholar
  19. Kozubowski, T. J. and S. Nadarajah 2010. Multitude of Laplace distributions. Statistical Papers 51(1):127–148.zbMATHMathSciNetCrossRefGoogle Scholar
  20. Lopatatzidis, A. and P. J. Green 1998. Semiparametric quantile regression using the gamma distribution. Unpublished manuscript.Google Scholar
  21. Newey, W. K. and J. L. Powell 1987. Asymmetric least squares estimation and testing. Econometrica 55(4):819–847.zbMATHMathSciNetCrossRefGoogle Scholar
  22. Poiraud-Casanova, S. and C. Thomas-Agnan 2000. About monotone regression quantiles. Statistics & Probability Letters 48(1):101–104.zbMATHMathSciNetCrossRefGoogle Scholar
  23. Schnabel, S. K. and P. H. C. Eilers 2009. Optimal expectile smoothing. Computational Statistics & Data Analysis 53(12):4168–4177.zbMATHMathSciNetCrossRefGoogle Scholar
  24. Taylor, J. W. 2008. Estimating value at risk and expected shortfall using expectiles. Journal of Financial Econometrics 6(2):231–252.CrossRefGoogle Scholar
  25. Yee, T. W. 2004b. Quantile regression via vector generalized additive models. Statistics in Medicine 23(14):2295–2315.CrossRefGoogle Scholar
  26. Yeo, I.-K. and R. A. Johnson 2000. A new family of power transformations to improve normality or symmetry. Biometrika 87(4):954–959.zbMATHMathSciNetCrossRefGoogle Scholar
  27. Yu, K. and J. Zhang 2005. A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics - Theory and Methods 34(9–10):1867–1879.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Thomas Yee 2015

Authors and Affiliations

  • Thomas W. Yee
    • 1
  1. 1.Department of StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations