Skip to main content

Rehydration and Solubility Characteristics of High-Protein Dairy Powders

  • Chapter
Advanced Dairy Chemistry

Abstract

Dairy powders derived from membrane filtration processes, such as milk protein concentrate (MPC) and phosphocaseinate (PC) powders, have considerable potential as functional ingredients due to their high protein content and quality. However, the use of these powders is sometimes limited or impaired by their poor rehydration characteristics in aqueous media, which has been linked with the formation of an inter-linked network of casein micelles at particle surfaces during processing and storage. Analytical tools are now available which can monitor the rehydration of dairy powders dynamically. This is a considerable development, as the rate-limiting stages of rehydration for individual powders (e.g., wetting, dispersion) can now be identified, quantified and targeted in attempts to improve rehydration properties. In addition, these technologies allow the negative effects of sub-optimal processing or storage conditions on powder rehydration and solubility characteristics to be measured, which allows preventative strategies against loss of solubility to be developed. Moreover, it is foreseeable that some of these technologies could be useful for in-line analysis and process control at an industrial scale. This review provides a detailed description of the underlying principles, data outputs and industrial relevance of current methods to monitor dairy powder rehydration. The technologies discussed in this review include viscometry and rheometry, turbidimetry, static light-scattering, focused beam reflectance measurement (FBRM), image analysis, nuclear magnetic resonance (NMR) relaxometry, thermochemistry, conductimetry and sound-based technologies. The contribution that these technologies have made to the current understanding of rehydration phenomena, with a particular emphasis on high-protein dairy powders (≥80 % protein), is discussed throughout. In addition, a comprehensive overview of rehydration and solubility characteristics, and the effects of process-, storage-, and additive-induced changes thereon, is given for high-protein dairy powders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMI:

American Dry Milk Institute

CaCas:

Calcium caseinate

CN:

Casein

CPMG:

Carr-Purcell-Meiboom-Gill

DF:

Diafiltration

FBRM:

Focused beam reflectance measurement

HMF:

Hydroxymethylfurfural

HPLC:

High-performance liquid chromatography

IDF:

International dairy federation

MDP:

Maltodextrin powder

MF:

Microfiltration

MPC:

Milk protein concentrate

MR:

Maillard reaction

NaCas:

Sodium caseinate

NMR:

Nuclear magnetic resonance

PC:

Phosphocaseinate

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SLS:

Static light-scattering

SMP:

Skim milk powder

UF:

Ultrafiltration

WMP:

Whole milk powder

WP:

Whey protein

WPI:

Whey protein isolate

XPS:

X-ray photoelectron spectroscopy

References

  • ADMI (1971) Determination of solubility index. Bulletin 916 (revised), Standards for grades of dry milks including methods of analysis. American Dry Milk Institute, Chicago, pp 26–27

    Google Scholar 

  • Anema SG, Pinder DN, Hunter RJ, Hemar Y (2006) Effects of storage temperature on the solubility of milk protein concentrate (MPC85). Food Hydrocoll 20:386–393

    Article  CAS  Google Scholar 

  • Augustin MA, Sanguansri P, Williams R, Andrews H (2012) High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders. J Dairy Res 79:459–468

    Article  CAS  Google Scholar 

  • Baldwin AJ (2010) Insolubility of milk powder products—a minireview. Dairy Sci Technol 90:169–179

    Article  CAS  Google Scholar 

  • Baldwin AJ, Truong NT (2007) Development of insolubility in dehydration of dairy milk powders. Food Bioprod Process 85:202–208

    Article  Google Scholar 

  • Bhaskar GV, Singh H, Blazey ND (2001) Milk protein products and process, International Patent Specification WO 2001/41578

    Google Scholar 

  • Bouvier J-M, Collado M, Gardiner D, Scott M, Schuck P (2013) Physical and rehydration properties of milk protein concentrates: comparison of spray-dried and extrusion-porosified powders. Dairy Sci Technol 93:387–399

    Article  CAS  Google Scholar 

  • Bullock DH, Winder WC (1960) Reconstitutability of dried whole milk. 1. The effect on sinkability of the manner of handling freshly dried milk. J Dairy Sci 43:301–316

    Article  CAS  Google Scholar 

  • Canabady-Rochelle LS, Sanchez C, Mellema M, Banon S (2009) Thermodynamic characterization of calcium-milk protein interaction by isothermal titration calorimetry. Dairy Sci Technol 89:257–267

    Article  CAS  Google Scholar 

  • Chandrapala J, Martin GJO, Kentish SE, Ashokumarr M (2014a) Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrason Sonochem 21:1658–1665

    Article  CAS  Google Scholar 

  • Chandrapala J, Zisu B, Palmer M, Kentish SE, Ashokumarr M (2014b) Sonication of milk protein solutions prior to spray drying and the subsequent effects on powders during storage. J Food Eng 141:122–127

    Article  CAS  Google Scholar 

  • Crowley SV, Desautel B, Gazi I, Kelly AL, Huppertz T, O’Mahony JA (2015) Rehydration characteristics of milk protein concentrate powders. J Food Eng 149:105–113

    Google Scholar 

  • Crowley SV, Megemont M, Gazi I, Kelly AL, Huppertz T, O’Mahony JA (2014) Heat stability of reconstituted milk protein concentrate powders. Int Dairy J 37:104–110

    Article  CAS  Google Scholar 

  • Cullen PJ, Duffy AP, O’Donnell CP, O’Callaghan DJ (2000) Process viscometry for the food industry. Trends Food Sci Technol 11:451–457

    Article  CAS  Google Scholar 

  • Davenel A, Schuck P, Marchal P (1997) A NMR relaxometry method for determining the reconstitutability and the water-holding capacity of protein-rich milk powders. Milchwissenschaft 52:35–39

    CAS  Google Scholar 

  • Davenel A, Schuck P, Mariette F, Brulé G (2002) NMR relaxometry as a non- invasive tool to characterise milk powders. Lait 82:465–473

    Article  CAS  Google Scholar 

  • de la Fuente MA, Alais C (1975) Solvation of casein in bovine milk. J Dairy Sci 58:293–300

    Article  Google Scholar 

  • Dowding PJ, Goodwin JW, Vincent B (2001) Factors governing emulsion droplet and solid particle size measurements performed using the focused beam reflectance technique. Colloids Surf A 192:5–13

    Article  CAS  Google Scholar 

  • El-Samragy YA, Hansen CL, McMahon DJ (1993) Production of ultrafiltered skim milk retentate powder. 1. Composition and physical properties. J Dairy Sci 76:388–392

    Article  CAS  Google Scholar 

  • Ennis MP, Mulvihill DM (1999a) Compositional characteristics of rennet caseins and hydration characteristics of the caseins in a model system as indicators of performance in Mozzarella cheese analogue manufacture. Food Hydrocoll 13:325–337

    Article  CAS  Google Scholar 

  • Ennis MP, Mulvihill DM (1999b) Maillard reaction contributes to variability in hydration characteristics of rennet caseins in solutions of a calcium-sequestering salt. Int J Dairy Technol 52:156–160

    Article  Google Scholar 

  • Ennis MP, Mulvihill DM (2001) Rennet caseins manufactured from seasonal milks: composition, hydration behaviour and functional performance in pilot-scale manufacture of mozzarella cheese analogues. Int J Dairy Technol 54:23–28

    Article  CAS  Google Scholar 

  • Ennis MP, O’Sullivan MM, Mulvihill DM (1998) The hydration behaviour of rennet caseins in calcium chelating salt solution as determined using a rheological approach. Food Hydrocoll 12:451–457

    Article  CAS  Google Scholar 

  • Fang Y, Rogers S, Selomulya C, Chen XD (2012) Functionality of milk protein concentrate: effect of spray drying temperature. Biochem Eng J 62:101–105

    Article  CAS  Google Scholar 

  • Fang Y, Selomulya C, Ainsworth S, Palmer M, Chen XD (2011) On quantifying the dissolution behaviour of milk protein concentrate. Food Hydrocoll 25:503–510

    Article  CAS  Google Scholar 

  • Fang Y, Selomulya C, Chen XD (2008) On measurement of food powder reconstitution properties. Drying Technol 26:3–14

    Article  Google Scholar 

  • Fang Y, Selomulya C, Chen XD (2010) Characterization of milk protein concentrate solubility using focused beam reflectance measurement. Dairy Sci Technol 90:253–270

    Article  CAS  Google Scholar 

  • Fauquant J, Maubois JL, Pierre A (1988) Microfiltration du lait sur membrane minérale. Tech Lait 1028:21–23

    Google Scholar 

  • Fitzpatrick D (2011) Instrumentation and analytical techniques suitable for broadband acoustic resonance dissolution spectroscopy, United States of America Patent Application No.: US 2011/0088471 A1

    Google Scholar 

  • Forny L, Marabi A, Palzer S (2011) Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technol 206:72–78

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney PLH (1998) Dairy chemistry and biochemistry. Blackie Academic and Professional, London

    Google Scholar 

  • Fyfe KN, Kravchuk O, Le T, Deeth HC, Nguyen AV, Bhandari B (2011) Storage induced changes to high protein powders: influence on surface properties and solubility. J Sci Food Agric 91:2566–2575

    Article  CAS  Google Scholar 

  • Gaiani C, Banon S, Scher J, Schuck P, Hardy J (2005) Use of a turbidity sensor to characterise micellar casein powder rehydration: influence of some technological effects. J Dairy Sci 88:2700–2706

    Article  CAS  Google Scholar 

  • Gaiani C, Boyanova P, Hussain R, Murrieta-Pazos I, Karam MC, Burgain J, Scher J (2011) Morphological descriptors and colour as a tool to better understand rehydration properties of dairy powders. Int Dairy J 21:462–469

    Article  Google Scholar 

  • Gaiani C, Ehrhardt JJ, Scher J, Hardy J, Desobry S, Banon S (2006a) Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties. Colloids Surf B 49:71–78

    Article  CAS  Google Scholar 

  • Gaiani C, Scher J, Schuck P, Desobry S, Banon S (2009a) Use of a turbidity sensor to determine dairy powder rehydration properties. Powder Technol 190:2–5

    Article  CAS  Google Scholar 

  • Gaiani C, Scher J, Schuck P, Hardy J, Desobry S, Banon S (2006b) The dissolution behaviour of native phosphocaseinate as a function of concentration and temperature using a rheological approach. Int Dairy J 16:1427–1434

    Article  CAS  Google Scholar 

  • Gaiani C, Schuck P, Scher J, Desobry S, Banon S (2007) Dairy powder rehydration: influence of protein state, incorporation mode, and agglomeration. J Dairy Sci 90:570–581

    Article  CAS  Google Scholar 

  • Gaiani C, Schuck P, Scher J, Ehrhardt JJ, Arab-Tehrany E, Jacquot M, Banon S (2009b) Native phosphocaseinate powder during storage: lipids released onto the surface. J Food Eng 94:130–134

    Article  CAS  Google Scholar 

  • Galet L, Patry S, Dodds J (2010) Determination of the wettability of powders by the Washburn capillary rise method with bed preparation by a centrifugal packing technique. J Colloid Interface Sci 346:470–475

    Article  CAS  Google Scholar 

  • Gianfrancesco A, Casteran C, Andrieux J-C, Giardiello M-I, Vuataz G (2011) 11th International Congress on Engineering and Food (ICEF11): assessment of physical characteristics and dissolution behaviour of protein based powders. Procedia Food Sci 1:601–607

    Article  CAS  Google Scholar 

  • Hanley KJ, Cronin K, O’Sullivan C, Fenelon MA, O’Mahony JA, Byrne EP (2011) Effect of composition on the mechanical response of agglomerates of infant formulae. J Food Eng 107:71–79

    Article  Google Scholar 

  • Haque E, Bhandari BR, Gidley MJ, Deeth HC, Whittaker AK (2010) Ageing-induced solubility loss in milk protein concentrate powder: effect of protein conformational modifications and interactions with water. J Sci Food Agric 91:2576–2581

    Article  CAS  Google Scholar 

  • Haque E, Whittaker AK, Gidley MJ, Deeth HC, Fibrianto K, Bhandari BR (2012) Kinetics of enthalpy relaxation of milk protein concentrate powder upon ageing and its effect on solubility. Food Chem 134:1368–1373

    Article  CAS  Google Scholar 

  • Hardy J, Scher J, Banon S (2002) Water activity and hydration of dairy powders. Lait 82:441–452

    Article  CAS  Google Scholar 

  • Harper MK, Holsinger V, Fox KK, Pallansch MJ (1963) Factors influencing the instant solubility of milk powders. J Dairy Sci 46:1192–1195

    Article  Google Scholar 

  • Havea P (2006) Protein interactions in milk protein concentrate powders. Int Dairy J 16:415–422

    Article  CAS  Google Scholar 

  • Hellborg D, Bergenståhl B, Trägårdh C (2010) A method for measuring the imbibation rate of powder in a liquid. Chem Eng Process 49:599–604

    Article  CAS  Google Scholar 

  • Henning DR, Baer RJ, Hassan AN, Dave R (2006) Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads. J Dairy Sci 89:1179–1188

    Article  CAS  Google Scholar 

  • Herri JM, Gruy F, Pic JS, Cournil M, Cingotti B, Sinquin A (1999) Interest of in situ turbidimetry for the characterization of methane hydrate crystallization: application to the study of kinetic inhibitors. Chem Eng Sci 54:1849–1858

    Article  CAS  Google Scholar 

  • Huppertz T, Fox PF, de Kruif KG, Kelly AL (2006) High pressure-induced changes in bovine milk proteins: a review. Biochim Biophys Acta 1764:593–598

    Article  CAS  Google Scholar 

  • Hurt E, Barbano DM (2010) Processing factors that influence casein and serum protein separation by microfiltration. J Dairy Sci 93:4928–4941

    Article  CAS  Google Scholar 

  • Hussain R, Gaiani C, Aberkane L, Ghanbaja J, Scher J (2011a) Multiscale characterization of casein micelles under NaCl range conditions. Food Biophys 6:503–511

    Article  Google Scholar 

  • Hussain R, Gaiani C, Aberkane L, Scher J (2011b) Characterization of high-milk-protein powders upon rehydration under various salt concentrations. J Dairy Sci 94:14–23

    Article  CAS  Google Scholar 

  • Hussain R, Gaiani C, Scher J (2012) From high milk protein powders to dispersions in variable ionic environments: a review. J Food Eng 113:486–503

    Article  CAS  Google Scholar 

  • IDF (1979). IDF standard no. 87: instant dried milk—determination of the dispersibility and wettability. International Dairy Federation, Brussels

    Google Scholar 

  • IDF (1979b) IDF standard No. 87: instant dried milk—determination of the dispersibility and wettability. International Dairy Federation, Brussels

    Google Scholar 

  • Jambrak AR, Mason TJ, Lelas V, Herceg Z, Herceg IL (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J Food Eng 86:281–287

    Article  CAS  Google Scholar 

  • Jeantet R, Schuck P, Six T, Andre C, Delaplace G (2010) The influence of stirring speed, temperature and solid concentration on the rehydration time of micellar casein powder. Dairy Sci Technol 90:225–236

    Article  CAS  Google Scholar 

  • Kail N, Marquardt W, Briesen H (2009) Process analysis by means of focused beam reflectance measurement. Ind Eng Chem Res 48:2936–2946

    Article  CAS  Google Scholar 

  • Keck CM, Müller RH (2008) Size analysis of submicron particles by laser diffractometry—90% of the published measurements are false. Int J Pharm 335:150–163

    Article  CAS  Google Scholar 

  • Kelly PM, Kelly J, Mehra R, Oldfield DJ, Raggett E, O’Kennedy BT (2000) Implementation of integrated membrane processes for pilot scale development of fractionated milk components. Lait 80:139–153

    Article  CAS  Google Scholar 

  • Kelly AL, O’Connell JE, Fox PF (2003) Manufacture and properties of milk powders. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, vol 1, Proteins, Part B. Kluwer Academic, New York, pp 1027–1054

    Google Scholar 

  • Kher A, Udabage P, McKinnon I, McNaughton D, Augustin MA (2007) FTIR investigation of spray-dried milk protein concentrate. Vib Spectrosc 44:375–381

    Article  CAS  Google Scholar 

  • Kim EH-J, Chen XD, Pearce D (2002) Surface characterization of four industrially spray-dried dairy powders in relation to chemical composition, structure and wetting property. Colloids Surf B 26:197–212

    Article  CAS  Google Scholar 

  • Kim EH-J, Chen XD, Pearce D (2009) Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J Food Eng 94:169–181

    Article  CAS  Google Scholar 

  • Kinsella JE, Fox PF (1987) Water sorption by milk proteins. Bulletin 209, International Dairy Federation, Brussels, pp 12–40

    Google Scholar 

  • Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249

    Article  CAS  Google Scholar 

  • Le TL, Bhandari BR, Deeth HC (2011a) Chemical and physical changes in milk protein concentrate (MPC80) powder during storage. J Agric Food Chem 59:5465–5473

    Article  CAS  Google Scholar 

  • Le TL, Bhandari B, Holland JW, Deeth HC (2011b) Maillard reaction and protein cross-linking in relation to the solubility of milk powders. J Agric Food Chem 59:12473–12479

    Article  CAS  Google Scholar 

  • Le TL, Holland JW, Bhandari BR, Alewood PF, Deeth HC (2013) Direct evidence for the role of Maillard reaction products in protein cross-linking in milk powder during storage. Int Dairy J 31:83–91

    Article  CAS  Google Scholar 

  • Le Ray C, Maubois JL, Gaucheron F, Brulé G, Pronnier P, Garnier F (1998) Heat stability of reconstituted casein micelle dispersions: changes induced by salt addition. Lait 78:375–390

    Article  Google Scholar 

  • Mao XY, Tong PS, Gualco S, Vink S (2012) Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulphide bonds of 80% milk protein concentrate powder. J Dairy Sci 95:3481–3488

    Article  CAS  Google Scholar 

  • Marabi A, Mayor G, Raemy A, Bauwens I, Claude J, Burbidge AS, Wallach R, Saguy IS (2007) Solution calorimetry: a novel perspective into the dissolution process of food powders. Food Res Int 40:1286–1298

    Article  CAS  Google Scholar 

  • Marabi A, Raemy A, Bauwens I, Burbidge A, Wallach R, Saguy IS (2008) Effect of fat content on the dissolution enthalpy and kinetics of a model food powder. J Food Eng 85:518–527

    Article  CAS  Google Scholar 

  • Masters K (1985) Analytical methods and properties of dried dairy products. In: Hansen R (ed) Evaporation, membrane filtration and spray drying in milk powder and cheese production. North European Dairy Journal, Copenhagen, pp 393–401

    Google Scholar 

  • Maubois JL, Olivier G (1997) Extraction of milk proteins. In: Damodaran S, Paraf A (eds) Food proteins and their application. Marcel Dekker, New York, pp 579–595

    Google Scholar 

  • McCarthy NA, Gee VL, Hickey DK, Kelly AL, O’Mahony JA, Fenelon MA (2013a) Effect of protein content on the physical stability and microstructure of a model infant formula. Int Dairy J 29:53–59

    Article  CAS  Google Scholar 

  • McCarthy NA, Kelly PM, Maher PG, Fenelon MA (2013b) Dissolution of milk protein concentrate (MPC) powders by ultrasonication. J Food Eng 126:142–148

    Article  CAS  Google Scholar 

  • Meyer S, Rajendram VS, Povey MJW (2006) Characterization of reconstituted milk powder by ultrasound spectroscopy. J Food Qual 29:405–418

    Article  CAS  Google Scholar 

  • Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Mimouni A, Deeth HC, Whittaker AK, Gidley MJ, Bhandari BR (2009) Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocoll 23:1958–1965

    Article  CAS  Google Scholar 

  • Mimouni A, Deeth HC, Whittaker AK, Gidley MJ, Bhandari BR (2010a) Rehydration of high-protein-containing dairy powder: slow- and fast-dissolving components and storage effects. Dairy Sci Technol 90:335–344

    Article  CAS  Google Scholar 

  • Mimouni A, Deeth HC, Whittaker AK, Gidley MJ, Bhandari BR (2010b) Investigation of the microstructure of milk concentrate powders during rehydration: alterations during storage. J Dairy Sci 93:463–472

    Article  CAS  Google Scholar 

  • Mistry VV (2002) Manufacture and application of high milk protein powder. Lait 82:515–522

    Article  CAS  Google Scholar 

  • Mori Y (2007) In: Masuda H, Higashitani K, Yoshida H (eds) Powder technology: fundamentals of particles, powder beds, and particle generation. CRC, Boca Raton, pp 115–124

    Google Scholar 

  • Moughal KI, Munro PA, Singh H (2000) Suspension stability and size distribution of particles in reconstituted, commercial calcium caseinates. Int Dairy J 10:683–690

    Article  CAS  Google Scholar 

  • Mucchetti G, Gatti M, Neviani E (1995) Electrical conductivity changes in milk caused by acidification: determining factors. J Dairy Sci 77:940–944

    Article  Google Scholar 

  • Mulvihill DM, Ennis MP (2003) Functional milk proteins: production and utilization. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, vol 1, Proteins, Part B. Kluwer, New York, pp 1175–1228

    Google Scholar 

  • Murrieta-Pazos I, Gaiani C, Galet L, Calvet R, Cuq B, Scher J (2012) Food powders: surface and form characterisation revisited. J Food Eng 112:1–21

    Article  Google Scholar 

  • Murrieta-Pazos I, Gaiani C, Galet L, Cuq B, Desobry S, Scher J (2011) Comparative study of particle structure evolution during water sorption: skim and whole milk powders. Colloids Surf B 87:1–10

    Article  CAS  Google Scholar 

  • Nijdam JJ, Langrish TAG (2006) The effect of surface composition on the functional properties of milk powders. J Food Eng 77:919–925

    Article  CAS  Google Scholar 

  • Pierre A, Fauquant J, Le Graët Y, Piot M, Maubois JL (1992) Préparation de phosphocaséinate natif par microfiltration sur membrane. Lait 72:461–474

    Article  CAS  Google Scholar 

  • Písecký IJ (1997) Handbook of milk powder manufacture. Niro A/S, Copenhagen

    Google Scholar 

  • Povey MJW, Golding M, Higgs D, Wang Y (1999) Ultrasonic spectroscopy studies of casein in water. Int Dairy J 9:299–303

    Article  CAS  Google Scholar 

  • Richard B, Le Page J-F, Schuck P, Andre C, Jeantet R, Delaplace G (2013) Towards a better control of dairy powder rehydration processes. Int Dairy J 31:18–28

    Article  Google Scholar 

  • Richard B, Toubal M, Le Page J-F, Nassar G, Radziszewski E, Nongaillard B, Debreyne P, Schuck P, Jeantet R, Delaplace G (2012) Ultrasound tests in a stirred vessel to evaluate the reconstitution ability of dairy powders. Innov Food Sci Emerging Technol 16:233–242

    Article  CAS  Google Scholar 

  • Schober C, Fitzpatrick JJ (2005) Effect of vortex formation on powder sinkability for reconstituting milk powders in water to high solids content in a stirred-tank. J Food Eng 71:1–8

    Article  Google Scholar 

  • Schuck P, Davenel A, Mariette F, Briard V, Méjean S, Piot M (2002) Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer. Int Dairy J 12:51–57

    Article  CAS  Google Scholar 

  • Schuck P, Dolivet A, Jeantet R (2012) Analytical methods for food and dairy powders. Wiley-Blackwell, West Sussex

    Book  Google Scholar 

  • Schuck P, Méjean S, Dolivet A, Beaucher E, Famelart MM (2005) Pump amperage: a new method for monitoring viscosity of dairy concentrates before spray drying. Lait 85:361–367

    Article  Google Scholar 

  • Schuck P, Méjean S, Dolivet A, Gaiani C, Banon S, Scher J, Jeantet R (2007) Water transfer during rehydration of micellar casein powders. Lait 87:425–432

    Article  CAS  Google Scholar 

  • Semagotoa HM, Liua D, Koboyataua K, Hua J, Lua N, Liua X, Regensteinc JM, Zhou P (2014) Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Res Int 62:580–588

    Article  CAS  Google Scholar 

  • Singh J (2009) Breakthroughs in on-line particle sizing. www.helgroup.com. Accessed Nov 2012

  • Singh H, Newstead DF (1992) Aspects of proteins in milk powder manufacture. In: Fox PF (ed) Advanced dairy chemistry, vol 1, Proteins. Elsevier Applied Science, New York, pp 735–765

    Google Scholar 

  • Sikand V, Tong PS, Roy S, Rodriguez-Saona LE, Murray BA (2011) Solubility of commercial milk protein concentrates and milk protein isolates. J Dairy Sci 94:6194–6202

    Article  CAS  Google Scholar 

  • Skanderby M, Westergaard V, Partridge A, Muir DD (2009) Dried milk products. In: Tamine AY (ed) Dairy powders and concentrated products. Wiley-Blackwell, West Sussex, pp 180–233

    Chapter  Google Scholar 

  • Snoeren THM, Klok HJ, Van Hooydonk ACM, Damman AJ (1984) The voluminosity of casein micelles. Milchwissenschaft 39:461–463

    CAS  Google Scholar 

  • St-Gelais D, Champagne CP, Erepmoc F, Audet P (1995) The use of electrical conductivity to follow acidification of dairy blends. Int Dairy J 5:427–438

    Article  CAS  Google Scholar 

  • Syll O, Richard B, Willart JF, Descamps M, Schuck P, Delaplace G, Jeantet R (2012) Rehydration behaviour and ageing of dairy powders assessed by calorimetric measurements. Innovative Food Sci Emerg Technol 14:139–145

    Article  CAS  Google Scholar 

  • Tamsma A, Kontson A, Pallansch MJ (1967) Influence of drying techniques on some properties of nonfat dried milk. J Dairy Sci 50:1055–1060

    Article  Google Scholar 

  • Therdthai N, Zhou W (2001) Artificial neural network modelling of the electrical conductivity property of recombined milk. J Food Eng 50:107–111

    Article  Google Scholar 

  • Udabage P, Puvanenthiran A, Yoo JA, Versteeg C, Augustin MA (2012) Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment. J Dairy Res 79:76–83

    Article  CAS  Google Scholar 

  • Vega C, Roos YH (2006) Invited review: spray-dried and dairy-like emulsions–compositional considerations. J Dairy Sci 89:383–401

    Article  CAS  Google Scholar 

  • Vignolles ML, Lopez C, Le Floch C, Ehrhardt JJ, Méjean S, Jeantet R, Schuck P (2010) Fat supramolecular structure in fat-filled dairy powders: a tool to adjust drying kinetics. Dairy Sci Technol 90:287–300

    Article  CAS  Google Scholar 

  • Vignolles ML, Lopez C, Madec MN, Ehrhardt JJ, Méjean S, Schuck P, Jeantet R (2009) Fat properties during homogenization, spray-drying and storage affect the physical properties of dairy powders. J Dairy Sci 92:58–70

    Article  CAS  Google Scholar 

  • Vos B, Crowley SV, Evans-Hurson R, McSweeney S, Krüse J, Fitzpatrick D, O’Mahony JA. (2015). New insights into the mechanism of rehydration of milk protein concentrate powders determined by Broadband Acoustic Resonance Dissolution Spectroscopyy (BARDS). Food Hydrocoll [submitted]

    Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellema A, van Boekel MAJS (1999) Dairy technology: principles of milk properties and processes. Marcel Dekker, New York

    Google Scholar 

  • Webb PA (2000) A primer on particle sizing by static laser light scattering. In: Technical workshop series: introduction to the latest ANSI/ISO standard for laser particle size analysis. Micromeritics Instrument Corp. www.particletesting.com/docs/primer_particle_sizing_laser.pdf. Accessed Sept 2012

  • Yanjun S, Jianhang C, Shuwen Z, Hongjuan L, Jing L, Uluko H, Yanling S, Wenming C, Wupeng G, Jiaping L (2014) Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. J Food Eng 124:11–18

    Article  CAS  Google Scholar 

  • Zhuang Y, Zhou W, Nguyen MH, Hourigan JA (1997) Determination of protein content of whey powder using electrical conductivity measurement. Int Dairy J 7:647–653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. O’Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crowley, S.V., Kelly, A.L., Schuck, P., Jeantet, R., O’Mahony, J.A. (2016). Rehydration and Solubility Characteristics of High-Protein Dairy Powders. In: McSweeney, P., O'Mahony, J. (eds) Advanced Dairy Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2800-2_4

Download citation

Publish with us

Policies and ethics