Skip to main content

The Legume–Rhizobia Symbiosis

  • Chapter
  • First Online:
Grain Legumes

Abstract

The symbiotic nitrogen fixation (SNF) with legumes is the primary source of biologically fixed nitrogen for agricultural system. It is performed by a group of bacteria commonly called rhizobia. It is characterized by a host preference, and the differences among symbioses between rhizobial strains and legume genotypes are related to infection, nodule development and effectiveness in N2 fixation. The interaction between a rhizobia and the legume is mediated by a lipochitin oligosaccharide secreted by the rhizobia, and called “Nod factor”. It is recognized by transmembrane receptors on the root-hair cells of the legume. It can regulate the nodule organogenesis by inducing changes in the cytokinin balance of the root, during nodule initiation. N2 fixation in legume nodules is catalyzed by the nitrogenase enzyme depending upon the photosynthate supply, the O2 concentration, and the fixed-N export. Among environmental factors that influence the SNF, the temperature is essential for nodule formation; the salinity and drought decrease the nodule permeability to O2 and the photosynthate supply to the nodule, the phosphorus deficiency inhibits the nodule development and the total N2 fixation. Rhizobia strains differ in their efficiency in N2 fixation with host legume. There is evidence of genotypic variability for SNF at different levels of available P which show a possibility of selecting cultivars able to support biological N2 fixation under low P soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab HH, Zahran HH (1983) The effects of water stress on N2 (C2H2)-fixation and growth of Medicago sativa L. Acta Agron Acad Sci Hung 32:114–118

    Google Scholar 

  • Albrecht SL, Bennett JM, Boote KJ (1994) Relationship of nitrogenase activity to plant water stress in field grown soybeans. Field Crop Res 8:61–71

    Article  Google Scholar 

  • Almeida JPF, Hartwig UA, Frehner M et al (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Expt Bot 51:1289–1297

    Article  CAS  Google Scholar 

  • Al-Niemi TS, Kahn ML, McDermott TR (1997) P metabolism in the bean-Rhizobium tropici symbiosis. Plant Physiol 113:1233–1242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alva AK, Assher CJ, Edwards DG (1990) Effect of solution pH, external calcium concentration and aluminum activity on nodulation and early growth of cowpea. Aust J Agr Res 41:359–365

    Article  CAS  Google Scholar 

  • Ankomah AB, Zapata F, Danso SKA et al (1995) Cowpea varietals differences in uptake of phosphorus from Gafsa phosphate rock in a low-P ultisol. Fert Res 41:219–225

    Article  Google Scholar 

  • Arora N, Skoog F, Alien ON (1959) Kinetin-induced pseudonodules on tobacco roots. Am J Bot 46:610–613

    Article  CAS  Google Scholar 

  • Arrese-Igor C, Minchin FR, Gordon AJ et al (1997) Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate. J Expt Bot 48:905–913

    Article  Google Scholar 

  • Arrese-Igor C, Gordon AJ, Minchin FR et al (1998) Nitrate entry and nitrite formation in the infected region of soybean nodules. J Expt Bot 49:41–48

    Article  CAS  Google Scholar 

  • Basu M, Bhadoria PBS, Mahapatra SC (2008) Growth, nitrogen fixation, yield and kernel quality of peanut in response to lime, organic and inorganic fertilizer levels. Bioresource Technol 99:4675–4683

    Article  CAS  Google Scholar 

  • Bauer P, Ratet P, Crespi MD et al (1996) Nod-factors and cytokinins induce similar cortical cell divisions, amyloplast deposition and MsENOD12A expression patterns in alfalfa roots. Plant J 10:91–105

    Article  CAS  Google Scholar 

  • Bayoumi HEA, Biro B, Balazsy S et al (1995) Effects of some environmental factors on Rhizobium and Bradyrhizobium strains. Acta Microbiol Immunol Hung 42:61–69

    CAS  PubMed  Google Scholar 

  • Becana M, Klucas RV (1992) Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Proc Natl Acad Sci U S A 89:8958–8962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beck DP, Munns DN (1985) Effect of calcium on the phosphorus nutrition of Rhizobium meliloti. Soil Sci Soc Am J 49:334–337

    Article  CAS  Google Scholar 

  • Becana M, Aparicio-Tejo PM, Sanchez-Diaz M (1985) Levels of ammonia, nitrite and nitrate in alfalfa root nodules supplied with nitrate. J Plant Physiol 119:359–367

    Article  CAS  Google Scholar 

  • Bell RW, Edwards DG, Adher CJ (1989) External calcium requirements for growth and nodulation of six tropical food legumes grown in flowing solution culture. Aust J Agr Res 40:85–96

    Article  Google Scholar 

  • Bell RW et al (1990) Growth and nodulation of tropical food legumes in dilute solution culture. Plant Soil 122:249–258

    Article  CAS  Google Scholar 

  • Benhamou N, Asselin A (1989) Attempted localisation for a substrate for chitinases in plant cells reveals abundant N-acetyl-D-glucosamine residues in secondary walls. Biol Cell 67:341–350

    CAS  Google Scholar 

  • Bliss FA (1993) Breeding common bean for improved biological nitrogen fixation. Plant Soil 152:71–79

    Article  Google Scholar 

  • Bonser AMYM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288

    Article  CAS  PubMed  Google Scholar 

  • Bordeleau LM, Prevost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–124

    Article  CAS  Google Scholar 

  • Brockwell J, Pilka A, Holliday RA (1991) Soil pH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in non-cultivated soils of New South Wales. Aust J Expt Agr 31:211–219

    Article  Google Scholar 

  • Bushby HVA (1991) Nodulation and nitrogen fixation of mungbeans in Australia. In: Imrie BC, Lawn RJ (eds) Mungbean: the Australian experience. Proceedings of the first Australian mungbeans workshop, Brisbane

    Google Scholar 

  • Caetano-Anollés G, Lagares A, avelukes G (1989) Adsorption of Rhizobium meliloti to alfalfa roots: dependence on divalent cations and pH. Plant Soil 117:67–74

    Article  Google Scholar 

  • Carroll BJ, McNEil DL, Gresshoff PM (1985) Isolation and properties of soybean (Glycine max) mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci U S A 82:4164–4166

    Google Scholar 

  • Carter JM, Gardner WK, Gibson AH (1994) Improved growth and yield of faba beans (Vicia faba cv. Fiord) by inoculation with strains of Rhizobium leguminosarum biovar viciae in acid soils in south-west Victoria. Aust J Agr Res 45:613–623

    Article  Google Scholar 

  • Cassman KG, Whitney AS, Stockinger KR (1980) Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci 20:239–244

    Article  CAS  Google Scholar 

  • Cassman KG, Whitney AS, Fox RL (1981) Phosphorus requirement of soybean and cowpea as affected by mode of N nutrition. Agron J 73:17–22

    Article  CAS  Google Scholar 

  • Cassman KG, Singleton PW, Linquist BA (1993) Input/output analysis of the cumulative soybean response to phosphorus on an Ultisol. Field Crops Res 34:23–36

    Article  Google Scholar 

  • Chaverra MH, Graham PH (1992) Cultivar variation affecting early nodulation of common bean. Crop Sci 32:1432–1436

    Article  Google Scholar 

  • Clarke LM, Dilworth MJ, Glenn AR (1993) Survival of Rhizobium meliloti WSM419 in laboratory culture: effect of combined pH shock and carbon. Soil Biol Biochem 25:1289–1291

    Article  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD et al (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6:215–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordovilla MP, Ocana A, Ligero F et al (1995) Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J Plant Nutr 18:1595–1609

    Article  CAS  Google Scholar 

  • Correa OS, Barneix AJ (1997) Cellular mechanisms of pH tolerance in Rhizobium loti. World J Microbiol Biotech 13:153–157

    Article  CAS  Google Scholar 

  • Crespi M, Galvez S (2000) Molecular mechanisms in root nodule development. J Plant Growth Regul 19:155–166

    CAS  PubMed  Google Scholar 

  • Cure JD, Rufty TW, Israel DW (1988) Phosphorus stress effects on growth and seed yield responses of non nodulated soybean to elevated carbon dioxide. Agron J 80:897–902

    Article  CAS  Google Scholar 

  • Dalton DA, Post CJ, Langeberg L (1991) Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione ascorbate, and associated enzymes in soybean root nodules. Plant Physiol 96:812–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis LC, Erickson LE, Jones GT (1987) Diffusion and reaction in root nodules. Crit Rev Biotech 7:43–95

    Article  Google Scholar 

  • Day DA, Copeland L (1991) Carbon metabolism and comparmentation in nitrogen-fixing legume nodules. Plant Physiol Biochem 29:185–201

    CAS  Google Scholar 

  • Delgado MJ, Ligero F, Lluch Cl (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Deroche ME, Carrayol E (1988) Nodule phosphoenolpyruvate carboxylase: a review. Plant Physiol 74:775–782

    Article  CAS  Google Scholar 

  • Diaz del Castillo L, Layzell DB (1995) Drought stress, permeability to O2, diffusion and the respiratory kinetics of soybean root nodules. Plant Physiol 107:1187–1194

    CAS  Google Scholar 

  • Diaz del Castillo L, Hunt S, Layzell DB (1994) The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol 106:949–955

    CAS  Google Scholar 

  • Drevon JJ, Hartwig UA (1997) Phosphorous deficiency increases the argon induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201:463–469

    Article  CAS  Google Scholar 

  • Drevon JJ, Kalia VC, Heckmann MO et al (1988) In situ open-flow assay of soybean root nodular acetylene reduction activity: influenceof acetylene and oxygen. Plant Physiol Biochem 26:73–78

    CAS  Google Scholar 

  • Durand JL, Sheehy JE, Minchin FR (1987) Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water deprivation. J Expt Bot 38:311–321

    Article  CAS  Google Scholar 

  • Fagg CW, Stewart JL (1994) The value of Acacia and Prosopis in arid and semi-arid environments. J Arid Environ 27:3–25

    Article  Google Scholar 

  • Farrar JF, Jones DL (2000) The control of carbon acquisition by roots. New Phytol 147:43–53

    Article  CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Reg 22:47–72

    Article  CAS  Google Scholar 

  • Fernández-Pascual M, Pueyo JJ, Felipe MR de et al (2007) Singular features of the Bradyrhizobium-Lupinus symbiosis. Dynamic soil, dynamic plant. Global Science Books, Springer-Verlag, Berlin, pp 1–16

    Google Scholar 

  • First AJ, Smith FW, Edwards DG (1987) External phosphorus requirements of five tropical grain legumes grown in flowing-solution culture. Plant Soil 99:75–84

    Article  Google Scholar 

  • Foucher F, Kondorosi E (2000) Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43:773–786

    Article  CAS  PubMed  Google Scholar 

  • Fougère F, Le Rudulier D, Streeter JGl (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots bacteroids and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  PubMed Central  PubMed  Google Scholar 

  • Franson RL, Brown MS, Bethlenfalvay GJ (1991) The Glycine-Glomus-Bradyrhizobium symbiosis. XI. Nodule gas exchange and efficiency as a function of soil and root water status in mycorrhizal soybean. Plant Physiol 83:476–482

    Article  CAS  Google Scholar 

  • Fujikake H, Yamazaki A, Ohtake N et al (2003) Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. J Expt Bot 54:1379–1388

    Article  CAS  Google Scholar 

  • García A, Hernandez G, Nuviola A et al (1996) Efecto del P sobre el rendimiento y extracción del NP de frijol cultivado en tres suelos. Agron Mesoam 7:99–102

    Google Scholar 

  • Gates CT (1974) Nodule and plant development in Stylosanthes humilis HBK: symbiosis response to phosphorus and sulphur. Aust J Bot 22:45–55

    Article  Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Expt Bot 54:2757–2767

    Article  CAS  Google Scholar 

  • Georgiev GI, Atkins CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  • Gómez LV, Vadez V, Hernandez G et al (2002) Evaluación de la tolerancia al estrés de fósforo en caupí (Vigna unguiculata L. Walp) en Cuba. I. Cultivo en solución nutritiva. Agron Mesoam 13:59–65

    Article  Google Scholar 

  • González EM, Galvez L, Arrese-Igor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Expt Bot 52:285–293

    Article  Google Scholar 

  • Goormachtig S, Alves-Ferreira M, Montague M et al (1997) Expression of cell cycle genes during Sesbania rostrata stem nodule development. Mol Plant-Microbe Interact 10:316–325

    Article  CAS  PubMed  Google Scholar 

  • Gordon AJ, James CL (1997) Enzymes of carbohydrate and amino acid metabolism in developing and mature nodules of white clover. J Exp Bot 48:895–903

    Article  CAS  Google Scholar 

  • Gordon AJ, Ougham HJ, James CL (1993) Changes in levels of gene transcripts and their corresponding proteins in nodules of soybean plants subjected to dark-induced stress. J Expt Bot 44:1453–1460

    Article  CAS  Google Scholar 

  • Gourley CJP, Allan DL, Ruselle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvement. Plant Soil 158:29–37

    Article  CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Graham PH, Vance C (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham PH, Draeger K, Ferrey ML et al (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    Article  CAS  Google Scholar 

  • Gresshoff PM (1993) Molecular genetic analysis of nodulation genes in soybean. Plant Breeding Rev 11:275–318

    Google Scholar 

  • Guanawardena SFBN, Danson SKA, Zapata F (1992) Phosphorus requirement and nitrogen accumulation by three mungbean (Vigna radiata L. Welzek) cultivars. Plant Soil 147:267–274

    Article  Google Scholar 

  • Guanawardena SFBN, Danson SKA, Zapata F (1993) Phosphorus requirement and source of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil 151:1–9

    Article  Google Scholar 

  • Guérin V, Pladys D, Trinchant JC et al (1990) Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba L.) nodules and bacteroids under water-restricted conditions. Plant Physiol 92:595–601

    Article  PubMed Central  PubMed  Google Scholar 

  • Hart AL (1989) Nodule phosphorus and nodule activity in white clover. NZ J Agr Res 32:145–149

    Article  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen uöber die tickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins fuör die Ruöbenzucker-Industrie des Deutschen Reiches, Buchdruckerei der Post, Kayssler, Berlin

    Google Scholar 

  • Hungria M, Franco AA (1988) Nodule senescence in Phaseolus vulgaris (L.). Trop Agr 65:341–346

    CAS  Google Scholar 

  • Hunt S, Gaito ST, Layzell DB (1988) Model of gas exchange and diffusion in legume nodules. II. Characterisation of the diffusion “barrier” and estimation of the concentration of CO2, H2 and N2 in the infected cells. Planta 173:128–141

    Article  CAS  PubMed  Google Scholar 

  • Iannetta PPM, De Lorenzo C, James EK et al (1993) Oxygen diffusion in lupin nodules: I. Visualization of diffusion barrier operation. J. Exp Bot 44:1461–1467

    Article  CAS  Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL et al (1997) Enumeration and nitrogen fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agr Ecosyst Environ 61:103–111

    Article  CAS  Google Scholar 

  • Isoi T, Yoshida S (1991) Deficient nitrogen fixation of common-bean (Phaseolus vulgaris). Soil Sci Plant Nutr 37:559–563

    Article  CAS  Google Scholar 

  • Israel DW (1987) Investigation of the role of phosphorus in symbiotic nitrogen fixation. Plant Physiol 84:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen I (1985) The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiol Plant 64:190–196

    Article  Google Scholar 

  • Jebara M, Aouani ME, Payre H et al (2005) Nodule conductance varied among common bean (Phaseolus vulgaris) genotypes under phosphorus deficiency. J Plant Physiol 162:309–315

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. III. Characteristics of sugar influx and efflux. Plant Soil 178:153–160

    Article  CAS  Google Scholar 

  • Karmakar S, Mittra BN, Gosh BC (1997) Comparative efficiency of organic and industrial wastes in improving productivity of acid lateritic soil under rice-groundnut cropping system. In: First all India peoples technology Congress, Calcutta, 21–23 Feb 1997, pp 24–27

    Google Scholar 

  • Kennedy IR, Cocking EC (1997) Biological nitrogen fixation: the global challenge and future needs. Rockefeller Foundation Bellagio conference proceedings. SUN Fix Press, University of Sydney, Sydney, pp 1–83

    Google Scholar 

  • Kinzig AP, Socolow RH (1994) Human impacts on the nitrogen cycle. Physiol Today 47:24–31

    Article  Google Scholar 

  • Kipe-Nolt JA, Giller KE (1993) A field evaluation using the 15N isotope dilution method of lines of Phaseolus vulgaris L. bred for increased nitrogen fixation. Plant Soil 152:107–114

    Article  Google Scholar 

  • Kipe-Nolt JA, Vargas H, Giller KE (1993) Yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.) in Peru. Plant Soil 152:87–91

    Article  Google Scholar 

  • Keister DL, Evans WR (1976) Oxygen requirement for acetylene reduction by pure cultures of Rhizobia J Bacteriol 129:149–153

    Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518

    Article  CAS  PubMed  Google Scholar 

  • Libbenga KR, Harkes PAA (1973) Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L. Planta 114:17–28

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York. pp 1–889

    Google Scholar 

  • Mugwira LM, HAque I, Lupwayi NZ et al (1997) Evaluation of phosphorus uptake and use efficiency and nitrogen fixation potential by African clovers. Agr Ecos Environ 65:169–175

    Article  Google Scholar 

  • Neo HH, Layzell DB (1997) Phloem glutamine and the regulation of O2 diffusion in legume nodules. Physiol Planta 113:259–267

    CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Newcomb W, Syono K, Torrey JG (1976) Development of an ineffective pea root nodule: morphogenesis, fine structure, and cytokinin biosynthesis. Can J Bot 55:1891–1907

    Article  Google Scholar 

  • Ohyama T, Mizukoshi K, Nishiwaki T (1993) Distribution of ureide originated from nodules attached to the upper roots and nitrate derived from lower roots in soybean plants cultivated by double piled pots. Bull Fac Agric (Niigata University, Niigata, Japan) 45:107–116

    CAS  Google Scholar 

  • Parsons R, Day DA (1990) Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ 13:501–512

    Article  Google Scholar 

  • Pate JS, Herridge DF (1978) Partitioning and utilization of net photosynthates in nodulated annual legumes. J Expt Bot 29:401–412

    Article  CAS  Google Scholar 

  • Pate JS, Craig AA, Shane TW et al (1980) Nitrogen nutrition and xylem transport of nitrogen in ureides-producing grain legumes. Plant Physiol 65:961–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pawar NB, Ghulghule JN (1980) Preliminary observation on occurrence and senescence of root nodules in some pluses. Trop Grain Leg Bull 18:3–5

    Google Scholar 

  • Pena-Cabriales JJ, Castellanos JZ (1993) Effect of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant Soil 152:151–155

    Article  Google Scholar 

  • People MB, Craswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39

    Article  Google Scholar 

  • Pereira PA, Bliss FA (1987) Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil 104:84–104

    Article  Google Scholar 

  • Pereira P, Bliss FA (1989) Selection of common bean (Phaseolus vulgarus L.) for N2 fixation at different levels of available phosphorus under field and environmentally controlled conditions. Plant Soil 115:75–82

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Poehlman JM (1991) The mungbeans. Mohan Primlani for Oxford and IBH, New Delhi, pp 1–343

    Google Scholar 

  • Pongsakul P, Jensen ES (1991) Dinitrogen fixation and soil N uptake by soybean as affected by phosphorus availability. Plant Physiol 14:809–823

    Google Scholar 

  • Puppo A, Halliwell B (1988) Generation of hydroxyl radicals by soybean nodule leghaemoglobin. Planta 173:405–410

    Article  CAS  PubMed  Google Scholar 

  • Puppo A, Rigaud J, Job D (1981) Role of superoxide anion in leghemoglobin autoxidation. Plant Sci Lett 22:353–360

    Article  CAS  Google Scholar 

  • Qiao YF, Tang C, Hang XZ et al (2007) Phosphorus deficiency delays the onset of nodule function in soybean (Glycine max Murr.). J Plant Nutr 30:1341–1353

    Article  CAS  Google Scholar 

  • Rajput AL, Singh TP (1996) Response of nitrogen and phosphorus with and without Rhizobium inoculation on fodder production of cowpea (Vigna unguiculata). Indian J Agron 41:91–94

    Google Scholar 

  • Raychaudhury M, Ngachan SV, Raychaudhury S et al (2003) Yield response of groundnut to dual inoculation and liming of an acid hill Ultisol of Manipur. Indian J Agr Sci 73:86–88

    Google Scholar 

  • Reddell P, Yang Y, Shipton WA (1997) Do Casuarina cunninghamiana seedlings dependent on symbiotic N2 fixation have higher phosphorus requirement than those supplied with adequate fertilizer nitrogen? Plant Soil 189:213–219

    Article  CAS  Google Scholar 

  • Relic B, Perret X, Estrada-Garcia MT et al (1994) Nod factors of Rhizobium are the key to the legume door. Mol Microbiol 13:171–178

    Article  CAS  PubMed  Google Scholar 

  • Ribet J, Drevon JJ (1995a) Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Plant Physiol 94:298–304

    Article  CAS  Google Scholar 

  • Ribet J, Drevon JJ (1995b) Phosphorus deficiency increases the acetylene-induced decline in nitrogenase activity in soybean (Glycine max (L.) Merr.). J Expt Bot 46:1479–1486

    Article  CAS  Google Scholar 

  • Ribet J, Drevon JJ (1996) The phosphorus requirement of N2-fixing and urea-fed Acacia mangium. New Phytol 132:383–390

    Article  CAS  Google Scholar 

  • Richardson AE, Djordjevic MA, Rolfe BG et al (1988) Effect of pH, Ca and Al on the exudation from clover seedlings of compounds that induce the expression of nodulation genes in Rhizobium trifolii. Plant Soil 109:37–47

    Article  CAS  Google Scholar 

  • Rigaud J, Bergersen FJ, Turner GL et al (1973) Nitrate dependent aerobic acetylene reduction and nitrogen fixation by soybean bacteroids. J Gen Microbiol 77:137–144

    Article  CAS  Google Scholar 

  • Robson AD, O’Hara GW, Abbott LK (1981) Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Aust J Plant Physiol 8:427–436

    Article  CAS  Google Scholar 

  • Rodrigez-Barrueco C, Bermudez de Castro F (1973) Cytokinin-induced pseudonodules on Alnus glutinosa. Plant Physiol 29:277–280

    Article  Google Scholar 

  • Sa TM, Israel DW (1991) Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol 97:928–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanginga N (2003) Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 252:25–39

    Article  CAS  Google Scholar 

  • Sanginga N, Okogun JA, Akobundu IO et al (1996) Phosphorus requirement and nodulation of herbaceous and shrub legumes in low P soils of a Guinean savanna in Nigeria. App Soil Eco 3:247–255

    Article  Google Scholar 

  • Sanginga N, Thottappilly G, Dashiell K (2000) Effectiveness of rhizobia nodulating recent promiscuous soyabean selections in the moist savanna of Nigeria. Soil Biol Biochem 32:127–133

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt J, Röhrig H, John M, Wienecke U, Stacey G, Koncz C, Schell J (1993) Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J 4:651–658

    Google Scholar 

  • Seeman JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of salt-sensitive species, Phaseolus vulgaris (L). Planta 164:151–162

    Article  Google Scholar 

  • Sellstedt A, Staahl L, Mattsson M et al (1993) Can the 15N dilution technique be used to study N2 fixation in tropical tree symbioses as affected by water deficit? J Expt Bot 44:1749–1755

    Article  Google Scholar 

  • Serraj R (2002) Response of symbiotic nitrogen fixation to drought and salinity stresses. Physiol Mol Biol Plants 8:77–86

    Google Scholar 

  • Serraj R, Adu-Gyamfi J (2004) Role of symbiotic nitrogen fixation in the improvement of legume productivity under stressed environements. West Afr J App Eco 6:95–109

    Google Scholar 

  • Serraj R, Sinclair TR (1996) Processes contributing to N2-fixation insensitivity to drought in the soybean cultivar Jackson. Crop Sci 36:961–968

    Article  Google Scholar 

  • Serraj R, Roy G, Drevon JJ (1994) Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion. Plant Physiol 91:161–168

    Article  CAS  Google Scholar 

  • Serraj R, Vadez V, Denison RF et al (1999) Involvement of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agron 21:621–626

    Article  Google Scholar 

  • Sharkey TD, Seeman JR, Berry JA (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105

    Article  Google Scholar 

  • Sheehy JE, Minchin FR, Witty JF (1985) Control of nitrogen fixation in a legume nodule: an analysis of the role of oxygen diffusion in relation to nodule structure. Ann Bot 55:549–562

    Google Scholar 

  • Shu-Jie M, Yun-Fa Q, Xiao-Zeng H et al (2007) Nodule formation and development in soybeans (Glycine max L.) in response to phosphorus supply in solution culture. Pedosphere 17:36–43

    Article  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ (1991) Studies of the uptake of nitrate in barley. 11. Compartmentation of NO3 . J Expt Bot 42:1455–1463

    Article  CAS  Google Scholar 

  • Sinclair TR, Goudriaan J (1981) Physical and morphological constraints on transport in nodules. Plant Physiol 67:143–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singleton PW, Abdel-Magid HM, Tavares JW (1985) Effect of phosphorus on the effectiveness of strains of Rhizobium japonicum. Soil Sci Soc Am J 49:613–616

    Article  CAS  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Global Biogeochemical Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Söderström B (1992) The ecological potential of the ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH et al (eds) Mycorrhiza functioning. CAB International, Wallingford, pp 77–83

    Google Scholar 

  • Söderström BE, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilized soil. Soil Biol Biochem 11:231–237

    Article  Google Scholar 

  • Sousanna JF, Hartwig UA (1996) The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332

    Article  Google Scholar 

  • Spaink HP, Wijfjes AHM, Vanvliet TB et al (1993) Rhizobial lipo-oligosaccharide signals and their role in plant morphogenesis. Are analogous lipophilic chitin derivatives produced by the plant? Aust J Plant Physiol 20:381–392

    Article  CAS  Google Scholar 

  • Stacey G, Shibuya N (1997) Chitin recognition in rice and legumes. Plant Soil 194:161–169

    Article  CAS  Google Scholar 

  • Stephens BD, Neyra CA (1983) Nitrate and nitrite reduction in relation to nitrogenase activity in soybean nodules and Rhizobium japonicum bacteroids. Plant Physiol 71:731–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant DB, Taller BJ (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89:1247–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun JS, Simpson RJ, Sands R (1992) Nitrogenase activity of two genotypes of Acacia mangium as affected by phosphorus nutrition. Plant Soil 144:51–58

    Article  CAS  Google Scholar 

  • Sutherland TD, Bassam BJ, Schuller LJ et al (1990) Early nodulation signals of the wild type and symbiotic mutants of soybean (Glycine max). Mol Plant Microbe Interact 3:122–128

    Article  CAS  Google Scholar 

  • Sy A, Giraud E, Jourand P et al (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang C, Thomson BD (1996) Effects of solution pH and bicarbonate on the growth and nodulation of a range of grain legumes. Plant Soil 186:321–330

    Article  CAS  Google Scholar 

  • Tang C, Hinsinger P, Jaillard B et al (2001a) Effect of phosphorus deficiency on the growth, symbiotic N2 fixation and proton release by two bean (Phaseolus vulgaris) genotypes. Agron 21:683–689

    Article  Google Scholar 

  • Tang C, Hinsinger, P, Drevon JJ et al (2001b) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot 88:131–138

    Article  CAS  Google Scholar 

  • Tang C, Drevon JJ, Jaillard B et al (2004) Proton release of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutrition and P deficiency. Plant Soil 260:59–68

    Article  CAS  Google Scholar 

  • Tate RL (1995) Soil microbiology (symbiotic nitrogen fixation). Wiley, New York, pp 307–333

    Google Scholar 

  • Taylor RW, Williams ML, Sistani KR (1991) Nitrogen fixation by soybean-Bradyrhizobium combinations under acidity, low P and high Al stresses. Plant Soil 131:293–300

    Article  CAS  Google Scholar 

  • Thomas RJ, Askawa NM, Rondon MA et al (1997) Nitrogen fixation by three tropical forage legumes in an acid soil savanna of Colombia. Soil Biol Biochem 29:801–808

    Article  CAS  Google Scholar 

  • Trinchant JC, Rigaud J (1982) Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids. Appl Environ Microbiol 44:1385–1388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vadez V, Lim G, Durand P et al (1995) Comparative growth and symbiotic performance of four Acacia mangium provenances from Papua New Guinea in response to the supply of phosphorus at various concentrations. Biol Fert Soils 19:60–64

    Article  CAS  Google Scholar 

  • Vadez V, Rodier F, Payre H et al (1996) Nodule permeability to O2 and nitrogenase linked respiration in bean landraces varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 34:871–878

    CAS  Google Scholar 

  • Vadez V, Beck DP, Drevon JJ (1997) Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common bean. Plant Physiol 99:227–232

    Article  CAS  Google Scholar 

  • Vadez V, Lasso JH, Beck DP et al (1999) Variability of N2 fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to puse efficiency. Euphytica 106:231–242

    Article  Google Scholar 

  • Vadez V, Sinclair TR, Serraj R (2000) Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Plant Physiol 110:215–223

    Article  CAS  Google Scholar 

  • Vance CP (1997) Biological fixation of nitrogen for ecology and sustainable agriculture (Legocki A, Bothe H, Pühler A (eds)). Springer-Verlag, Berlin, pp 179–186

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition, plant nutrition in world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vance CP, Gantt JS (1992) Control of nitrogen and carbon metabolism in root nodules. Plant Physiol 85:266–274

    Article  CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Ann Rev Plant Physiol Plant Mol Bio 42:373–392

    Article  CAS  Google Scholar 

  • Van der Holst PPG, Schlaman HRM, Spaink HP (2001) Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol 11:608–616

    Google Scholar 

  • Vassileva V, Milanov G, Ignatov G et al (1997) Effect of low pH on nitrogen fixation of common bean grown at various calcium and nitrate levels. J Plant Nutr 20:279–294

    Article  CAS  Google Scholar 

  • Vessey JK, Waterer J (1992) In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: recent developments. Physiol Planta 84:171–176

    Article  CAS  Google Scholar 

  • Vidor CJ, Kolling JR, Freire J, Scholles D, Brose E, Pedrose MHT (1983) Fixação biológica do nitrogênio pela simbiose Rhizobium e leguminosas. Porto Alegre. IPAGRO. p 52 (Bol. Tec., 11)

    Google Scholar 

  • Vikman PA, Vessey JK (1992) Gas-exchange activity, carbohydrate status, and protein turnover in root nodule subpopulations of field pea (Pisum sativum L. cv. Century). Plant Soil 151:31–38

    Article  Google Scholar 

  • Walsh KB (1990) Vascular transport and soybean nodule function. 111. Implications of a continua1 phloem supply of carbon and water. Plant Cell Environ 13:893–901

    Article  Google Scholar 

  • Walsh KB, Canny MJ, Layzell DB (1989) Vascular transport and soybean nodule function. II. A role for phloem supply in product export. Plant Cell Environ 12:721–723

    Google Scholar 

  • Waluyo SH, Lie TA, Mannetje L‘t (2004) Effect of phosphate on nodule primordia of soybean (Glycine max Merrill) in acid soils in rhizotron experiments in acid soil in rhizotron experiments. Indonesian J Agr Sci 5:37–44

    Google Scholar 

  • Wangnai S (1998) Nitrogen fixation: Rhizobium-leguminous. Soil Sciences Department, Faculty of Agriculture, Kasetsart University, Kasetsart

    Google Scholar 

  • Wan Othman WM, Lie TA, ‘t Mannetje L et al (1991) Low level phosphorus supply affecting nodulation, N2 fixation and growth of cowpea (Vigna unguiculata L. (Walp)). Plant Soil 135:67–74

    Article  CAS  Google Scholar 

  • Weisz PR, Denison RF, Sinclair TR (1985) Response to drought stress of nitrogen fixation (acetylene reduction) rates by field-grown soybean. Plant Physiol 78:525–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whiteaker GG, Gerloff GC, Gabelman WH et al (1976) Intraespecific differences in growth of beans at stress levels of phosphorus. J Am Soc Hort Sci 101:472–475

    CAS  Google Scholar 

  • Whitehead LF, Day DA, Hardham AR (1998) Cytoskeletal arrays in the cells of soybean root nodules: the role of actin microfilaments in the organisation of symbiosomes. Protoplasma 203:194–205

    Article  Google Scholar 

  • Witty JF, Minchin FR, Sheehy JE et al (1984) Acetylene induced changes in the oxygen diffusion conductance and nitrogenase activity of legume root nodules. Ann Bot 53:13–20

    CAS  Google Scholar 

  • Witty JF, Skot L, Revsbech NP (1987) Direct evidence for changes in the resistance of legume root nodules to O2 diffusion. J Exp Bot 38: 1129–1140

    Google Scholar 

  • Wolyn DJ, Attewell J, Ludden PW et al (1989) Indirect measures of N2 fixation in common bean (Phaseolus vulgaris L.) under field conditions: the role of lateral root nodules. Plant Soil 113:181–187

    Article  CAS  Google Scholar 

  • Yang Y (1995) The effects of phosphorus on nodule formation in the Casuarina-Frankia symbiosis. Plant Soil 176:161–169

    Article  CAS  Google Scholar 

  • Yang WC, de Blank C, Maskiene I et al (1994) Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cell cycle is only completed in primordium formation. Plant Cell 6:1415–1426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Bio Rev 63:968–989

    CAS  Google Scholar 

  • Zhang XP, Karsisto M, Harper R et al (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. J Syst Bacteriol 41:104–113

    Article  Google Scholar 

  • Zhang H, Jennings A, Barlow PW et al (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A 96:6529–6534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Drevon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drevon, JJ., Alkama, N., Bargaz, A., Rodiño, A., Sungthongwises, K., Zaman-Allah, M. (2015). The Legume–Rhizobia Symbiosis. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_9

Download citation

Publish with us

Policies and ethics