Grain Legumes pp 219-250 | Cite as

Cowpea

  • Ousmane Boukar
  • Christian A. Fatokun
  • Philip A. Roberts
  • Michael Abberton
  • Bao Lam Huynh
  • Timothy J. Close
  • Stephen Kyei-Boahen
  • Thomas J.V. Higgins
  • Jeffrey D. Ehlers
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 10)

Abstract

Cowpea, Vigna unguiculata, is an important grain legume adapted to the sub-Saharan Africa (SSA) where it contributes to the nutrition, health, and income of rural and suburban inhabitants. It is indigenous to SSA with both cultivated and wild relatives distributed across the whole subregion. The International Institute of Tropical Agriculture (IITA) holds a collection of more than 15,000 accessions from 90 countries. This valuable source of traits is being exploited to address preferences of consumers and producers as well as the numerous cowpea production constraints. Substantial progress has been achieved through the development of cultivars targeting these biotic and abiotic stress factors. Current cowpea breeding programs aim at enhancing yield and grain quality, largely through introgression of desirable genes. With the recent development of genomic tools and the successful establishment of genetic transformation in cowpea, modern breeding approaches integrating new biotechnologies and conventional breeding methods are being implemented in several of the existing breeding programs. Ongoing activities will also ensure a sustainable production of quality seeds of released varieties in response to the increasing demand for the crop in SSA.

Keywords

Black eye pea Cowpea Crowder bean Niébé Southern pea Tropical legumes Vigna unguiculata 

References

  1. Abate T, Alene AD, Bergvinson D et al (2012) Tropical grain legumes in Africa and South Asia: knowledge and opportunities. International Crops Research Institute for the semi-arid tropics (ICRISAT), NairobiGoogle Scholar
  2. Agbicodo EM (2009) Genetic analysis of abiotic and biotic resistance in cowpea (Vigna unguiculata (L.) Walp.). PhD Dissertation, Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  3. Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata (L.) Walp.). Am J Bot 79:784–791CrossRefGoogle Scholar
  4. Akella V, Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep 12:110–117CrossRefPubMedGoogle Scholar
  5. Allen DJ, Thottappilly G, Rossel HW (1982) Cowpea mottle virus: field resistance and seed transmission in virus tolerant cowpea Vigna unguiculata. Ann Appl Biol 100:331–336CrossRefGoogle Scholar
  6. Bashir M (1992) Serological and biological characterization of seed-borne isolates of blackeye cowpea mosaic and cowpea aphid borne mosaic potyviruses in Vigna unguiculata (L.) Walp. PhD Dissertation, Oregon State University, USAGoogle Scholar
  7. Boukar O, Massawe F, Muranaka S et al (2011) Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet Resour Character Util 9:515–522CrossRefGoogle Scholar
  8. Charmet G, Robert N, Perretant MR et al (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119:89–93CrossRefGoogle Scholar
  9. Citadin CT, Ibrahim AB, Aragão FJL (2011) Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects. GM Crops 2:144–149CrossRefPubMedGoogle Scholar
  10. Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32:537–543CrossRefPubMedGoogle Scholar
  11. Close TJ, Wanamaker S (2001) HarvEST: EST databases. http://harvest.ucr.edu.
  12. Close TJ, Lucas MR, Muñoz-Amatriain M, Mirebrahim H, Wanamaker S, Barkley NA, Clair SS, Guo YN, Lo S, Huynh BL, Ndeye AD, Santos JRP, Joseph BTB, Jean-Baptiste TDLS, Drabo I, Kusi F, Atokple I, Boukar O, Fatokun C, Cisse N, Xu P, Roberts PA, Lonardi S (2015). A new SNP-genotyping resource for cowpea and its deployment for breeding. Plant and Animal Genome Conference, San Diego January 10–14, 2015. https://pag.confex.com/pag/xxiii/webprogram/Paper14976.html
  13. Diop NN, Ehlers JD, Wanamaker S et al (2012) An improved genetic consensus map of cowpea [Vigna unguiculata (L.) Walp]. In: Boukar O Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science. Saly, Senegal 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 116–127Google Scholar
  14. Drabo, I (2014) Personal communication to BL HuynhGoogle Scholar
  15. Duke JA (1981) Vigna unguiculata (L.) Walp. ssp. unguiculata. In: Handbook of Legumes of world economic importance. Plenum Press, New YorkGoogle Scholar
  16. Dumet D, Adeleke R, Faloye B (2008) Regeneration guidelines: cowpea. In: Dulloo ME, Thormann I, Jorge MA et al (eds) Crop specific regeneration guidelines (CD ROM). CGIAR System-wide Genetic Resources Programme, Rome, Italy, p 8Google Scholar
  17. Dumet D, Mishra SK, Boukar O et al (2010) Key access and utilization descriptors for cowpea genetic resources. Dillon S, Kainz W, Bharadwaj C et al (reviewers) Bioversity International, Rome, ItalyGoogle Scholar
  18. Dumet D, Fatokun C, Pasquet R et al (2012) Sharing of responsibilities of cowpea and wild relatives in long term conservation. In: Boukar O, Coulibaly O, Fatokun CA. et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science. Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 56–65Google Scholar
  19. Ehlers JD, Hall AE, Patel PN et al (2000) Registrations of cultivars: registration of ‘California Blackeye 27’ cowpea. Crop Sci 40:849–863CrossRefGoogle Scholar
  20. Ehlers JD, Hall AE, Roberts PA et al (2002) Blackeye varietal improvement. In: University of California dry bean research, 2002 Progress report. California Dry Bean Advisory Board, Dinuba, USA, pp 27–47Google Scholar
  21. Ehlers JD, Sanden BL, Frate CA et al (2009) Registration of ‘California Blackeye 50’ Cowpea. J Crop Regist 3:236–240CrossRefGoogle Scholar
  22. Ehlers JD, Diop NN, Boukar O et al (2012) Modern approaches for cowpea breeding. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 3–16Google Scholar
  23. Emechebe AM, Florini DA (1997) Shoot and pod diseases of cowpea induced by fungi and bacteria. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 176–192Google Scholar
  24. Emechebe AM, Shoyinka SA (1985) Fungal and bacterial diseases of cowpea in Africa. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 173–192Google Scholar
  25. Evans M, Boulter D (1974) Chemical methods suitable for screening for cowpea protein content and quality in cowpea (Vigna unguiculata) meals. J Sci Food Agric 25:311–322CrossRefPubMedGoogle Scholar
  26. Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and V. vexillata. In: Fatokun CA, Tarawali SA, Singh BB et al (eds). Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Research Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000, pp 52–61Google Scholar
  27. Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens Wilcz. and Vigna unguiculata (L.) Walp. through embryo culture. Plant Cell Tissue Organ Cult 9:229–233CrossRefGoogle Scholar
  28. Fatokun CA, Boukar O, Muranaka S (2012a) Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genet Resour Charact Util 10:171–176CrossRefGoogle Scholar
  29. Fatokun CA, Boukar O, Kamara A et al (2012b) Enhancing cowpea productivity and production in drought-prone areas of Sub-Saharan Africa. In: Abate T (ed) Four seasons of learning and engaging smallholder farmers: progress of phase 1. International Crops Research Institute for the Semi-Arid Tropics, Nairobi, pp 81–112Google Scholar
  30. Fery RL, Dukes PD (1994) Genetic analysis of the green cotyledon trait in southernpea (Vigna unguiculata (L.) Walp.). J Am Soc Hort Sci 119:1054–1056Google Scholar
  31. Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46CrossRefGoogle Scholar
  32. Garcia JA, Hille J, Vos P et al (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus M-RNA. Plant Sci 48:89–98CrossRefGoogle Scholar
  33. Hampton RO, Thottappilly G, Rossel HW (1997) Viral diseases of cowpea and their control by resistance-conferring genes. In: Singh BB et al. (eds) Advances in cowpea research. (Co-publication of IITA and JIRCAS). IITA, Ibadan, pp 159–175Google Scholar
  34. Hearne SJ, Franco J, Magembe E (2012) Optimal units of selection: how many plants are representative of diversity in collections of cowpea landrace accessions? In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture. Ibadan, Nigeria, pp 103–109Google Scholar
  35. Higgins TJV, Gollasch S, Molvig L et al (2012) Insect-protected cowpeas using gene technology. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 131–137Google Scholar
  36. Huguenot C, Furneaux MT, Hamilton RI (1997) Further characterization of cowpea aphid-borne mosaic and blackeye cowpea mosaic potyviruses. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds). Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 231–239Google Scholar
  37. Huynh BL, Close TJ, Roberts PA et al (2013a) Gene pools and the genetic architecture of domesticated cowpea. Plant Genome 6:1–8CrossRefGoogle Scholar
  38. Huynh BL, Ehlers JD, Close TJ et al (2013b) Enabling tools for modern breeding of cowpea for biotic stress resistance. In: Varshney R, Tuberosa R (eds) Translational genomics for crop breeding, Volume I: biotic stress. Wiley-Blackwell, New York, pp 183–200CrossRefGoogle Scholar
  39. Huynh BL, Ehlers JD, Ndeve A et al (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breed 35:36. doi:10.1007/s 1 1032-915-0254-0Google Scholar
  40. International Board for Plant Genetic Resources (1983) Cowpea descriptors. IBPGR Secretariat, RomeGoogle Scholar
  41. Kononowicz AK, Cheah KT, Narasimhan ML et al (1997) Developing a transformation system for cowpea (Vigna unguiculata [L.] Walp.). In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 361–371Google Scholar
  42. Lane JA, Moore THM, Child DV et al (1997) Variation in virulence of Striga gesnerioides on cowpea: new sources of crop resistance. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 225–230Google Scholar
  43. Lucas MR, Diop NN, Wanamaker S et al (2011) Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome 4:1–11CrossRefGoogle Scholar
  44. Lucas MR, Ehlers JD, Huynh BL, Diop NN et al (2013a) Markers for breeding heat tolerant cowpea. Mol Breed 31:529–536CrossRefGoogle Scholar
  45. Lucas MR, Huynh BL, Ehlers JD et al (2013b) High-resolution SNP genotyping reveals a significant problem among breeder resources. Plant Genome 6:1–5CrossRefGoogle Scholar
  46. Lush WM, Evans LT, Wien HC (1980) Environmental adaptation of wild and domesticated cowpea (Vigna unguiculata (L.) Walp.). Field Crops Res 3:173–187CrossRefGoogle Scholar
  47. Mahalakshmi V, Ng Q, Lawson M, Ortiz R (2007) Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical, agronomical and botanical descriptors. Plant Genet Resour 5:113–119CrossRefGoogle Scholar
  48. Marechal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papillinionaceae) sur la base des données morphologiques, et polliniques, traits par l’analyse informatique. Bossiera 28:1–273Google Scholar
  49. Muchero W, Ehlers JD, Roberts PA (2008) Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci 48:541–552CrossRefGoogle Scholar
  50. Muchero W, Diop NN, Bhat PR et al (2009a) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:18159–18164CrossRefPubMedCentralPubMedGoogle Scholar
  51. Muchero W, Ehlers JD, Close TJ et al (2009b) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118:849–863CrossRefPubMedGoogle Scholar
  52. Muchero W, Roberts PA, Diop NN et al (2013) Genetic architecture of delayed senescence, biomass and grain yield under drought stress in cowpea. PLoS ONE 8:1–10Google Scholar
  53. Myers GO (1996) Hand crossing of cowpeas. IITA Research Guide 42. IITA, IbadanGoogle Scholar
  54. Nielsen SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time in improved cowpea lines. Crop Sci 33:469–472CrossRefGoogle Scholar
  55. Njoku E (1958) The photoperiodic response of some Nigerian plants. J West Afr Sci Assoc 4:99–112Google Scholar
  56. Ng NQ, Maréchal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 11–21Google Scholar
  57. Ng Q, Singh BB (1997) Cowpea. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust: conservation and use of plant genetic resources in CGIAR centres. Cambridge University Press, Cambridge, pp 82–99Google Scholar
  58. Omo-Ikerodah EE, Fawole I, Fatokun C (2008) Genetic mapping of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) in recombinant inbred lines of cowpea (Vigna unguiculata (L.) Walp). African J Biotechnol 7:263–270Google Scholar
  59. Ouedraogo JT, Ouedraogo M, Gowda BS et al (2012) Development of sequence characterized amplified region (SCAR) markers linked to race-specific resistance to Striga gesnerioides in cowpea (Vigna unguiculata L.). African J Biotech 11(62):12555–12562. http://www.academicjournals.org/AJB. doi:10.5897/AJB12.805Google Scholar
  60. Pasquet RS, Padulosi S (2012) Genus Vigna and cowpea (V. unguiculata [L.] Walp.) taxonomy: current status and prospects. In: Boukar O, Coulibaly O. Fatokun CA. et al (eds). Innovative research along the cowpea value chain. Proceedings of the Fifth World Cowpea Conference on Improving livelihoods in the cowpea value chain through advancement in science, Saly, Senegal, 27 September–1 October 2010. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 66–87Google Scholar
  61. Patel PN (1982) Genetics of cowpea reactions to two mosaic virus from Tanzania. Phytopathol 72:460–466CrossRefGoogle Scholar
  62. Penza R, Akella V, Lurquin PF (1992) Transient expression and histological localization of a gus chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13:576–580PubMedGoogle Scholar
  63. Popelka JC, Gollasch S, Moore A et al (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312CrossRefPubMedGoogle Scholar
  64. Pottorff M, Wanamaker S, Ma YQ et al (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE 7:1–11CrossRefGoogle Scholar
  65. Pottorff M, Li G, Ehlers JD et al (2014) Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Mol Breed 33:779–791CrossRefPubMedCentralPubMedGoogle Scholar
  66. Rachie KO (1985) Introduction. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp XXI–XXVIIIGoogle Scholar
  67. Singh SR, Singh BB, Jackai LEN et al (1983) Cowpea research at IITA, Ibadan, Nigeria. Inf Ser 14:1–20Google Scholar
  68. Singh SR, Jackai LEN, Thottappilly G et al (1992) Status of research on constraints to cowpea production. In: Thottappilly G, Monti L, Mohan-Raj DR et al (eds) Biotechnology: enhancing research on tropical crops in Africa. (CTA/IITA co-publication). IITA, Ibadan, pp 21–26Google Scholar
  69. Singh BB, Ehlers JD, Sharma B et al (2002) Recent progress in cowpea breeding. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Research Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, pp 22–40Google Scholar
  70. Solleti S, Bakshi S, Purkayastha J et al (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850CrossRefPubMedGoogle Scholar
  71. Taiwo MA, Provvidenti R, Gonsalves D (1982) Inheritance of resistance to blackeye cowpea mosaic virus in Vigna unguiculata. J Hered 72:433–434Google Scholar
  72. Terao T, Watanabe I, Matsunaga R et al (1997) Agro-physiological constraints in intercropped cowpea: an analysis. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 129–140Google Scholar
  73. Utoh NO, Ajeigbe HA (2009) Dissemination of legume and cereal certified seeds using the community seed approach. In: Ajeigbe HA, Abdoulaye T, Chikoye D (eds) Legume and cereal seed production for improved crop yields in Nigeria. Proceedings of the Training Workshop on Production of Legume and Cereal Seeds held on 24 January–10 February 2008 at IITA-Kano Station, Kano, Nigeria, pp 61–63Google Scholar
  74. Warrag MOA, Hall AE (1983) Reproductive responses of cowpea to heat stress: genotypic differences in tolerance to heat at flowering. Crop Sci 23:1088–1092CrossRefGoogle Scholar
  75. Watanabe I, Hakoyama S, Terao T et al (1997) Evaluation methods for drought tolerance of cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS)). IITA, Ibadan, pp 141–146Google Scholar
  76. Westengen OT, Jeppson S, Guarino L (2013) Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status. PLoS ONE 8:e64146CrossRefPubMedCentralPubMedGoogle Scholar
  77. Westphal E (1974) Pulses in Ethiopia: their taxonomy and agricultural significance. Agricultural research report, center for agricultural publishing and documentation, Wageningen, The Netherlands, pp 213–232Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ousmane Boukar
    • 1
  • Christian A. Fatokun
    • 2
  • Philip A. Roberts
    • 3
  • Michael Abberton
    • 4
  • Bao Lam Huynh
    • 5
  • Timothy J. Close
    • 6
  • Stephen Kyei-Boahen
    • 7
  • Thomas J.V. Higgins
    • 8
  • Jeffrey D. Ehlers
    • 9
  1. 1.International Institute of Tropical AgricultureCowpea Breeding UnitKanoNigeria
  2. 2.Department of Research for DevelopmentInternational Institute of Tropical AgricultureIbadanNigeria
  3. 3.Department of NematologyUniversity of California-RiversideRiversideUSA
  4. 4.International Institute of Tropical AgricultureIbadanNigeria
  5. 5.Department of NematologyUniversity of California-RiversideRiversideUSA
  6. 6.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  7. 7.International Institute of Tropical Agriculture (IITA)NampulaMozambique
  8. 8.CSIRO Agriculture FlagshipCanberraAustralia
  9. 9.Department of Agricultural DevelopmentBill and Melinda Gates FoundationSeattleUSA

Personalised recommendations