Skip to main content

Abstract

In contrast to land-cover or habitat classes, some kinds of landscape data are recorded as continuous numbers rather than discrete categories. Such data include vegetation density or height; net aboveground primary production; nutrient mineralization rates; percent of biomass killed by a disturbance; and distances from lakes, roads, or other features of interest. Most landscape metrics covered in Chap. 4 are not appropriate for quantifying the spatial pattern of continuous variables, and a different set of methods is required. Spatial statistics, including, are used to quantify the spatial structure of continuous data, and they are widely applied in landscape ecology. Spatial statistics and geostatistics use point data for some property that is spatially distributed across the landscape; they do not require categorization of the landscape nor do they assume a patchy structure or the presence of boundaries. Observations, conventionally labeled as z, are made at specific x, y locations and referred to as (Palmer 1992). Spatial statistics then quantify spatial dependence in the regionalized variable, or the tendency of z measured at one x, y location to be correlated with, or depend on, values of z measured at another x, y location. If there is spatial dependence in z, then information about z at one place allows you to infer information about z at another place. Spatial statistics quantify the magnitude of variance in the data, the proportion of that variance that is spatially dependent (i.e., spatially autocorrelated), and the scales, or distances, over which variables are spatially dependent. These methods are powerful, but the terminology and methods can be daunting for those new to the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson K, Wittwer G (2013) Modeling global wine markets to 2018: exchange rates, taste changes, and China’s import growth. J Wine Econ 8:131–158

    Article  Google Scholar 

  • Arieira J, Karssenberg D, de Jong SM, Addink EA, Couto EG, da Cunha CN, Skoien JO (2011) Integrating field sampling, geostatistics and remote sensing to map wetland vegetation in the Pantanal, Brazil. Biogeosciences 8:667–686

    Article  CAS  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Article  Google Scholar 

  • Barrell J, Grant J (2013) Detecting hot and cold spots in a seagrass landscape using local indicators of spatial association. Landsc Ecol 28:2005–2018

    Article  Google Scholar 

  • Bolstad PV, Swank W, Vose J (1998) Predicting southern Appalachian overstory vegetation with digital terrain data. Landsc Ecol 13:271–283

    Article  Google Scholar 

  • Carlile DW, Skalski JR, Batker JE, Thomas JM, Cullinan VI (1989) Determination of ecological scale. Landsc Ecol 2:203–213

    Article  Google Scholar 

  • Cilliers SS, Williams NSG, Barnard FJ (2008) Patterns of exotic plant invasions in fragmented urban and rural grasslands across continents. Landsc Ecol 23:1243–1256

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • De Jager NR, Pastor J (2009) Declines in moose population density at Isle Royle National Park, MI, USA and accompanied changes in landscape patterns. Landsc Ecol 24:1389–1403

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London

    Google Scholar 

  • Everson DA, Boucher DH (1998) Tree species-richness and topographic complexity along the riparian edge of the Potomac River. For Ecol Manage 109:305–314

    Article  Google Scholar 

  • Fitzpatrick MC, Preisser EL, Porter A, Elkinton J, Waller LA, Carlin BP, Ellison AM (2010) Ecological boundary detection using Bayesian areal wombling. Ecology 91:3448–3455

    Article  PubMed Central  PubMed  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Fortin MJ, Payette S (2002) How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Ecoscience 9:213–218

    Google Scholar 

  • Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770

    Article  PubMed  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM, Dixon P (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–230

    Article  Google Scholar 

  • Greg-Smith P (1952) The use of random and contiguous quadrats in the study of the structure of plant communits. Ann Bot 16:293–316

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Huang YX, Schmitt FG, Lu ZM, Liu YL (2009) Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J Hydrol 373:103–111

    Article  Google Scholar 

  • Ishihama F, Takeda T, Oguma H, Takenaka A (2010) Comparison of effects of spatial autocorrelation on distribution predictions of four rare plant species in the Watarase wetland. Ecol Res 25:1057–1069

    Article  Google Scholar 

  • Jollineau M, Wilson H, Howarth P (2008) Heterogeneity characteristics of an inland wetland environment through spatio-spectral analysis. Can J Remote Sens 34:206–219

    Google Scholar 

  • Kalivas DP, Vlachos CE, Economou G, Dimou P (2012) Regional mapping of perennial weeds in cotton with the use of geostatistics. Weed Sci 60:233–243

    Article  CAS  Google Scholar 

  • Kalkhan MA, Stohlgren TJ (2000) Using multi-scale sampling and spatial cross-correlation to investigate patterns of plant species richness. Environ Monit Assess 64:591–605

    Article  Google Scholar 

  • Kalkhan MA, Stafford EJ, Woodly PJ, Stohlgren TJ (2007) Assessing exotic plant species invasions and associated soil characteristics: a case study in eastern Rocky Mountain National Park, Colorado, USA, using the pixel nested plot design. Appl Soil Ecol 35:622–634

    Article  Google Scholar 

  • Kellogg LKB, McKenzie D, Peterson DL, Hessl AE (2008) Spatial models for inferring topographic controls on historical low-severity fire in the eastern Cascade Range of Washington, USA. Landsc Ecol 23:227–240

    Article  Google Scholar 

  • Law R, Illian J, Burslem D, Gratzer G, Gunatilleke CVS, Gunatilleke I (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm. Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre L, Legendre P (1998) Numerical ecology. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615

    Article  Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Casgrain P, Gurevitch J (2004) Effects of spatial structures on the results of field experiments. Ecology 85:3202–3214

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Liang JJ (2012) Mapping large-scale forest dynamics: a geospatial approach. Landsc Ecol 27:1091–1108

    Article  Google Scholar 

  • Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463

    Article  Google Scholar 

  • Lin GF, Chen GR (2005) Quantifying uncertainty of the semivariogram of transmissivity of an existing groundwater monitoring network. Hydrol Process 19:2023–2034

    Article  Google Scholar 

  • Mayor SJ, Schaefer JA, Schneider DC, Mahoney SP (2007) Spectrum of selection: new approaches to detecting the scale-dependent response to habitat. Ecology 88:1634–1640

    Article  CAS  PubMed  Google Scholar 

  • Meisel JE, Turner MG (1998) Scale detection in real and artificial landscapes using semivariance analysis. Landsc Ecol 13:347–362

    Article  Google Scholar 

  • Murwira A, Skidmore AK (2005) The response of elephants to the spatial heterogeneity of vegetation in a southern African agricultural landscape. Landsc Ecol 20:217–234

    Article  Google Scholar 

  • Nelson R, Keller CC, Ratnaswamy MJ (2005) Locating and estimating the extent of Delmarva fox squirrel habitat using an airborne LiDAR profiler. Remote Sens Environ 96:292–301

    Article  Google Scholar 

  • O’Neill RV, Gardner RH, Milne BT, Turner MG, Jackson B (1991) Heterogeneity and spatial hierarchies. In: Kolasa J, Pickett STA (eds) Ecological heterogeneity. Springer, New York, pp 85–96

    Chapter  Google Scholar 

  • Palmer MW (1992) The coexistence of species in fractal landscapes. Am Nat 139:375–397

    Article  Google Scholar 

  • Palmer MW, McGlinn DJ (2015) Scale detection using semivariograms and autocorrelograms. In: Gergel SE, Turner MG (eds) Learning landscape ecology, 2nd edn. Springer, New York, pp xxx–xxx

    Google Scholar 

  • Pearson SM, Turner MG, Wallace LL, Romme WH (1995) Winter habitat use by large ungulates following fires in northern Yellowstone National Park. Ecol Appl 5:744–755

    Article  Google Scholar 

  • Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol 187:59–82

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, O’Neill RV (1993) Lacunarity indexes as measures of landscape texture. Landsc Ecol 8:201–211

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53:5461–5468

    Article  CAS  Google Scholar 

  • Podur J, Martell DL, Csillag F (2003) Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecol Model 164:1–20

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Development Core Team, R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ripley BD (1977) Modeling spatial patterns. J R Stat Soc Ser B Methodol 39:172–212

    Google Scholar 

  • Ripley BD (1979) Tests of ‘randomness’ for spatial point patterns. J R Stat Soc Ser B 41:368–374

    Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ripley BD (2005) Spatial statistics. Wiley, New York

    Google Scholar 

  • Romero-Calcerrada R, Novillo CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc Ecol 23:341–354

    Article  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2:229–232

    Article  Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62:277–314

    Article  Google Scholar 

  • Rossiter DG (2012) Co-kriging with the gstat package of the R environment for statistical computing. University of Twente, Enschede

    Google Scholar 

  • Schooley RL, Wiens JA (2001) Dispersion of kangaroo rat mounds at multiple scales in New Mexico, USA. Landsc Ecol 16:267–277

    Article  Google Scholar 

  • Schreiber SJ, Lloyd-Smith JO (2009) Invasions dynamics in spatially heterogeneous environments. Am Nat 174:490–505

    Article  PubMed  Google Scholar 

  • Shafer JM, Varljen MD (1990) Approximation of confidence-limits on sample semivariograms from single realizations of spatially correlated random-fields. Water Resour Res 26:1787–1802

    Article  Google Scholar 

  • Simard M, Romme WH, Griffin JM, Turner MG (2011) Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol Monogr 81:3–24

    Article  Google Scholar 

  • Smithwick EAH, Naithani KJ, Balser TC, Romme WH, Turner MG (2012) Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance. PLoS One 7(11):e50597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strand L (1972) A model for stand growth. In: IUFRO third conference advisory group of forest statisticians. INRA, Institut National de la Recherche Agronomique, Paris, pp 207–216

    Google Scholar 

  • Tobler WF (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Turner MG, Simard M (2015) Disturbance and landscape structure. In: Gergel SE, Turner MG (eds) Learning landscape ecology, 2nd edn. Springer, New York, pp xxx–xxx

    Google Scholar 

  • Turner MG, Dale VH, Everham EE III (1997a) Fires, hurricanes and volcanoes: comparing large-scale disturbances. Bioscience 47:758–768

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, Hargrove WW (1997b) Effects of patch size and fire pattern on early post-fire succession on the Yellowstone Plateau. Ecol Monogr 67:411–433

    Article  Google Scholar 

  • Turner MG, Romme WH, Smithwick EAH, Tinker DB, Zhu J (2011) Variation in aboveground cover influences soil nitrogen availability at fine spatial scales following severe fire in subalpine conifer forests. Ecosystems 14:1081–1095

    Article  CAS  Google Scholar 

  • Vasquez GM, Grunwald S, Myers DB (2012) Associations between soil carbon and ecological landscape variables at escalating spatial scales in Florida, USA. Landsc Ecol 27:355–367

    Article  Google Scholar 

  • Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975–1987

    Article  Google Scholar 

  • Wang HQ, Hall CAS, Cornell JD, Hall MHP (2002) Spatial dependence and the relationship of soil organic carbon and soil moisture in the Luquillo Experimental Forest, Puerto Rico. Landsc Ecol 17:671–684

    Article  Google Scholar 

  • Xiao XY, Gertner G, Wang GX, Anderson AB (2005) Optimal sampling scheme for estimation landscape mapping of vegetation cover. Landsc Ecol 20:375–387

    Article  Google Scholar 

  • Zheng L, Silliman SE (2000) Estimating the theoretical semivariogram from finite numbers of measurements. Water Resour Res 36:361–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Further Reading

Further Reading

  • Burrows SN, Gower ST, Clayton MK, Mackay DS, Ahl DE, Norman JM, Diak G (2002) Application of geostatistics to characterize leaf area index (LAI) from flux tower to landscape scales using a cyclic sampling design. Ecosystems 5:667–679

  • Crawley MJ (2007) The R book. Wiley, Chichester

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin M-J, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

  • Legendre P, Dale MRT, Fortin MJ, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615

  • Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol 187:59–82

  • Schwarz PA, Fahey TJ, McCullouch CE (2003) Factors controlling spatial variation of tree species abundance in a forested landscape. Ecology 84:1862–1878

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62:277–314

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Turner, M.G., Gardner, R.H. (2015). Spatial Statistics. In: Landscape Ecology in Theory and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2794-4_5

Download citation

Publish with us

Policies and ethics