Skip to main content

Abstract

Studies in landscape ecology are concerned with determining the causes, consequences, and functional importance of spatial heterogeneity. Success in accomplishing these ambitious goals requires meaningful, robust methods for quantifying spatial pattern. Landscape ecologists use numerous metrics, and readily available spatial data combined with user-friendly software have made such analyses routine. However, the goal of landscape ecology is not simply to measure landscape pattern, and spatial pattern analysis is but one tool used to unravel the complex phenomena and relationships forming landscapes. Nevertheless, quantifying spatial heterogeneity is a key tool of the trade, and this chapter explains how to select, compute, and interpret landscape metrics. The development of new metrics has slowed (thankfully!), but useful new approaches that have emerged in the past decade are included here. While the nuts-and-bolts of individual metrics and software programs will continue to evolve over time, there are general caveats that apply to any analysis of landscape pattern. We begin this chapter by discussing why pattern is quantified and where landscape data come from, then highlight key caveats and cautions that must be considered before landscape pattern is analyzed. We next present commonly used landscape metrics of composition and configuration, introduce surface metrics briefly, and discuss connectivity measures derived from graph theory. Finally, we address the challenges associated with detecting significant differences in metrics and interpreting multiple pattern metrics, then proffer some added practical advice. This chapter largely focuses on pattern analysis based on categorical data, and we cover spatial statistics in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. Geological Survey professional paper 964. U.S. Government Printing Office for the U.S. Department of the Interior, Geological Survey, Washington

    Google Scholar 

  • Baker WL (1989a) A review of models of landscape change. Landsc Ecol 2:111–131

    Article  Google Scholar 

  • Baker WL (1989b) Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology 70:23–35

    Article  Google Scholar 

  • Baker WL (1989c) Effect of scale and spatial heterogeneity on fire-interval distributions. Can J Forest Res 19:700–706

    Article  Google Scholar 

  • Baker WL, Cai Y (1992) The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landsc Ecol 7:291–302

    Article  Google Scholar 

  • Bürgi M, Turner MG (2002) Factors and processes shaping land cover and land cover changes along the Wisconsin River, USA. Ecosystems 5:184–201

    Article  Google Scholar 

  • Burnicki AC (2012) Impact of error on landscape pattern analyses performed on land-cover change maps. Landsc Ecol 27:713–729

    Article  Google Scholar 

  • Burrough PA (1986) Principles of geographic information systems for land resources assessment. Oxford University Press, Oxford

    Google Scholar 

  • Cain DH, Riitters K, Orvis K (1997) A multi-scale analysis of landscape statistics. Landsc Ecol 12:199–211

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  • Cardille JA, Lambois M (2010) From the redwood forest to the Gulf Stream waters: human signature nearly ubiquitous in representative US landscapes. Front Ecol Environ 11:111–127

    Google Scholar 

  • Cardille JA, Bolgrien DW, Wynne RH, Chipman JW (1996) Variation in landscape metrics derived from multiple independent classifications. In: Proceedings, eco-informa ’96: global networks for environmental information. Environmental Research Institute of Michigan, Ann Arbor, pp 749–754

    Google Scholar 

  • Cardille JA, Turner MG, Clayton M, Price S, Gergel SE (2005) METALAND: characterizing spatial patterns and statistical context of landscape metrics. Bioscience 55:983–988

    Article  Google Scholar 

  • Curtis JT (1956) The modification of mid-latitude grasslands and forests by man. In: Thomas WL (ed) Man’s role in changing the race of the earth. University of Chicago Press, Chicago, pp 721–736

    Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality and consistency. Ecol Indic 8:691–703

    Article  Google Scholar 

  • Delcourt PA, Delcourt HR (1996) Quaternary paleoecology of the Lower Mississippi Valley. Eng Geol 45:219–242

    Article  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2011a) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305

    Article  Google Scholar 

  • Eigenbrod F, Bell VA, Davies HN, Heinemeyer A, Armsworth PR, Gaston KJ (2011b) The impact of projected increases in urbanization on ecosystem services. Proc R Soc B Biol Sci 278:3201–3208

    Article  CAS  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fall A, Fortin M-J, Manseau M, O’Brien D (2007) Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10:448–461

    Article  Google Scholar 

  • Fletcher RJ Jr, Acevedo MA, Reichers BE, Pias KE, Kitchens WM (2012) Social network models predict movement and connectivity in ecological landscapes. Proc Natl Acad Sci U S A 108:19282–19287

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Fortin M-J, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices. Oikos 102:203–212

    Article  Google Scholar 

  • Friedman SK, Reich PB, Frelich LE (2001) Multiple scale composition and spatial distribution patterns of the north-eastern Minnesota presettlement forest. J Ecol 89:538–554

    Article  Google Scholar 

  • Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham JD (2009) Completion of the National Land Cover Database (NLCD) 1992–2001 land cover change retrofit product. US Geological Survey Open-File Report 2008–1379, 18 pp

    Google Scholar 

  • Gardner RH (1999) RULE: a program for the generation of random maps and the analysis of spatial patterns. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer, New York, pp 280–303

    Chapter  Google Scholar 

  • Gardner RH, Urban DL (2007) Neutral models for testing landscape hypotheses. Landsc Ecol 22:15–29

    Article  Google Scholar 

  • Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape pattern. Landsc Ecol 1:19–28

    Article  Google Scholar 

  • Gergel SE, Turner MG (eds) (2016) Learning landscape ecology, 2nd edn. Springer, New York

    Google Scholar 

  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to river-floodplain systems. Aquat Sci 64:118–128

    Article  CAS  Google Scholar 

  • Grant EHC, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecol Lett 10:165–175

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indexes of landscape spatial pattern. Landsc Ecol 7:101–110

    Article  Google Scholar 

  • Haines-Young R, Chopping M (1996) Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geogr 20:418–445

    Article  Google Scholar 

  • Hargis CD, Bissonette JA, David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc Ecol 13:167–186

    Article  Google Scholar 

  • Hargrove WW, Pickering J (1992) Pseudoreplication: a sine qua non for regional ecology. Landsc Ecol 6:251–258

    Article  Google Scholar 

  • Heilman GE, Strittholt JR, Slosser NC, Dellasala DA (2002) Forest fragmentation of the conterminous United States: assessing forest intactness through road density and spatial characteristics. Bioscience 52:411–422

    Article  Google Scholar 

  • Heinz Center (2008) Landscape pattern indicators for the nation: a report from the Heinz Center’s landscape pattern task group. The John Heinz III Center for Science, Economics and the Environment, Washington, http://www.heinzctr.org/publications/index.shtml

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Jones KB, Neale AC, Nash MS, Van Remortel RD, Wickham JD, Riitters KH, O’Neill RV (2001) Predicting nutrient and sediment loadings to streams from landscape metrics: a multiple watershed study from the United States Mid-Atlantic Region. Landsc Ecol 16:301–312

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G, O’Neill RV, Coleman PR (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324

    Article  Google Scholar 

  • Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr 36:400–420

    Article  Google Scholar 

  • Langford WT, Gergel SE, Dietterich TG, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9:474–488

    Article  Google Scholar 

  • Li H, Reynolds JF (1993) A new contagion index to quantify spatial patterns of landscapes. Landsc Ecol 8:155–162

    Article  Google Scholar 

  • Li H, Reynolds JF (1994) A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75:2446–2455

    Article  Google Scholar 

  • Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284

    Article  Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399

    Article  Google Scholar 

  • Lookingbill TR, Minor ES (2015) Assessing multi-scale landscape connectivity using network analysis. In: Gergel SE, Turner MG (eds) Learning landscape ecology, 2nd edn. Springer, New York, pp xxx–xxx

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Phys Scr 32:257–260

    Article  Google Scholar 

  • Mas J-F, Gao Y, Pacheco JAN (2010) Sensitivity of landscape pattern metrics to classification approaches. For Ecol Manage 2010:1215–1224

    Article  Google Scholar 

  • Mather P, Koch M (2011) Computer processing of remotely sensed images: an introduction. Wiley, Oxford

    Book  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS. Spatial analysis program for quantifying landscape structure. USDA Forest Service General Technical Report PNW-GTR-351

    Google Scholar 

  • McGarigal K, Tagil S, Cushman SA (2009) Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landsc Ecol 24:433–450

    Article  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Mladenoff DJ, White MA, Pastor J, Crow TR (1993) Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecol Appl 3:294–306

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Moody A, Woodcock CE (1995) The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landsc Ecol 10:363–379

    Article  Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • O’Neill RV, Krummel J, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne B, Turner MG, Zygmutt B, Christensen S, Graham R, Dale VH (1988a) Indices of landscape pattern. Landsc Ecol 1:153–162

    Article  Google Scholar 

  • O’Neill RV, Milne BT, Turner MG, Gardner RH (1988b) Resource utilization scales and landscape pattern. Landsc Ecol 2:63–69

    Article  Google Scholar 

  • O’Neill RV, Hunsaker CT, Timmins SP, Jackson BL, Jones KB, Riitters KH, Wickham JD (1996) Scale problems in reporting landscape pattern at the regional scale. Landsc Ecol 11:169–180

    Article  Google Scholar 

  • Ostapowicz K, Vogt P, Eiirrwea KH, Kozak J, Estreguil C (2008) Impact of scale on morphological spatial pattern of forest. Landsc Ecol 23:1107–1117

    Article  Google Scholar 

  • Pasqual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967

    Article  Google Scholar 

  • Proulx R, Fahrig L (2010) Detecting human-driven deviations from trajectories in landscape composition and configuration. Landsc Ecol 25:1479–1487

    Article  Google Scholar 

  • Remmel TK, Csillag F (2003) When are two landscape pattern indices significantly different? J Geogr Syst 5:331–351

    Article  Google Scholar 

  • Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction. Springer, New York

    Google Scholar 

  • Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmons SP, Jones KB, Jackson BL (1995) A factor analysis of landscape pattern and structure metrics. Landsc Ecol 10:23–40

    Article  Google Scholar 

  • Romme WH (1982) Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol Monogr 52:199–221

    Article  Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Software 24:135–139

    Article  Google Scholar 

  • Saura S, Vogt P, Valázquez J, Hernando A, Tejera R (2011) Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For Ecol Manage 262:150–160

    Article  Google Scholar 

  • Spies TAW, Ripple J, Bradshaw GA (1994) Dynamics and pattern of a managed coniferous forest landscape in Oregon. Ecol Appl 4:555–568

    Article  Google Scholar 

  • Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  • Teixido N, Garrabou J, Arntz WE (2002) Spatial pattern quantification of Antarctic benthos communities using landscape indices. Mar Ecol Prog Ser 242:1–14

    Article  Google Scholar 

  • Teixido N, Garrabou J, Gutt J, Arntz WE (2007) Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10:142–157

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • Turner MG (1990) Spatial and temporal analysis of landscape patterns. Landsc Ecol 4:21–30

    Article  Google Scholar 

  • Turner MG, O’Neill RV, Gardner RH, Milne BT (1989b) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Vogelmann JE, Howard SM, Yang L, Larson CR, Wylie BK, VanDriel NJ (2001) Completion of the 1990s national land cover dataset for the conterminous United States. Photogramm Eng Remote Sens 67:650–662

    Google Scholar 

  • Vogt P, Riitters KH, Estreguil C, Kozak J, Wade TG (2007) Mapping spatial patterns with morphological image processing. Landsc Ecol 22:171–177

    Article  Google Scholar 

  • White MA, Mladenoff DJ (1994) Old-growth forest landscape transitions from pre-European settlement to present. Landsc Ecol 9:191–205

    Article  Google Scholar 

  • Wickham JD, Riitters KH (1995) Sensitivity of landscape metrics to pixel size. Int J Remote Sens 16:3585–3594

    Article  Google Scholar 

  • Wickham JD, O’Neill RV, Riitters KH, Wade TG, Jones KB (1997) Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition. Photogramm Eng Remote Sens 63:397–402

    Google Scholar 

  • Williams MA, Baker WL (2011) Testing the accuracy of new methods for reconstructing historical structure of forest landscapes using GLO survey data. Ecol Monogr 81:63–88

    Article  Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landsc Ecol 19:125–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Further Reading

Further Reading

  • Burnicki AC (2012) Impact of error on landscape pattern analyses performed on land-cover change maps. Landsc Ecol 27:713–729

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality and consistency. Ecol Indic 8:691–703

  • Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305

  • Fletcher RJ, Acevedo MA, Reichert BE, Pias KE, Kitchens WM (2011) Social network models predict movement and connectivity in ecological landscapes. Proc Natl Acad Sci USA 108:19282–19287

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

  • Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr 36:400–420

  • McGarigal K (2014) FRAGSTATS Help. Documentation for FRAGSTATS 4.0. University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/FRAGSTATS/documents/FRAGSTATS_documents.html

  • Uuemaa E, Antrop M, Roosaare J, Marja R, Mander Ãœ (2009) Landscape metrics and indices: an overview of their use in landscape research. Living Rev Landsc Res 3:1–28

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Turner, M.G., Gardner, R.H. (2015). Landscape Metrics. In: Landscape Ecology in Theory and Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2794-4_4

Download citation

Publish with us

Policies and ethics