Skip to main content

Abstract

This chapter is devoted to an analysis of fundamental results related to topics that have attracted the attention of a large number of scientists from many disciplines. The key issue is individual-based models and their approximation, leading to the so-called mean field models and to nonlinear PDEs. This category includes ant colonies, herd behavior, and swarm intelligence, all of which have generated a large and current body of research in biology, physics, operations research, economics, and related fields. An additional result refers to an important application of Itô-Lévy calculus to stochastic models in neurosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalen, O.: Nonparametric inference for a family of counting processes. Ann. Stat. 6, 701–726 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Andersen, P.K., Borgan, Ø., Gill, R.D., Keiding, N.: Statistical Models Based on Counting Processes. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  • Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases. Griffin, London (1975)

    MATH  Google Scholar 

  • Bartholomew, D.J.: Continuous time diffusion models with random duration of interest. J. Math. Sociol. 4, 187–199 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, N.: Analysis of Infectious Disease Data. Chapman & Hall, London (1989)

    Google Scholar 

  • Bhattacharya, R.N., Waymire, E.C.: Stochastic Processes with Applications. Wiley, New York (1990)

    Google Scholar 

  • Bianchi, A., Capasso, V., Morale, D.: Estimation and prediction of a nonlinear model for price herding. In: C. Provasi, (Ed.) Complex Models and Intensive Computational Methods for Estimation and Prediction, pp. 365–370. CLUEP, Padova (2005)

    Google Scholar 

  • Bolley, F.: Quantitative concentration inequalities on sample path space for mean field interaction. arXiv:math/0511752v1 [math.PR], 30 Nov 2005

    Google Scholar 

  • Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Prob. Theory Relat. Fields 137, 541–593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Burger, M., Capasso, V., Morale, D.: On an aggregation model with long and short range interaction. Nonlinear Anal. Real World Appl. 3, 939–958 (2007)

    Article  MathSciNet  Google Scholar 

  • Cai, G.Q., Lin, Y.K.: Stochastic analysis of the Lotka-Volterra model for ecosystems. Phys. Rev. E 70, 041910 (2004)

    Article  Google Scholar 

  • Capasso, V.: A counting process approach for stochastic age-dependent population dynamics. In: Ricciardi, L.M. (Ed.) Biomathematics and Related Computational Problems, pp. 255–269. Kluwer, Dordrecht (1988)

    Chapter  Google Scholar 

  • Capasso, V.: A counting process approach for age-dependent epidemic systems. In: Gabriel, J.P. et al., (Eds.) Stochastic Processes in Epidemic Theory. Lecture Notes in Biomathematics, vol. 86, pp. 118–128. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  • Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, Heidelberg (1993). Second corrected printing (2008)

    Google Scholar 

  • Capasso, V., Di Liddo, A., Maddalena, L.: Asymptotic behaviour of a nonlinear model for the geographical diffusion of innovations. Dyn. Syst. Appl. 3, 207–220 (1994)

    MATH  Google Scholar 

  • Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 27, 574–603 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Capasso, V., Morale, D., Sioli, F.: An agent-based model for “price herding”, applied to the automobile market. MIRIAM reports, Milan (2003)

    Google Scholar 

  • Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Rat. Mech. Anal. 147, 269–361 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular nedia and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 971–1018 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Champagnat, N., Ferriére, R., Méléard, S.: Unifying evolutionary dynamics: From individula stochastic processes to macroscopic models. Theor. Pop. Biol. 69, 297–321 (2006)

    Article  MATH  Google Scholar 

  • Chiang, C.L.: Introduction to Stochastic Processes in Biostatistics. Wiley, New York (1968)

    MATH  Google Scholar 

  • Darling, D.A.D., Siegert, A.J.F.: The first passage time problem for a continuum Markov process. Ann. Math. Stat. 24, 624–639 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  • De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamical Limits. Springer, Heidelberg (1991)

    Book  Google Scholar 

  • Donsker, M.D., Varadhan, S.R.S.: Large deviations from a hydrodynamical scaling limit. Comm. Pure Appl. Math. 42, 243–270 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Durrett, R., Levin, S.A.: The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994)

    Article  MATH  Google Scholar 

  • Epstein, J., Axtell, R.: Growing Artificial Societies–Social Sciences from the Bottom Up. Brookings Institution Press and MIT Press, Cambridge, MA (1996)

    Google Scholar 

  • Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  • Flierl, G., Grünbaum, D., Levin, S.A., Olson, D.: From individuals to aggregations: The interplay between behavior and physics. J. Theor. Biol. 196, 397–454 (1999)

    Article  Google Scholar 

  • Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Prob. 14, 1880–1919 (2004)

    Article  MATH  Google Scholar 

  • Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  • Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71, 876–902 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Grünbaum, D., Okubo, A.: Modelling social animal aggregations. In: Levin, S.A. (Ed.) Frontiers of Theoretical Biology. Lectures Notes in Biomathematics, vol. 100, pp. 296–325. Springer, New York (1994)

    Google Scholar 

  • Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of herds: From individuals to aggregations. J. Theor. Biol. 182, 85–98 (1996)

    Article  Google Scholar 

  • Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, The Netherlands (1980)

    Book  Google Scholar 

  • Hethcote, H.W., Yorke, J.A.: Gonorrhea Transmission and Control. Lecture Notes Biomath, vol. 56. Springer, Heidelberg (1984)

    Google Scholar 

  • Jacobsen, M.: Statistical Analysis of Counting Processes. Springer, Heidelberg (1982)

    Book  MATH  Google Scholar 

  • Jelinski, Z., Moranda, P.: Software reliability research. In: Statistical Computer Performance Evaluation, pp. 466–484. Academic, New York (1972)

    Google Scholar 

  • Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. AMS, Providence, RI (1968)

    Google Scholar 

  • Lu, L.: Optimal control of input rates of Stein’s models. Math. Med. Biol. 28, 31–46 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Mahajan, V., Wind, Y.: Innovation Diffusion Models of New Product Acceptance. Ballinger, Cambridge, MA (1986)

    Google Scholar 

  • Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler scheme. Ann. Appl. Prob. 13, 540–560 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  • Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Mao, X., et al.: Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl. 304, 296–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis. Math. Contemp. 19, 1–31 (2000)

    MATH  MathSciNet  Google Scholar 

  • Méléard, S.: Asymptotic behaviour of some interacting particle systems: McKean–Vlasov and Boltzmann models. In: Talay, D., Tubaro, L. (Eds.) Probabilistic Models for Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol. 1627, pp. 42–95. CIME Subseries. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  • Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behaviour: From individuals to populations. J. Math. Biol. 50, 49–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Nagai, T., Mimura, M.: Some nonlinear degenerate diffusion equations related to population dynamics. J. Math. Soc. Jpn. 35, 539–561 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. verw. Geb. 69, 279–322 (1985)

    Article  MATH  Google Scholar 

  • Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88, 294–346 (1990)

    Article  MATH  Google Scholar 

  • Okubo, A.: Dynamical aspects of animal grouping: Swarms, school, flocks and herds. Adv. BioPhys. 22, 1–94 (1986)

    Article  Google Scholar 

  • Rebolledo, R.: Central limit theorems for local martingales. Z. Wahrsch. verw. Geb. 51, 269–286 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965)

    Article  Google Scholar 

  • Stein, R.B.: Some models of neuronal variability. Biophys. J. 7, 37–68 (1967)

    Article  Google Scholar 

  • Tan, W.Y.: Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  • Tuckwell, H.C.: On the first exit time problem for temporarily homogeneous Markov process. J. Appl. Prob. 13, 39–48 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  • Veretennikov, A.Y.: On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70, 115–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Veretennikov, A.Y.: On subexponential mixing rate for Markov processes. Theory Prob. Appl. 49, 110–122 (2005)

    Article  MathSciNet  Google Scholar 

  • Wang, F.J.S.: Gaussian approximation of some closed stochastic epidemic models. J. Appl. Prob. 14, 221–231 (1977)

    Article  MATH  Google Scholar 

  • Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150, 473–488 (1991)

    Article  Google Scholar 

  • Yang, G.: Stochastic epidemics as point processes. In: Capasso, V., Grosso, E., Paveri-Fontana, S.L. (Eds.) Mathematics in Biology and Medicine. Lectures Notes in Biomathematics, vol. 57, pp. 135–144. Springer, Heidelberg (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2015). Applications to Biology and Medicine. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-2757-9_7

Download citation

Publish with us

Policies and ethics