Skip to main content

Solutions to Classical Problems in the Control of Motor Actions

  • Chapter
Referent control of action and perception
  • 797 Accesses

Abstract

This quotation (http://www.quotationspage.com/faq.php#85) is reminiscent of the Gödel’s incompleteness theorem in mathematics: In any axiomatic system of postulates there would always be some statements the validity of which could not be established within this system (Kennedy 2011). Einstein’s quote points to similar limitations in other branches of science and everyday life.

The significant problems we have cannot be solved at the same level of thinking with which we created them.

Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aburub AS, Lamontagne A (2013) Altered steering strategies for goal-directed locomotion in stroke. J Neuroeng Rehabil 10(1):80–91

    Article  PubMed Central  PubMed  Google Scholar 

  • Adamovich SV, Levin MF, Feldman AG (1997) Central modifications of reflex parameters may underlie the fastest arm movements. J Neurophysiol 77(3):1460–1469

    CAS  PubMed  Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10:925–935

    Google Scholar 

  • Berkinblit MB, Deliagina TG, Orlovsky GN, Feldman AG (1980) Activity of motoneurons during fictitious scratch reflex in the cat. Brain Res 14 193(2):427–438

    Article  CAS  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon, Oxford

    Google Scholar 

  • Bizzi E, Polit A, Morasso P (1976) Mechanisms underlying achievement of final head position. J Neurophysiol 39(2):435–444

    CAS  PubMed  Google Scholar 

  • Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter S (1992) Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 15(4):603–613

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JT (2001) Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology. Prog Neurobiol 63(4):441–466

    Article  CAS  PubMed  Google Scholar 

  • Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57(1):13–21

    Article  PubMed  Google Scholar 

  • Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68(3):643–656

    Article  CAS  PubMed  Google Scholar 

  • Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39(5):925–935

    CAS  PubMed  Google Scholar 

  • Duarte M, Zatsiorsky VM (1999) Patterns of center of pressure migration during prolonged unconstrained standing. Mot Contol 3(1):12–27

    CAS  Google Scholar 

  • Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG (1979) Central and reflex mechanisms in the control of actions. Publishing House Nauka, Moscow, p 184

    Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161(1):91–103

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18(4):723–744

    Article  Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37(3):481–494

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG, Goussev V, Sangole A, Levin MF (2007) Threshold position control and the principle of minimal interaction in motor actions. In: Cisek P, Drew T, Kalaska J (eds) Computational neuroscience: theoretical insights into brain function: theoretical insights into brain function, vol 165, Progress in brain research., pp 267–281

    Chapter  Google Scholar 

  • Feldman AG, Krasovsky T, Baniña MC, Lamontagne A, Levin MF (2011) Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Exp Brain Res 210(1):91–115

    Article  PubMed  Google Scholar 

  • Feldman AG, Ilmane N, Sangani S, Raptis H, Esmailzadeh N (2013) Action-perception coupling in kinesthesia: a new approach. Neuropsychologia 51(13):2590–2599

    Article  PubMed  Google Scholar 

  • Fodor JA (1975) The language of thought. Thomas Crowell, New York, NY

    Google Scholar 

  • Fowler CA, Turvey MT (1978) Skill acquisition: an event approach with special reference to searching for the optimum of a function of several variables. In: Stelmach GE (ed) Information processing in motor control and learning. Academic, New York, NY, pp 1–40

    Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Oxford, England, p 332

    Google Scholar 

  • Gomi H, Kawato M (1996) Equilibrium point control hypothesis examined by measured arm stiffness during multi joint movement. Science 272(5258):117–120

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb GL (1994) The generation of the efferent command and the importance of joint compliance in fast elbow movements. Exp Brain Res 97(3):545–550

    Article  CAS  PubMed  Google Scholar 

  • Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B Biol Sci 84(572):308–319

    Article  Google Scholar 

  • Granit R (1956) Receptors and sensory perception. G. Cumberlege, London

    Google Scholar 

  • Gribble PL, Ostry DJ (2000) Compensation for loads during arm movements using equilibrium-point control. Exp Brain Res 135(4):474–482

    Article  CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79(3):1409–1424

    CAS  PubMed  Google Scholar 

  • Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5):751–766

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Williams T, Lagerback PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223(4635):500–503

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res Rev 57(1):2–12

    Article  PubMed  Google Scholar 

  • Hinder MR, Milner TE (2003) The case for an internal dynamics model versus equilibrium point control. J Physiol 549(3):953–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hopf E (2002) In: Morawetz CS, Serrin JB, Sinai YG (eds) Selected works of Eberhard Hopf with commentaries. American Mathematical Society, Providence RI

    Google Scholar 

  • Hultborn H (2006) Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog Neurobiol 78(3):215–232

    Article  PubMed  Google Scholar 

  • Hultborn H, Nielsen JB (2007) Spinal control of locomotion–from cat to man. Acta Physiol 189(2):111–121

    Article  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  CAS  PubMed  Google Scholar 

  • Kelso JA, Holt KG (1980) Exploring a vibratory systems analysis of human movement production. J Neurophysiol 43(5):1183–1196

    CAS  PubMed  Google Scholar 

  • Kennedy J (2011) Gödel’s thesis: an appreciation. In: Baaz M, Papadimitriou C, Scott D, Putnam H, Harper C (eds) Kurt Gödel and the foundations of mathematics: horizons of truth. Cambridge University Press, Cambridge, pp 95–110

    Chapter  Google Scholar 

  • Kistemaker DA, Van Soest AKJ, Bobbert MF (2006) Is equilibrium point control feasible for fast goal-directed single-joint movements? J Neurophysiol 95(5):2898–2912

    Article  PubMed  Google Scholar 

  • Kistemaker DA, Van Soest AK, Bobbert MF (2007) Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories. J Neurophysiol 98(3):1075–1082

    Article  PubMed  Google Scholar 

  • Kozlov AK, Kardamakis AA, Hellgren Kotaleski J, Grillner S (2014) Gating of steering signals through phasic modulatiion of reticulospinal neurons during locomotion. Proc Natl Acad Sci USA 111(9):3591–3596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krasovsky T, Lamontagne A, Feldman AG, Levin MF (2013) Reduced gait stability in high-functioning poststroke individuals. J Neurophysiol 109(1):77–88

    Article  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72(1):299–313

    CAS  PubMed  Google Scholar 

  • Lajoie K, Andujar JÉ, Pearson K, Drew T (2010) Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol 103(4):2234–2254

    Article  PubMed  Google Scholar 

  • Latash ML, Gottlieb GL (1990) Compliant characteristics of single joints: preservation of equifinality with phasic reactions. Biol Cybern 62:331–336

    Article  CAS  PubMed  Google Scholar 

  • Leksell L (1945) The action potential and excitatory effects of the small ventral root fibers to skeletal muscle. Acta Physiol Scand 10(31):1–84

    Google Scholar 

  • Levin MF, Dimov M (1997) Spatial zones for muscle coactivation and the control of postural stability. Brain Res 757(1):43–59

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE (1995) Control implications of musculoskeletal mechanics. In: Proceedings of 17th international conference of the engineering in medicine and biology society, 2, pp. 1393–1394

    Google Scholar 

  • Matthews PBC (1959) A study of certain factors influencing the stretch reflex of the decerebrated cat. J Physiol 147(3):547–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Edward Arnold, London, pp 574–577

    Google Scholar 

  • Medvedev ZA (1969) The rise and fall of T.D. Lysenko. Columbia University Press, New York, NY

    Google Scholar 

  • Merton PA (1953) Servo action in human voluntary movements. In: Malcolm JL, Gray JAB (eds) The spinal cord. Churchill, London, p 247

    Google Scholar 

  • Murray MP, Seireg AA, Sepic SB (1975) Normal postural stability and steadiness: quantitative assessment. J Bone Joint Surg 57(4):510–516

    CAS  PubMed  Google Scholar 

  • Orlovskiĭ GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153(3):275–288

    Article  PubMed  Google Scholar 

  • Raptis HA, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 588(9):1551–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Rovainen CM (1974) Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154(2):189–206

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RA, McGown C (1980) Terminal accuracy of unexpected loaded rapid movements: evidence for a mass-spring mechanism in programming. J Mot Behav 12(2):149–161

    Article  CAS  PubMed  Google Scholar 

  • Schomburg ED, Petersen N, Barajon I, Hultborn H (1998) Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp Brain Res 122(3):339–350

    Article  CAS  PubMed  Google Scholar 

  • Scott SH (2008) Inconvenient truths about neural processing in primary motor cortex. J Physiol 586(5):1217–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein RB, Misiaszek JE, Pearson KG (2000) Functional role of muscle reflexes for force generation in the decerebrate walking cat. J Physiol 525(3):781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ustinova KI, Feldman AG, Levin MF (2006) Central resetting of neuromuscular steady states may underlie rhythmical arm movements. J Neurophysiol 96(3):1124–1134

    Article  PubMed  Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Von Holst H (1954) Relations between the central nervous system and the peripheral organs. Br J Anim Behav 2(3):89–94

    Article  Google Scholar 

  • Von Holst E, Mittelstaedt H (1950/1973) Das reafferezprincip. Wechselwirkungen zwischen Zentralnerven-system und Peripherie, Naturwissenschaften 37: 467–476. The reafference principle. In: Martin R (Trans.), The behavioral physiology of animals and man. The collected papers of Erich von Holst. University of Miami Press, Coral Gables, FL, pp. 139–173, 176–209

    Google Scholar 

  • Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4(2):213–216

    Article  CAS  PubMed  Google Scholar 

  • Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73(4):155–202

    Article  CAS  PubMed  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7):1317–1329

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, A.G. (2015). Solutions to Classical Problems in the Control of Motor Actions. In: Referent control of action and perception. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2736-4_6

Download citation

Publish with us

Policies and ethics