Solutions to Classical Problems in the Control of Motor Actions

  • Anatol G. Feldman


This quotation ( is reminiscent of the Gödel’s incompleteness theorem in mathematics: In any axiomatic system of postulates there would always be some statements the validity of which could not be established within this system (Kennedy 2011). Einstein’s quote points to similar limitations in other branches of science and everyday life.


Mechanical reductionism Internal models Posture-movement problem Reflexes and central processes Sherrington Graham Brown Sensorimotor integration Central pattern generator Lamprey Reaching Posture-movement stability Coriolis force 


  1. Aburub AS, Lamontagne A (2013) Altered steering strategies for goal-directed locomotion in stroke. J Neuroeng Rehabil 10(1):80–91PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adamovich SV, Levin MF, Feldman AG (1997) Central modifications of reflex parameters may underlie the fastest arm movements. J Neurophysiol 77(3):1460–1469PubMedGoogle Scholar
  3. Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10:925–935Google Scholar
  4. Berkinblit MB, Deliagina TG, Orlovsky GN, Feldman AG (1980) Activity of motoneurons during fictitious scratch reflex in the cat. Brain Res 14 193(2):427–438CrossRefGoogle Scholar
  5. Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon, OxfordGoogle Scholar
  6. Bizzi E, Polit A, Morasso P (1976) Mechanisms underlying achievement of final head position. J Neurophysiol 39(2):435–444PubMedGoogle Scholar
  7. Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter S (1992) Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 15(4):603–613PubMedCrossRefGoogle Scholar
  8. Buchanan JT (2001) Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology. Prog Neurobiol 63(4):441–466PubMedCrossRefGoogle Scholar
  9. Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57(1):13–21PubMedCrossRefGoogle Scholar
  10. Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68(3):643–656PubMedCrossRefGoogle Scholar
  11. Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39(5):925–935PubMedGoogle Scholar
  12. Duarte M, Zatsiorsky VM (1999) Patterns of center of pressure migration during prolonged unconstrained standing. Mot Contol 3(1):12–27Google Scholar
  13. Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82(2):351–358PubMedCrossRefGoogle Scholar
  14. Feldman AG (1979) Central and reflex mechanisms in the control of actions. Publishing House Nauka, Moscow, p 184Google Scholar
  15. Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161(1):91–103PubMedCrossRefGoogle Scholar
  16. Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18(4):723–744CrossRefGoogle Scholar
  17. Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37(3):481–494PubMedCrossRefGoogle Scholar
  18. Feldman AG, Goussev V, Sangole A, Levin MF (2007) Threshold position control and the principle of minimal interaction in motor actions. In: Cisek P, Drew T, Kalaska J (eds) Computational neuroscience: theoretical insights into brain function: theoretical insights into brain function, vol 165, Progress in brain research., pp 267–281CrossRefGoogle Scholar
  19. Feldman AG, Krasovsky T, Baniña MC, Lamontagne A, Levin MF (2011) Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Exp Brain Res 210(1):91–115PubMedCrossRefGoogle Scholar
  20. Feldman AG, Ilmane N, Sangani S, Raptis H, Esmailzadeh N (2013) Action-perception coupling in kinesthesia: a new approach. Neuropsychologia 51(13):2590–2599PubMedCrossRefGoogle Scholar
  21. Fodor JA (1975) The language of thought. Thomas Crowell, New York, NYGoogle Scholar
  22. Fowler CA, Turvey MT (1978) Skill acquisition: an event approach with special reference to searching for the optimum of a function of several variables. In: Stelmach GE (ed) Information processing in motor control and learning. Academic, New York, NY, pp 1–40Google Scholar
  23. Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Oxford, England, p 332Google Scholar
  24. Gomi H, Kawato M (1996) Equilibrium point control hypothesis examined by measured arm stiffness during multi joint movement. Science 272(5258):117–120PubMedCrossRefGoogle Scholar
  25. Gottlieb GL (1994) The generation of the efferent command and the importance of joint compliance in fast elbow movements. Exp Brain Res 97(3):545–550PubMedCrossRefGoogle Scholar
  26. Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B Biol Sci 84(572):308–319CrossRefGoogle Scholar
  27. Granit R (1956) Receptors and sensory perception. G. Cumberlege, LondonGoogle Scholar
  28. Gribble PL, Ostry DJ (2000) Compensation for loads during arm movements using equilibrium-point control. Exp Brain Res 135(4):474–482PubMedCrossRefGoogle Scholar
  29. Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79(3):1409–1424PubMedGoogle Scholar
  30. Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5):751–766PubMedCrossRefGoogle Scholar
  31. Grillner S, Williams T, Lagerback PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223(4635):500–503PubMedCrossRefGoogle Scholar
  32. Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res Rev 57(1):2–12PubMedCrossRefGoogle Scholar
  33. Hinder MR, Milner TE (2003) The case for an internal dynamics model versus equilibrium point control. J Physiol 549(3):953–963PubMedCentralPubMedCrossRefGoogle Scholar
  34. Hopf E (2002) In: Morawetz CS, Serrin JB, Sinai YG (eds) Selected works of Eberhard Hopf with commentaries. American Mathematical Society, Providence RIGoogle Scholar
  35. Hultborn H (2006) Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog Neurobiol 78(3):215–232PubMedCrossRefGoogle Scholar
  36. Hultborn H, Nielsen JB (2007) Spinal control of locomotion–from cat to man. Acta Physiol 189(2):111–121CrossRefGoogle Scholar
  37. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727PubMedCrossRefGoogle Scholar
  38. Kelso JA, Holt KG (1980) Exploring a vibratory systems analysis of human movement production. J Neurophysiol 43(5):1183–1196PubMedGoogle Scholar
  39. Kennedy J (2011) Gödel’s thesis: an appreciation. In: Baaz M, Papadimitriou C, Scott D, Putnam H, Harper C (eds) Kurt Gödel and the foundations of mathematics: horizons of truth. Cambridge University Press, Cambridge, pp 95–110CrossRefGoogle Scholar
  40. Kistemaker DA, Van Soest AKJ, Bobbert MF (2006) Is equilibrium point control feasible for fast goal-directed single-joint movements? J Neurophysiol 95(5):2898–2912PubMedCrossRefGoogle Scholar
  41. Kistemaker DA, Van Soest AK, Bobbert MF (2007) Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories. J Neurophysiol 98(3):1075–1082PubMedCrossRefGoogle Scholar
  42. Kozlov AK, Kardamakis AA, Hellgren Kotaleski J, Grillner S (2014) Gating of steering signals through phasic modulatiion of reticulospinal neurons during locomotion. Proc Natl Acad Sci USA 111(9):3591–3596PubMedCentralPubMedCrossRefGoogle Scholar
  43. Krasovsky T, Lamontagne A, Feldman AG, Levin MF (2013) Reduced gait stability in high-functioning poststroke individuals. J Neurophysiol 109(1):77–88PubMedCrossRefGoogle Scholar
  44. Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72(1):299–313PubMedGoogle Scholar
  45. Lajoie K, Andujar JÉ, Pearson K, Drew T (2010) Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. J Neurophysiol 103(4):2234–2254PubMedCrossRefGoogle Scholar
  46. Latash ML, Gottlieb GL (1990) Compliant characteristics of single joints: preservation of equifinality with phasic reactions. Biol Cybern 62:331–336PubMedCrossRefGoogle Scholar
  47. Leksell L (1945) The action potential and excitatory effects of the small ventral root fibers to skeletal muscle. Acta Physiol Scand 10(31):1–84Google Scholar
  48. Levin MF, Dimov M (1997) Spatial zones for muscle coactivation and the control of postural stability. Brain Res 757(1):43–59PubMedCrossRefGoogle Scholar
  49. Loeb GE (1995) Control implications of musculoskeletal mechanics. In: Proceedings of 17th international conference of the engineering in medicine and biology society, 2, pp. 1393–1394Google Scholar
  50. Matthews PBC (1959) A study of certain factors influencing the stretch reflex of the decerebrated cat. J Physiol 147(3):547–564PubMedCentralPubMedCrossRefGoogle Scholar
  51. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Edward Arnold, London, pp 574–577Google Scholar
  52. Medvedev ZA (1969) The rise and fall of T.D. Lysenko. Columbia University Press, New York, NYGoogle Scholar
  53. Merton PA (1953) Servo action in human voluntary movements. In: Malcolm JL, Gray JAB (eds) The spinal cord. Churchill, London, p 247Google Scholar
  54. Murray MP, Seireg AA, Sepic SB (1975) Normal postural stability and steadiness: quantitative assessment. J Bone Joint Surg 57(4):510–516PubMedGoogle Scholar
  55. Orlovskiĭ GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, OxfordCrossRefGoogle Scholar
  56. Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153(3):275–288PubMedCrossRefGoogle Scholar
  57. Raptis HA, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 588(9):1551–1570PubMedCentralPubMedCrossRefGoogle Scholar
  58. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154PubMedCrossRefGoogle Scholar
  59. Rovainen CM (1974) Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154(2):189–206PubMedCrossRefGoogle Scholar
  60. Schmidt RA, McGown C (1980) Terminal accuracy of unexpected loaded rapid movements: evidence for a mass-spring mechanism in programming. J Mot Behav 12(2):149–161PubMedCrossRefGoogle Scholar
  61. Schomburg ED, Petersen N, Barajon I, Hultborn H (1998) Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp Brain Res 122(3):339–350PubMedCrossRefGoogle Scholar
  62. Scott SH (2008) Inconvenient truths about neural processing in primary motor cortex. J Physiol 586(5):1217–1224PubMedCentralPubMedCrossRefGoogle Scholar
  63. Stein RB, Misiaszek JE, Pearson KG (2000) Functional role of muscle reflexes for force generation in the decerebrate walking cat. J Physiol 525(3):781–791PubMedCentralPubMedCrossRefGoogle Scholar
  64. Ustinova KI, Feldman AG, Levin MF (2006) Central resetting of neuromuscular steady states may underlie rhythmical arm movements. J Neurophysiol 96(3):1124–1134PubMedCrossRefGoogle Scholar
  65. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101PubMedCrossRefGoogle Scholar
  66. Von Holst H (1954) Relations between the central nervous system and the peripheral organs. Br J Anim Behav 2(3):89–94CrossRefGoogle Scholar
  67. Von Holst E, Mittelstaedt H (1950/1973) Das reafferezprincip. Wechselwirkungen zwischen Zentralnerven-system und Peripherie, Naturwissenschaften 37: 467–476. The reafference principle. In: Martin R (Trans.), The behavioral physiology of animals and man. The collected papers of Erich von Holst. University of Miami Press, Coral Gables, FL, pp. 139–173, 176–209Google Scholar
  68. Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4(2):213–216PubMedCrossRefGoogle Scholar
  69. Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73(4):155–202PubMedCrossRefGoogle Scholar
  70. Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  71. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7):1317–1329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anatol G. Feldman
    • 1
  1. 1.Department of NeuroscienceUniversity of Montreal, Center for Interdisciplinary Reseach in RehabilitationMontrealCanada

Personalised recommendations