A Hedged Monte Carlo Approach to Real Option Pricing

  • Edgardo Brigatti
  • Felipe Macías
  • Max O. Souza
  • Jorge P. Zubelli
Part of the Fields Institute Communications book series (FIC, volume 74)


In this work we are concerned with valuing optionalities associated to invest or to delay investment in a project when the available information provided to the manager comes from simulated data of cash flows under historical (or subjective) measure in a possibly incomplete market. Our approach is suitable also to incorporating subjective views from management or market experts and to stochastic investment costs.

It is based on the Hedged Monte Carlo strategy proposed by Potters, Bouchaud, Sestovic (Phys. A Stat. Mech. Appl. 289(3–4):517–525, 2001) where options are priced simultaneously with the determination of the corresponding hedging. The approach is particularly well-suited to the evaluation of commodity related projects whereby the availability of pricing formulae is very rare, the scenario simulations are usually available only in the historical measure, and the cash flows can be highly nonlinear functions of the prices.


Cash Flow Real Option Incomplete Market Traded Asset Historical Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



E.B. developed this work while visiting IMPA under the Cooperation Agreement between IMPA and Petrobras. MOS was partially supported by CNPq grant 308113/2012-8 and FAPERJ. JPZ was supported by CNPq grants 302161/2003-1 and 474085/2003-1 and by FAPERJ through the programs Cientistas do Nosso Estado and Pensa Rio. All authors acknowledge the IMPA-PETROBRAS cooperation agreement.

The authors would like to acknowledge and thank a number of discussions with Fernando Aiube (PUC-RJ and Petrobras). We also thank Milene Mondek for the implementation of a number of preliminary examples of the HMC algorithm and Luca P. Mertens for help with the R software and the calibration procedure in the examples.


  1. 1.
    Bobrovnytska, O., Schweizer, M.: Mean-variance hedging and stochastic control: beyond the Brownian setting. IEEE Trans. Automat. Control 49(3), 396–408 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borison, A.: Real options analysis: Where are the emperor’s clothes? J. Appl. Corpor. Finan. 17(2), 17–31 (2005)CrossRefGoogle Scholar
  3. 3.
    Brennan, M.J., Schwartz, E.S.: Evaluating natural resource investments. J. Bus. 58(2), 135–157 (1985)CrossRefGoogle Scholar
  4. 4.
    Chen, C.C., Chiang, Y.S., Chien, C.F.: Real option analysis for capacity investment planning for semiconductor manufacturing. In: International Symposium on Semiconductor Manufacturing, 2007. ISSM 2007, pp. 1–3 (2007)Google Scholar
  5. 5.
    Choulli, T., Stricker, C.: Deux applications de la décomposition de Galtchouk-Kunita-Watanabe. In: Séminaire de Probabilités, XXX. Lecture Notes in Mathematics, vol. 1626, pp. 12–23. Springer, Berlin (1996)Google Scholar
  6. 6.
    Copeland, T., Antikarov, V.: Real Options: A Practitioner’s Guide. W. W. Norton and Company, New York (2001)Google Scholar
  7. 7.
    Copeland, T., Tufano, P.: A real-world way to manage real options. Harv. Bus. Rev. 82(3), 90–99 (2004)Google Scholar
  8. 8.
    Dixit, A.: Entry and exit decisions under uncertainty. J. Polit. Econ. 97(3), 620–638 (1989)CrossRefGoogle Scholar
  9. 9.
    Dixit, A., Pindyck, R: Investment Under Uncertainty. Princeton University Press, Princeton (1994)Google Scholar
  10. 10.
    El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finan. 7(1), 1–71 (1997)MATHCrossRefGoogle Scholar
  11. 11.
    Föllmer, H., Schied, A.: Stochastic finance. de Gruyter Studies in Mathematics, vol. 27. Walter de Gruyter, Berlin (2004)Google Scholar
  12. 12.
    Gastel, L.V.: Risk beyond the hedge: options and guarantees embedded in life insurance products in incomplete markets. Master’s Thesis, University of Amsterdam, 2013Google Scholar
  13. 13.
    Glasserman, P., Yu, B.: Number of paths versus number of basis functions in American option pricing. Ann. Appl. Probab. 14(4), 2090–2119 (2004)MATHMathSciNetGoogle Scholar
  14. 14.
    Gobet, E., Turkedjiev, P.: Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Forthcoming in Mathematics of Computation (2015)Google Scholar
  15. 15.
    Gobet, E., Lemor, J.P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (2013)MATHGoogle Scholar
  17. 17.
    Grasselli, M., Hurd, T.: A Monte Carlo method for exponential hedging of contingent claims (2004). Working paperGoogle Scholar
  18. 18.
    Grasselli, M.R.: Getting real with real options: a utility–based approach for finite–time investment in incomplete markets. J. Bus. Finan. Account. 38(5–6), 740–764 (2011)CrossRefGoogle Scholar
  19. 19.
    Grasselli, M.R., Hurd, T.R.: Indifference pricing and hedging for volatility derivatives. Appl. Math. Finan. 14(4), 303–317 (2007)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Henderson, V., Hobson, D.G.: Real options with constant relative risk aversion. J. Econ. Dyn. Control 27(2), 329–355 (2002)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hubalek, F., Schachermayer, W.: The limitations of no-arbitrage arguments for real options. Int. J. Theor. Appl. Finan. 2(4), 361–373 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ingersoll, J.E., Ross, S.A.: Waiting to invest - investment And uncertainty. J. Bus. 65(1), 1–29 (1992)CrossRefGoogle Scholar
  23. 23.
    Jaimungal, S., Lawryshyn, Y.: Incorporating managerial information into real option valuation. SSRN eLibrary (2011)Google Scholar
  24. 24.
    Lemor, J.P., Gobet, E., Warin, X.: Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12(5), 889–916 (2006)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lipp, T.: Numerical methods for optimization in finance: optimized hedges for options and optmized options for hedging. PhD Thesis, Augsburg University and Pierre and Marie Curie University (2012)Google Scholar
  26. 26.
    Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: A simple least-squares approach. Rev. Finan. Stud. 14(1), 113–147 (2001)CrossRefGoogle Scholar
  27. 27.
    Mathews, S., Datar, V., Johnson, B.: A practical method for valuing real options: The Boeing approach. J. Appl. Corp. Finan. 19(2), 95–104 (2007)CrossRefGoogle Scholar
  28. 28.
    McDonald, R., Siegel, D.: The value of waiting to invest. Q. J. Econ. 101(4), 707–727 (1986)CrossRefGoogle Scholar
  29. 29.
    Mittal, G.: Real options approach to capacity planning under uncertainty. Master’s Thesis, Massachusetts Institute of Technology (2004)Google Scholar
  30. 30.
    Moro, L., Zanin, A., Pinto, J.: A planning model for refinery diesel production. Comput. Chem. Eng. 22(1), 1039–1042 (1998)CrossRefGoogle Scholar
  31. 31.
    Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modeling. Springer, New York (1997)CrossRefGoogle Scholar
  32. 32.
    Myers, S.C.: Determinants of corporate borrowing. J. Finan. Econ. 5(2), 147–175 (1977)CrossRefGoogle Scholar
  33. 33.
    Novaes, A.G.N., Souza, J.C.: A real options approach to a classical capacity expansion problem. Pesquisa Operacional 25(2), 159–181 (2005)CrossRefGoogle Scholar
  34. 34.
    Oldenburg, J., Schlegel, M., Ulrich, J., Hong, T.L., Krepinsky, B., Grossmann. G., Polt, A., Terhorst, H., Snoeck, J.W.: A method for quick evaluation of stepwise plant expansion scenarios in the chemical industry. In: Plesu, V., Agachi, P. (eds.) 17th European Symposium on Computer Aided Process Engineering, p. 2. Elsevier, Amsterdam (2007)Google Scholar
  35. 35.
    Paddock, J.L., Siegel, D.R., Smith, J.L.: Option valuation of claims on real assets - the case of offshore petroleum leases. Q. J. Econ. 103(3), 479–508 (1988)CrossRefGoogle Scholar
  36. 36.
    Papageorgiou, L.G.: Supply chain optimization for the process industries: Advances and opportunties. Comput. Chem. Eng. 33(1), 931–938 (2009)Google Scholar
  37. 37.
    Pham, H.: On quadratic hedging in continuous time. Math. Meth. Oper. Res. 51(2), 15–339 (2000)CrossRefGoogle Scholar
  38. 38.
    Pindyck. R.S.: Irreversibility, uncertainty, and investment. J. Econ. Lit. 29(3), 1110–1148 (1991)Google Scholar
  39. 39.
    Potters, M., Bouchaud, J., Sestovic, D.: Hedged Monte-Carlo: low variance derivative pricing with objective probabilities. Phys. A Stat. Mech. Appl. 289(3–4), 517–525 (2001)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Primbs, J.A., Yamada, Y.: A new computational tool for analysing dynamic hedging under transaction costs. Quant. Finan. 8(4), 405–413 (2008)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013)Google Scholar
  42. 42.
    Sahinidis, N., Grossmann, I., Fornari, R., Chathrathi, M.: Optimization model for long range planning in the chemical industry. Comput. Chem. Eng. 13, 1049–1063 (1989)CrossRefGoogle Scholar
  43. 43.
    Schweizer, M.: Local risk-minimization for multidimensional assets and payment streams. Banach Cent. Publ. 83, 213–229 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Schweizer, M., Föllmer, H.: Hedging by sequential regression: an introduction to the mathematics of option trading. ASTIN Bull. 18(2), 147–160 (1988)CrossRefGoogle Scholar
  45. 45.
    Shapiro, J.F.: Challenges of strategic supply chain planning and modeling. Comput. Chem. Eng. 28, 855–861 (2009)CrossRefGoogle Scholar
  46. 46.
    Titman, S.: Urban land prices under uncertainty. Am. Econ. Rev. 75(3), 505–514 (1985)Google Scholar
  47. 47.
    Tourinho, O.: The Option Value of Reserves of Natural Resources. Working Paper 94, University of California, Berkeley (1979)Google Scholar
  48. 48.
    Trigeorgis, L.: Real Options: Managerial Flexibility and Strategy in Resource Allocation. MIT Press, Cambridge (1999)Google Scholar
  49. 49.
    Trigeorgis, L., Mason, S.P.: Valuing managerial flexibility. Midl. Corp. Finan. J. 5(1), 14–21 (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Edgardo Brigatti
    • 1
  • Felipe Macías
    • 2
  • Max O. Souza
    • 3
  • Jorge P. Zubelli
    • 2
  1. 1.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.IMPARio de JaneiroBrazil
  3. 3.Departamento de Matemática AplicadaUniversidade Federal FluminenseNiteroiBrazil

Personalised recommendations