Skip to main content

Nanotechnologies in Surgery: The New Paradigm

  • Chapter
  • 2129 Accesses

Abstract

Nanotechnology requires surgeons to rethink their concept of surgery. Rather than “cutting out the bad tissue, and repairing the good tissue” (with ever-increasing precision and minimal tissue disruption), the surgeon using nanotechnologies must think in terms of the cellular (or subcellular) characteristics of tissues and how the surgeon can interact at the cellular/micron/nano level. The nanorealm—from the micron (10−6 m) to the nanometer (10−9 m)—lies below the detection of the human eye. Nanoparticles and nanomaterials accomplish surgical goals by interacting with tissues at the cellular or subcellular level. The surgeon must substitute “visual flight rules” and “hands-on surgery” with “instrument flight rules” and “vicarious surgery.” Nanoparticles such as quantum dots, liposomes, and paramagnetic nanoparticles and nanomaterials such as carbon nanotubes, nanoscaffolds, and nanofilms have already shown broad applications in surgery and related disciplines. Paramagnetic nanoparticles and quantum dots can be used to image tumors and enhance MRI scans. Nanoendoscopes can be used to investigate the interior of cells—with quantum dots labeling various intracellular organelles—without injury to the cell. Nanoscaffolds can be used for both hemostasis and improved tissue repair and regeneration. Nanotechniques are enabling point-of-care handheld lab-on-a-chip devices; nanotechniques are essential for tissue-machine and brain-machine interfaces that can restore or replace lost tissues and functions. The era of “surgical nanorobots” utilizing the body’s “metabolic highways”—the vascular system from aorta and vena cava to capillary and venule—to atraumatically operate on any bodily tissue (down to a single errant cell, if need be!) is close at hand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feynman RP. There’s plenty of room at the bottom. Eng Sci. 1960;23(2):22–36.

    Google Scholar 

  2. Smalley RE. Testimony before the U.S. House of Representatives regarding the proposal to establish a National Nanotechnology Initiative. Available at www.rice.edu/media/smalleytestimony.htm. Accessed 22 June 1999.

  3. Reibold M, Paufler P, Levin AA, Kochmann W, Pätzke N, Meyer DC. Carbon nanotubes in an ancient Damascus sabre. Nature. 2006;444:286.

    Article  CAS  PubMed  Google Scholar 

  4. Silva GA, Parpura V, editors. Nanotechnology for biology and medicine. New York: Springer Science + Business Media; 2012.

    Google Scholar 

  5. Kateb B, Heiss JD, editors. The textbook of nanoneuroscience and nanoneurosurgery. Boca Raton, FL: CRC Press; 2014.

    Google Scholar 

  6. Kateb B, Chiu K, Black KL, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage. 2011;54:S106–24.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Daraio C, Jin S. Synthesis and patterning methods for nanostructures useful for biological applications. In: Silva GA, Parpura V, editors. Nanotechnology for biology and medicine. New York: Springer Science + Business Media; 2012.

    Google Scholar 

  8. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1–13.

    Article  Google Scholar 

  9. Provenzale JM, Silva GA. Uses of nanoparticles for central nervous system imaging and therapy. AJNR Am J Neuroradiol. 2009;30:1293–301.

    Article  CAS  PubMed  Google Scholar 

  10. Smith AM, Nie S. Chemical analysis and cellular imaging with quantum dots. Analyst. 2004;129:672–7.

    Article  CAS  PubMed  Google Scholar 

  11. Pathak S, Cao E, Davidson MC, Jin S, Silva GA. Quantum dot applications to neuroscience: new tools for probing neurons and glia. J Neurosci. 2006;26(7):1893–5.

    Article  CAS  PubMed  Google Scholar 

  12. Ellis-Behnke RG, Liang YX, You SW, et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. PNAS. 2006;103(13):5054–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Weinstein JS, Varallyay CG, Dosa E, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30:15–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wang LS, Chuang MC, Ho JA. Nanotheranostics – a review of recent publications. Int J Nanomed. 2012;7:4679–95.

    CAS  Google Scholar 

  15. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 2012;5(2):173–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nanobiotix website (www.nanobiotix.com). Accessed 27 Apr 2014.

  17. Cyrus T, Wickline SA, Lanza GM. Nanotechnology in interventional cardiology. WIREs Nanomed Nanobiotechnol. 2012;4:82–95.

    Article  CAS  Google Scholar 

  18. Norling LV, Spite M, Yang R, Flower RJ, Perretti M, Serhan CN. Humanized nano pro-resolving medicines mimic inflammation-resolution and enhance wound healing. J Immunol. 2011;186(10):5543–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ellis-Behnke R. At the nanoscale: nanohemostat, a new class of hemostatic agent. WIREs Nanomed Nanobiotechnol. 2011;3:70–8.

    Article  CAS  Google Scholar 

  20. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008;3:434–9.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen-Vu TDB, Chen H, Cassell AM, Andrews R, Meyyappan M, Li J. Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small. 2006;2:89–94.

    Article  CAS  PubMed  Google Scholar 

  22. Shon YM, Lee KH, Goerss SJ, et al. High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of DBS neurosurgery. Neurosci Lett. 2010;475:136–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Tawfik VL, Chang SY, Hitti FL, et al. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes. Neurosurgery. 2010;67:367–75.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rand E, Periyakaruppan A, Tanaka Z, et al. A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens Bioelectron. 2013;42:434–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shin SR, Jung SM, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Llinas RR, Walton KD, Nakao M, Hunter I, Anquetil PA. Neuro-vascular nervous recording/stimulating system: using nanotechnology probes. J Nanopart Res. 2005;7:111–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Andrews M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrews, R.J. (2015). Nanotechnologies in Surgery: The New Paradigm. In: Latifi, R., Rhee, P., Gruessner, R. (eds) Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2671-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2671-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2670-1

  • Online ISBN: 978-1-4939-2671-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics