Skip to main content

Electrolyte Disorders in Cancer Patients

Abstract

The spectrum of fluid and electrolyte disorders in oncology patients has some important and distinct features when compared to those of the general population. For example, the constellation of hyperuricemia, hyperphosphatemia, hypocalcemia, and hyperkalemia due to massive release of intracellular contents as seen in tumor lysis syndrome, is observed only in cancer patients. Moreover, hyponatremia is observed with greater frequency in oncology patients, and it’s pathogenesis in this population can be exclusive to the malignancy itself, the chemotherapy given to treat the disease, or rarely, to both. Similarly, hypomagnesemia exclusive to chemotherapeutic agents like cisplatin, ifosfamide, and cetuximab is only seen in cancer patients. This chapter describes the frequency of the most commonly observed electrolyte disorders in the oncology patient and delves into the unique cancer- or chemotherapy-related etiology of these clinical problems.

Keywords

  • Hyponatremia
  • Hypomagnesemia
  • Tumor lysis syndrome
  • Hyperuricemia
  • Calcium phosphate nephropathy
  • Cetuximab
  • Humeral hypercalcemia
  • Hypercalcemia of malignancy
  • Onconephrology
  • Hyperphosphatemia
  • Hypophosphatemia
  • Hypocalcemia
  • Hypernatremia
  • Hypokalemia
  • Hyperkalemia

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2659-6_7
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2659-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

Abbreviations

ADH:

Antidiuretic hormone

ATN:

Acute tubular necrosis

AVN:

Avascular necrosis

BP:

Bisphosphonates

CaSR:

Calcium sensing receptor

CrCl:

Creatinine clearance

CRRT:

Continuous renal replacement therapy

eEGFR:

Epithelial growth factor receptor

FSGS:

Focal segmental glomerular sclerosis

HM:

Hypercalcemia of malignancy

HPT:

Primary hyperparathyroidism

IHD:

Intermittent hemodialysis

IL:

Interleukin

MM:

Multiple myeloma

MCD:

Minimal change disease

M-CSF:

Macrophage colony stimulating factor

OB:

Osteoblast

OC:

Osteoclast

OPG:

Osteoprotegerin

PTH-rP:

Parathyroid hormone-related protein

RANK:

Receptor activator of nuclear factor kappa B

RANK-L:

Receptor activator of nuclear factor kappa B ligand

SIADH:

Syndrome of inappropriate antidiuretic hormone

SCLC:

Small cell lung cancer

TBW:

Total body water

TLS:

Tumor lysis syndrome

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

References

  1. Stewart AF. Clinical practice. Hypercalcemia associated with cancer. N Engl J Med. 2005;352(4):373–9.

    CAS  PubMed  Google Scholar 

  2. Tattersall MH. Hypercalcaemia: historical perspectives and present management. Support Care Cancer. 1993;1(1):19–25.

    CAS  PubMed  Google Scholar 

  3. Penel N, Dewas S, Doutrelant P, Clisant S, Yazdanpanah Y, Adenis A. Cancer-associated hypercalcemia treated with intravenous diphosphonates: a survival and prognostic factor analysis. Support Care Cancer. 2008;16(4):387–92.

    PubMed  Google Scholar 

  4. Vassilopoulou-Sellin R, Newman BM, Taylor SH, Guinee VF. Incidence of hypercalcemia in patients with malignancy referred to a comprehensive cancer center. Cancer. 1993;71(4):1309–12.

    CAS  PubMed  Google Scholar 

  5. Ralston SH, Gallacher SJ, Patel U, Campbell J, Boyle IT. Cancer-associated hypercalcemia: morbidity and mortality. Clinical experience in 126 treated patients. Ann Intern Med. 1990;112(7):499–504.

    CAS  PubMed  Google Scholar 

  6. van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C. Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res. 2001;16(6):1077–91.

    PubMed  Google Scholar 

  7. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986;261(27):12665–74.

    CAS  PubMed  Google Scholar 

  8. Pfeilschifter J, Mundy GR. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987;84(7):2024–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    CAS  PubMed  Google Scholar 

  10. Tilg H, Moschen AR, Kaser A, Pines A, Dotan I. Gut, inflammation and osteoporosis: basic and clinical concepts. Gut. 2008;57(5):684–94.

    CAS  PubMed  Google Scholar 

  11. Coleman RE, Seaman JJ. The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. Semin Oncol. 2001;28(2 Suppl 6):11–6.

    CAS  PubMed  Google Scholar 

  12. Charhon SA, Chapuy MC, Delvin EE, Valentin-Opran A, Edouard CM, Meunier PJ. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer. 1983;51(5):918–24.

    CAS  PubMed  Google Scholar 

  13. Leonard RC, Owen JP, Proctor SJ, Hamilton PJ. Multiple myeloma: radiology or bone scanning? Clin Radiol. 1981;32(3):291–5.

    CAS  PubMed  Google Scholar 

  14. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, et al. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A. 2001;98(20):11581–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Sezer O, Heider U, Jakob C, Zavrski I, Eucker J, Possinger K, et al. Immunocytochemistry reveals RANKL expression of myeloma cells. Blood. 2002;99(12):4646–7; author reply 7.

    CAS  PubMed  Google Scholar 

  16. Sezer O, Heider U, Jakob C, Eucker J, Possinger K. Human bone marrow myeloma cells express RANKL. J Clin Oncol. 2002;20(1):353–4.

    PubMed  Google Scholar 

  17. Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman JA, Henderson MA, et al. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res. 1991;51(11):3059–61.

    CAS  PubMed  Google Scholar 

  18. Jibrin IL G, Miller C. Hypercalcemia of malignancy in hospitalized patients. Hosp Physician. 2006;42(10):29–35.

    Google Scholar 

  19. Strodel WE, Thompson NW, Eckhauser FE, Knol JA. Malignancy and concomitant primary hyperparathyroidism. J Surg Oncol. 1988;37(1):10–2.

    CAS  PubMed  Google Scholar 

  20. Hutchesson AC, Bundred NJ, Ratcliffe WA. Survival in hypercalcaemic patients with cancer and co-existing primary hyperparathyroidism. Postgrad Med J. 1995;71(831):28–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Reikes SGE, Martin K. Abnormal calcium and magnesium metabolism. In: DuBose TDHL, editor. Acid-base and electrolyte disorders: a companion to Brenner & Rector’s The Kidney. Philadelphia: Saunders; 2002. p. 453–88.

    Google Scholar 

  22. Wisneski LA. Salmon calcitonin in the acute management of hypercalcemia. Calcif Tissue Int. 1990;46 Suppl:S26–30.

    PubMed  Google Scholar 

  23. Fatemi S, Singer FR, Rude RK. Effect of salmon calcitonin and etidronate on hypercalcemia of malignancy. Calcif Tissue Int. 1992;50(2):107–9.

    CAS  PubMed  Google Scholar 

  24. Bilezikian JP. Clinical review 51: management of hypercalcemia. J Clin Endocrinol Metab. 1993;77(6):1445–9.

    CAS  PubMed  Google Scholar 

  25. Colucci S, Minielli V, Zambonin G, Cirulli N, Mori G, Serra M, et al. Alendronate reduces adhesion of human osteoclast-like cells to bone and bone protein-coated surfaces. Calcif Tissue Int. 1998;63(3):230–5.

    CAS  PubMed  Google Scholar 

  26. Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97(12):2692–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, et al. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991;88(6):2095–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10(10):1478–87.

    CAS  PubMed  Google Scholar 

  29. Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int. 2008;74(11):1385–93.

    CAS  PubMed  Google Scholar 

  30. Machado CE, Flombaum CD. Safety of pamidronate in patients with renal failure and hypercalcemia. Clin Nephrol. 1996;45(3):175–9.

    CAS  PubMed  Google Scholar 

  31. Miller PD. The kidney and bisphosphonates. Bone. 2011;49(1):77–81.

    CAS  PubMed  Google Scholar 

  32. Dodwell DJ, Abbas SK, Morton AR, Howell A. Parathyroid hormone-related protein(50–69) and response to pamidronate therapy for tumour-induced hypercalcaemia. Eur J Cancer. 1991;27(12):1629–33.

    CAS  PubMed  Google Scholar 

  33. Ralston SH, Alzaid AA, Gallacher SJ, Gardner MD, Cowan RA, Boyle IT. Clinical experience with aminohydroxypropylidene bisphosphonate (APD) in the management of cancer-associated hypercalcaemia. Q J Med. 1988;68(258):825–34.

    CAS  PubMed  Google Scholar 

  34. Budayr AA, Zysset E, Jenzer A, Thiebaud D, Ammann P, Rizzoli R, et al. Effects of treatment of malignancy-associated hypercalcemia on serum parathyroid hormone-related protein. J Bone Miner Res. 1994;9(4):521–6.

    CAS  PubMed  Google Scholar 

  35. Onuma E, Azuma Y, Saito H, Tsunenari T, Watanabe T, Hirabayashi M, et al. Increased renal calcium reabsorption by parathyroid hormone-related protein is a causative factor in the development of humoral hypercalcemia of malignancy refractory to osteoclastic bone resorption inhibitors. Clin Cancer Res. 2005;11(11):4198–203.

    CAS  PubMed  Google Scholar 

  36. Castellano D, Sepulveda JM, Garcia-Escobar I, Rodriguez-Antolin A, Sundlov A, Cortes-Funes H. The role of RANK-ligand inhibition in cancer: the story of denosumab. Oncologist. 2011;16(2):136–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Rachner TD, Platzbecker U, Felsenberg D, Hofbauer LC. Osteonecrosis of the jaw after osteoporosis therapy with denosumab following long-term bisphosphonate therapy. Mayo Clin Proc Mayo Clin. 2013;88(4):418–9.

    PubMed  Google Scholar 

  38. FDA. Denosumab 2011. http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm272420.htm. Accessed 5 April 2015.

  39. Lumachi F, Basso SM, Basso U. Parathyroid cancer: etiology, clinical presentation and treatment. Anticancer Res. 2006;26(6C):4803–7.

    CAS  PubMed  Google Scholar 

  40. Castillo JJ, Vincent M, Justice E. Diagnosis and management of hyponatremia in cancer patients. Oncologist. 2012;17(6):756–65.

    PubMed Central  PubMed  Google Scholar 

  41. Doshi SM, Shah P, Lei X, Lahoti A, Salahudeen AK. Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis. 2012;59(2):222–8.

    CAS  PubMed  Google Scholar 

  42. Hampshire PA, Welch CA, McCrossan LA, Francis K, Harrison DA. Admission factors associated with hospital mortality in patients with haematological malignancy admitted to UK adult, general critical care units: a secondary analysis of the ICNARC Case Mix Programme Database. Crit care. 2009;13(4):R137.

    PubMed Central  PubMed  Google Scholar 

  43. Jacot W, Colinet B, Bertrand D, Lacombe S, Bozonnat MC, Daures JP, et al. Quality of life and comorbidity score as prognostic determinants in non-small-cell lung cancer patients. Ann Oncol. 2008;19(8):1458–64 (official journal of the European Society for Medical Oncology/ESMO).

    CAS  PubMed  Google Scholar 

  44. Kimura T, Kudoh S, Hirata K, Takifuji N, Negoro S, Yoshikawa J. Prognostic factors in elderly patients with unresectable non-small cell lung cancer. Anticancer Res. 2001;21(2B):1379–83.

    CAS  PubMed  Google Scholar 

  45. Kim HS, Yi SY, Jun HJ, Lee J, Park JO, Park YS, et al. Clinical outcome of gastric cancer patients with bone marrow metastases. Int Soc Cell. 2007;73(3–4):192–7.

    Google Scholar 

  46. Aggerholm-Pedersen N, Rasmussen P, Dybdahl H, Rossen P, Nielsen OS, Safwat A. Serum natrium determines outcome of treatment of advanced GIST with Imatinib: a retrospective study of 80 patients from a single institution. ISRN Oncol. 2011;2011:523915.

    PubMed Central  PubMed  Google Scholar 

  47. Lassen U, Osterlind K, Hansen M, Dombernowsky P, Bergman B, Hansen HH. Long-term survival in small-cell lung cancer: posttreatment characteristics in patients surviving 5 to 18+ years-an analysis of 1,714 consecutive patients. J Clin Oncol. 1995;13(5):1215–20.

    CAS  PubMed  Google Scholar 

  48. Onitilo AA, Kio E, Doi SA. Tumor-related hyponatremia. Clin Med Res. 2007;5(4):228–37.

    PubMed Central  PubMed  Google Scholar 

  49. Raftopoulos H. Diagnosis and management of hyponatremia in cancer patients. Support Care Cancer. 2007;15(12):1341–7.

    PubMed  Google Scholar 

  50. Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–31.

    CAS  PubMed  Google Scholar 

  51. Verbalis JG, Goldsmith SR, Greenberg A, Schrier RW, Sterns RH. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am J Med. 2007;120(11 Suppl1):S1–S21.

    CAS  PubMed  Google Scholar 

  52. Robertson GL, Bhoopalam N, Zelkowitz LJ. Vincristine neurotoxicity and abnormal secretion of antidiuretic hormone. Arch Intern Med. 1973;132(5):717–20.

    CAS  PubMed  Google Scholar 

  53. Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis. 2008;52(1):144–53.

    CAS  PubMed  Google Scholar 

  54. Hamdi T, Latta S, Jallad B, Kheir F, Alhosaini MN, Patel A. Cisplatin-induced renal salt wasting syndrome. South Med J. 2010;103(8):793–9.

    PubMed  Google Scholar 

  55. Berghmans T. Hyponatremia related to medical anticancer treatment. Support Care Cancer. 1996;4(5):341–50.

    CAS  PubMed  Google Scholar 

  56. Gullans SR, Verbalis JG. Control of brain volume during hyperosmolar and hypoosmolar conditions. Ann Rev Med. 1993;44:289–301.

    CAS  PubMed  Google Scholar 

  57. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    CAS  PubMed  Google Scholar 

  58. Salahudeen AK, Ali N, George M, Lahoti A, Palla S. Tolvaptan in hospitalized cancer patients with hyponatremia: a double-blind, randomized, placebo-controlled clinical trial on efficacy and safety. Cancer. 2014;120(5):744–51.

    CAS  PubMed  Google Scholar 

  59. Rose B, Post T. Hyperosmolal states—Hypernatremia. Clinical physiology of acid base and electrolyte disorders. 5th ed. New York: McGraw Hill; 2001. p. 746–93.

    Google Scholar 

  60. Foresti V, Casati O, Villa A, Lazzaro A, Confalonieri F. Central diabetes insipidus due to acute monocytic leukemia: case report and review of the literature. J Endocrinol Invest. 1992;15(2):127–30.

    CAS  PubMed  Google Scholar 

  61. Muller CI, Engelhardt M, Laubenberger J, Kunzmann R, Engelhardt R, Lubbert M. Myelodysplastic syndrome in transformation to acute myeloid leukemia presenting with diabetes insipidus: due to pituitary infiltration association with abnormalities of chromosomes 3 and 7. Eur J Haematol. 2002;69(2):115–9.

    PubMed  Google Scholar 

  62. Frokiaer J, Marples D, Knepper MA, Nielsen S. Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol. 1996;270(4 Pt 2):F657–68.

    CAS  PubMed  Google Scholar 

  63. Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF. Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis. 2005;45(4):626–37.

    PubMed  Google Scholar 

  64. Canada TW, Weavind LM, Augustin KM. Possible liposomal amphotericin B-induced nephrogenic diabetes insipidus. Ann Pharmacother. 2003;37(1):70–3.

    PubMed  Google Scholar 

  65. Navarro JF, Quereda C, Gallego N, Antela A, Mora C, Ortuno J. Nephrogenic diabetes insipidus and renal tubular acidosis secondary to foscarnet therapy. Am J Kidney Dis. 1996;27(3):431–4.

    CAS  PubMed  Google Scholar 

  66. Smith OP, Gale R, Hamon M, McWhinney P, Prentice HG. Amphotericin B-induced nephrogenic diabetes insipidus: resolution with its liposomal counterpart. Bone Marrow Transplant. 1994;13(1):107–8.

    CAS  PubMed  Google Scholar 

  67. Schliefer K, Rockstroh JK, Spengler U, Sauerbruch T. Nephrogenic diabetes insipidus in a patient taking cidofovir. The Lancet. 1997;350(9075):413–4.

    CAS  Google Scholar 

  68. Wong ET, Rude RK, Singer FR, Shaw ST Jr. A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients. Am J Clin Pathol. 1983;79(3):348–52.

    CAS  PubMed  Google Scholar 

  69. Saif MW. Management of hypomagnesemia in cancer patients receiving chemotherapy. J Support Oncol. 2008;6(5):243–8.

    PubMed  Google Scholar 

  70. D’Erasmo E, Celi FS, Acca M, Minisola S, Aliberti G, Mazzuoli GF. Hypocalcemia and hypomagnesemia in cancer patients. Biomed Pharmacother. 1991;45(7):315–7.

    PubMed  Google Scholar 

  71. Ryzen E. Magnesium homeostasis in critically ill patients. Magnesium. 1989;8(3–4):201–12.

    CAS  PubMed  Google Scholar 

  72. Desai TK, Carlson RW, Geheb MA. Prevalence and clinical implications of hypocalcemia in acutely ill patients in a medical intensive care setting. Am J Med. 1988;84(2):209–14.

    CAS  PubMed  Google Scholar 

  73. Deheinzelin D, Negri EM, Tucci MR, Salem MZ, da Cruz VM, Oliveira RM, et al. Hypomagnesemia in critically ill cancer patients: a prospective study of predictive factors. Braz J Med Biol Res. 2000;33(12):1443–8.

    CAS  PubMed  Google Scholar 

  74. Rubeiz GJ, Thill-Baharozian M, Hardie D, Carlson RW. Association of hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med. 1993;21(2):203–9.

    CAS  PubMed  Google Scholar 

  75. Maliakal P, Ledford A. Electrolyte and protein imbalance following anti-EGFR therapy in cancer patients: a comparative study. Exp Ther Med. 2010;1(2):307–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. von der Weid NX, Erni BM, Mamie C, Wagner HP, Bianchetti MG. Cisplatin therapy in childhood: renal follow up 3 years or more after treatment. Swiss Pediatric Oncology Group. Nephrol Dial Transplant. 1999;14(6):1441–4.

    Google Scholar 

  77. Fakih MG, Wilding G, Lombardo J. Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer. 2006;6(2):152–6.

    CAS  PubMed  Google Scholar 

  78. Hess MW, Hoenderop JG, Bindels RJ, Drenth JP. Systematic review: hypomagnesaemia induced by proton pump inhibition. Aliment Pharmacol Ther. 2012;36(5):405–13.

    CAS  PubMed  Google Scholar 

  79. Cundy T, Dissanayake A. Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin Endocrinol. 2008;69(2):338–41.

    CAS  Google Scholar 

  80. Epstein M, McGrath S, Law F. Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med. 2006;355(17):1834–6.

    CAS  PubMed  Google Scholar 

  81. Tong GM, Rude RK. Magnesium deficiency in critical illness. J Intensive Care Med. 2005;20(1):3–17.

    PubMed  Google Scholar 

  82. Camp MA, Allon M. Severe hypophosphatemia in hospitalized patients. Miner Electrolyte Metab. 1990;16(6):365–8.

    CAS  PubMed  Google Scholar 

  83. Hoffmann M, Zemlin AE, Meyer WP, Erasmus RT. Hypophosphataemia at a large academic hospital in South Africa. J Clin Pathol. 2008;61(10):1104–7.

    CAS  PubMed  Google Scholar 

  84. Gaasbeek A, Meinders AE. Hypophosphatemia: an update on its etiology and treatment. Am J Med. 2005;118(10):1094–101.

    CAS  PubMed  Google Scholar 

  85. Amanzadeh J, Reilly RF Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol. 2006;2(3):136–48.

    CAS  PubMed  Google Scholar 

  86. Marinella MA. Refeeding syndrome: an important aspect of supportive oncology. J Support Oncol. 2009;7(1):11–6.

    PubMed  Google Scholar 

  87. Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G. Drug-induced Fanconi’s syndrome. Am J Kidney Dis. 2003;41(2):292–309.

    CAS  PubMed  Google Scholar 

  88. Buysschaert M, Cosyns JP, Barreto L, Jadoul M. Pamidronate-induced tubulointerstitial nephritis with Fanconi syndrome in a patient with primary hyperparathyroidism. Nephrol Dial Transplant. 2003;18(4):826–9.

    CAS  PubMed  Google Scholar 

  89. Francois H, Coppo P, Hayman JP, Fouqueray B, Mougenot B, Ronco P. Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis. 2008;51(2):298–301.

    CAS  PubMed  Google Scholar 

  90. Glezerman I, Kewalramani T, Jhaveri K. Reversible Fanconi syndrome due to lenalidomide. Nephrol Dial Transplant Plus. 2008;4:215–7.

    Google Scholar 

  91. Lacy MQ, Gertz MA. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol Oncol Clin North Am. 1999;13(6):1273–80.

    CAS  PubMed  Google Scholar 

  92. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med. 2006;354(19):2006–13.

    CAS  PubMed  Google Scholar 

  93. Tanvetyanon T, Stiff PJ. Management of the adverse effects associated with intravenous bisphosphonates. Ann Oncol. 2006;17(6):897–907.

    CAS  PubMed  Google Scholar 

  94. Fizazi K, Bosserman L, Gao G, Skacel T, Markus R. Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial. J Urol. 2009;182(2):509–15; discussion 15–6.

    CAS  PubMed  Google Scholar 

  95. Ganda K, Seibel MJ. Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases. Osteoporosis Int. 2014;25(2):777–82. A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.

    CAS  Google Scholar 

  96. Pollack M, Yu A. Clinical disturbances of calcium, magnesium and phosphate metabolism. In: Brenner B, editor. Brenner and Rector’s the kidney. 1. 7 ed. Philadelphia: Saunders; 2004. p. 1041–76.

    Google Scholar 

  97. Flombaum CD. Metabolic emergencies in the cancer patient. Semin Oncol. 2000;27(3):322–34.

    CAS  PubMed  Google Scholar 

  98. Davidson MB, Thakkar S, Hix JK, Bhandarkar ND, Wong A, Schreiber MJ. Pathophysiology, clinical consequences, and treatment of tumor lysis syndrome. Am J Med. 2004;116(8):546–54.

    CAS  PubMed  Google Scholar 

  99. Schucker JJ, Ward KE. Hyperphosphatemia and phosphate binders. Am J Health Syst Pharm. 2005;62(22):2355–61.

    CAS  PubMed  Google Scholar 

  100. Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004;127(1):3–11.

    PubMed  Google Scholar 

  101. Capitanini A, Lupi A, Osteri F, Petrone I, Del Corso C, Straniti M, et al. Gastric pH, sevelamer hydrochloride and omeprazole. Clin Nephrol. 2005;64(4):320–2.

    CAS  PubMed  Google Scholar 

  102. Abdullah S, Diezi M, Sung L, Dupuis LL, Geary D, Abla O. Sevelamer hydrochloride: a novel treatment of hyperphosphatemia associated with tumor lysis syndrome in children. Pediatr Blood Cancer. 2008;51(1):59–61.

    PubMed  Google Scholar 

  103. Rampello E, Fricia T, Malaguarnera M. The management of tumor lysis syndrome. Nat Clin Pract Oncol. 2006;3(8):438–47.

    PubMed  Google Scholar 

  104. Lane JW, Rehak NN, Hortin GL, Zaoutis T, Krause PR, Walsh TJ. Pseudohyperphosphatemia associated with high-dose liposomal amphotericin B therapy. Clin Chim Acta 2008;387(1–2):145–9 International Journal of Clinical Chemistry.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Smellie WS. Spurious hyperkalaemia. BMJ. 2007;334(7595):693–5.

    PubMed Central  PubMed  Google Scholar 

  106. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.

    CAS  PubMed  Google Scholar 

  107. Nicolin G. Emergencies and their management. Eur J Cancer. 2002;38(10):1365–77; discussion 78–9.

    CAS  PubMed  Google Scholar 

  108. Alani FS, Dyer T, Hindle E, Newsome DA, Ormerod LP, Mahoney MP. Pseudohyperkalaemia associated with hereditary spherocytosis in four members of a family. Postgrad Med J. 1994;70(828):749–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Smith HM, Farrow SJ, Ackerman JD, Stubbs JR, Sprung J. Cardiac arrests associated with hyperkalemia during red blood cell transfusion: a case series. Anesth Analg. 2008;106(4):1062–9.

    PubMed  Google Scholar 

  110. Chen CH, Hong CL, Kau YC, Lee HL, Chen CK, Shyr MH. Fatal hyperkalemia during rapid and massive blood transfusion in a child undergoing hip surgery-a case report. Acta Anaesthesiol Sin. 1999;37(3):163–6.

    CAS  PubMed  Google Scholar 

  111. Eskandar N, Holley JL. Hyperkalaemia as a complication of ureteroileostomy: a case report and literature review. Nephrol Dial Transplant. 2008;23(6):2081–3.

    PubMed  Google Scholar 

  112. Pearce CJ, Gonzalez FM, Wallin JD. Renal failure and hyperkalemia associated with ketorolac tromethamine. Arch Intern Med. 1993;153(8):1000–2.

    CAS  PubMed  Google Scholar 

  113. Tan SY, Shapiro R, Franco R, Stockard H, Mulrow PJ. Indomethacin-induced prostaglandin inhibition with hyperkalemia. A reversible cause of hyporeninemic hypoaldosteronism. Ann Intern Med. 1979;90(5):783–5.

    CAS  PubMed  Google Scholar 

  114. Michelis MF. Hyperkalemia in the elderly. Am J Kidney Dis. 1990;16(4):296–9.

    CAS  PubMed  Google Scholar 

  115. Margassery S, Bastani B. Life threatening hyperkalemia and acidosis secondary to trimethoprim-sulfamethoxazole treatment. J Nephrol. 2001;14(5):410–4.

    CAS  PubMed  Google Scholar 

  116. Takami A, Asakura H, Takamatsu H, Yamazaki H, Arahata M, Hayashi T, et al. Isolated hyperkalemia associated with cyclosporine administration in allogeneic stem cell transplantation for renal cell carcinoma. Int J Hematol. 2005;81(2):159–61.

    PubMed  Google Scholar 

  117. Rogers FB, Li SC. Acute colonic necrosis associated with sodium polystyrene sulfonate (Kayexalate) enemas in a critically ill patient: case report and review of the literature. J Trauma. 2001;51(2):395–7.

    CAS  PubMed  Google Scholar 

  118. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339(7):451–8.

    Google Scholar 

  119. Barri YM, Knochel JP. Hypercalcemia and electrolyte disturbances in malignancy. Hematol Oncol Clin North Am. 1996;10(4):775–90.

    CAS  PubMed  Google Scholar 

  120. Naparstek Y, Gutman A. Case report: spurious hypokalemia in myeloproliferative disorders. Am J Med Sci. 1984;288(4):175–7.

    CAS  PubMed  Google Scholar 

  121. Masters PW, Lawson N, Marenah CB, Maile LJ. High ambient temperature: a spurious cause of hypokalaemia. BMJ. 1996;312(7047):1652–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Gennari FJ. Disorders of potassium homeostasis. Hypokalemia and hyperkalemia. Crit Care Clin. 2002;18(2):273–88, vi.

    CAS  PubMed  Google Scholar 

  123. Atsmon J, Dolev E. Drug-induced hypomagnesaemia: scope and management. Drug Saf. 2005;28(9):763–88.

    CAS  PubMed  Google Scholar 

  124. Perazella MA, Eisen RN, Frederick WG, Brown E. Renal failure and severe hypokalemia associated with acute myelomonocytic leukemia. Am J Kidney Dis. 1993;22(3):462–7.

    CAS  PubMed  Google Scholar 

  125. Izzedine H, Besse B, Lazareth A, Bourry EF, Soria JC. Hypokalemia, metabolic alkalosis, and hypertension in a lung cancer patient. Kidney Int. 2009;76(1):115–20.

    PubMed  Google Scholar 

  126. Ben Salem C, Hmouda H, Bouraoui K. Drug-induced hypokalaemia. Curr Drug Saf. 2009;4(1):55–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheron Latcha MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Latcha, S. (2015). Electrolyte Disorders in Cancer Patients. In: Jhaveri, K., Salahudeen, A. (eds) Onconephrology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2659-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2659-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2658-9

  • Online ISBN: 978-1-4939-2659-6

  • eBook Packages: MedicineMedicine (R0)