Skip to main content

Nephrotoxicity of Chemotherapy Agents

  • Chapter
  • First Online:
Onconephrology

Abstract

Chemotherapy agents are indispensable in the treatment of malignant diseases. However, they have adverse drug effects including nephrotoxicity that can contribute significantly to morbidity and mortality in patients with cancer. The potential for nephrotoxicity depends on a particular drug’s mechanism of action, the kidney microenvironment, and patient characteristics such as presence of other comorbidities, hemodynamic status, age, and less likely, gender of the patient. Intrinsic renal injury is the most common type of nephrotoxicity, and some agents can cause site-specific injury in the nephron, affecting the tubules, vasculature, glomeruli, the interstitium, or a combination of these sites. A classic example of site specificity is the proclivity of anti-vascular endothelial growth factor (VEGF) agents to cause glomerular endothelial damage. Thus, these result in distinct clinical syndromes such as: (1) acute tubular necrosis, (2) tubulopathies, (3) crystal nephropathy, (4) vascular injury (thromobotic microangiopathy), and (5) glomerular disease. Management of chemotherapy-induced nephrotoxicity includes preventive and treatment measures. Preserving kidney function is of paramount importance for allowing patients to continue chemotherapy safely and effectively. Thus, strategies for prevention, early detection, and proper management of nephrotoxicity associated with chemotherapy agents will be reviewed in this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Antidiuretic hormone

ADT:

Androgen deprivation therapy

AIN:

Acute interstitial nephritis

AKI:

Acute kidney injury

ALK:

Anaplastic lymphoma kinase

ATN:

Acute tubular necrosis

CKD:

Chronic kidney disease

CNS:

Central nervous system

DI:

Diabetes insipidus

DHFR:

Dihydrofolate reductase

EGF:

Epidermal growth factor

FS:

Fanconi syndrome

FSGS:

Focal segmental glomerulosclerosis

GFR:

Glomerular filtration rate

HTN:

Hypertension

INF:

Interferon

MCD:

Minimal change disease

MHC:

Major histocompatibility complex

MPGN:

Membranoproliferative glomerulonephritis

mTOR:

Mammalian target of rapamycin

MTX:

Methotrexate

NS:

Nephrotic syndrome

OCT:

Organic cationic transporters

RNR:

Ribonucleotide reductase

RSWS:

Renal salt wasting syndrome

RTA:

Renal tubular acidosis

RTEC:

Renal tubular epithelial cells

SIADH:

Syndrome of inappropriate antidiuretic hormone

TMA:

Thrombotic microangiopathy

TNF:

Tumor necrosis factor

TRPM:

Transient receptor potential melastin

VEGF:

Vascular endothelial growth factor

References

  1. Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol. 2004;44:137–66.

    Article  CAS  PubMed  Google Scholar 

  2. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703.

    Article  CAS  PubMed  Google Scholar 

  3. T.M. Wong, W. Yeo, L.W. Chan, T.S.K. Mok. Hemorrhagic pyelitis, ureteritis and cystitis secondary to cyclophosphamide: case report and review of the literature. Gynecol Oncol. 2000;76(2):223–225.

    Google Scholar 

  4. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23(5):460–4.

    Article  CAS  PubMed  Google Scholar 

  5. Ciarimboli G, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167(6):1477–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kuhlmann MK, Burkhardt G, Kohler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant. 1997;12(12):2478–80.

    Article  CAS  PubMed  Google Scholar 

  7. Safirstein R, et al. Cisplatin nephrotoxicity: insights into mechanism. Int J Androl. 1987;10(1):325–46.

    Article  CAS  PubMed  Google Scholar 

  8. Yao X, et al. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.

    Article  PubMed  Google Scholar 

  9. Ludwig T, et al. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int. 2004;66(1):196–202.

    Article  CAS  PubMed  Google Scholar 

  10. Raymond E, et al. Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol. 1998;9(10):1053–71.

    Article  CAS  PubMed  Google Scholar 

  11. Filewod NL, Lipman ML. Severe acute tubular necrosis observed subsequent to oxaliplatin administration. Clin Kidney J. 2014;7(1):68–70.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tarrass F, Benmensour M, Bayla A. End-stage renal disease following carboplatin chemotherapy for a nasopharyngeal carcinoma. Ren Fail. 2007;29(8):1049–51.

    Article  CAS  PubMed  Google Scholar 

  13. Santoso JT, et al. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol. 2003;52(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol. 2006;44(8):1173–83.

    Article  CAS  PubMed  Google Scholar 

  15. Perazella MA. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012;7(10):1713–21.

    Article  CAS  PubMed  Google Scholar 

  16. Skinner R, et al. Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol. 1993;11(1):173–90.

    CAS  PubMed  Google Scholar 

  17. Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol. 2010;30(6):570–81.

    Article  CAS  PubMed  Google Scholar 

  18. Aleksa K, et al. Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol. 2005;20(7):872–85.

    Article  PubMed  Google Scholar 

  19. Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4(7):1275–83.

    Article  CAS  PubMed  Google Scholar 

  20. Skinner R. Nephrotoxicity–what do we know and what don’t we know? J Pediatr Hematol Oncol. 2011;33(2):128–34.

    Article  PubMed  Google Scholar 

  21. Glezerman IG, et al. Kidney tubular toxicity of maintenance pemetrexed therapy. Am J Kidney Dis. 2011;58(5):817–20.

    Article  CAS  PubMed  Google Scholar 

  22. Vootukuru V, Liew YP, Nally Jr. JV. Pemetrexed-induced acute renal failure, nephrogenic diabetes insipidus, and renal tubular acidosis in a patient with non-small cell lung cancer. Med Oncol. 2006;23(3):419–22.

    Article  PubMed  Google Scholar 

  23. Martorell MP, et al. Crizotinib and renal insufficiency: a case report and review of the literature. Lung Cancer. 2014;84(3):310–3.

    Article  Google Scholar 

  24. Gastaud L, et al. Acute kidney injury following crizotinib administration for non-small-cell lung carcinoma. Lung Cancer. 2013;82(2):362–4.

    Article  PubMed  Google Scholar 

  25. Brosnan EM, et al. Drug-induced reduction in estimated glomerular filtration rate in patients with ALK-positive non-small cell lung cancer treated with the ALK inhibitor crizotinib. Cancer. 2014;120(5):664–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Martorell MP, et al. Crizotinib and renal insufficiency: a case report and review of the literature. Lung Cancer. 2014;84(3):310–3.

    Article  Google Scholar 

  27. Jhaveri KD, et al. Carfilzomib-related acute kidney injury. Clin Adv Hematol Oncol. 2013;11(9):604–5.

    PubMed  Google Scholar 

  28. Siegel DS, et al. A phase 2 study of single-agent carfilzomib (PX-171–003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120(14):2817–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wanchoo R, et al. Carfilzomib-related acute kidney injury may be prevented by N-acetyl-L-cysteine. J Oncol Pharm Pract. 2014 (Epub ahead of print).

    Google Scholar 

  30. Izzedine H, et al. Acute tubular necrosis associated with mTOR inhibitor therapy: a real entity biopsy-proven. Ann Oncol. 2013;24(9):2421–5.

    Article  CAS  PubMed  Google Scholar 

  31. Jhaveri KD, et al. Clofarabine-induced kidney toxicity. J Oncol Pharm Pract. 2013;20(4):305–308.

    Article  PubMed  Google Scholar 

  32. Kintzel PE, Visser JA, Campbell AD. Clofarabine-associated acute kidney injury and proteinuria. Pharmacotherapy. 2011;31(9):923.

    Article  PubMed  Google Scholar 

  33. Lapi F, et al. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. JAMA. 2013;310(3):289–96.

    Article  CAS  PubMed  Google Scholar 

  34. Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27(12):4273–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Church DN, et al. Osteomalacia as a late metabolic complication of Ifosfamide chemotherapy in young adults: illustrative cases and review of the literature. Sarcoma. 2007;2007:91586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cachat F, Nenadov-Beck M, Guignard JP. Occurrence of an acute Fanconi syndrome following cisplatin chemotherapy. Med Pediatr Oncol. 1998;31(1):40–1.

    Article  CAS  PubMed  Google Scholar 

  37. Francois H, et al. Partial fanconi syndrome induced by imatinib therapy: a novel cause of urinary phosphate loss. Am J Kidney Dis. 2008;51(2):298–301.

    Article  CAS  PubMed  Google Scholar 

  38. Hamdi T, et al. Cisplatin-induced renal salt wasting syndrome. South Med J. 2010;103(8):793–9.

    Article  PubMed  Google Scholar 

  39. Hutchison FN, et al. Renal salt wasting in patients treated with cisplatin. Ann Intern Med. 1988;108(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  40. Vassal G, et al. Hyponatremia and renal sodium wasting in patients receiving cisplatinum. Pediatr Hematol Oncol. 1987;4(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  41. Lajer H, Daugaard G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999;25(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  42. Groenestege WM. et al, Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007;117(8):2260–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Costa A, et al. Hypomagnesaemia and targeted anti-epidermal growth factor receptor (EGFR) agents. Target Oncol. 2011;6(4):227–33.

    Article  PubMed  Google Scholar 

  44. Cao Y, et al. Meta-analysis of incidence and risk of hypomagnesemia with cetuximab for advanced cancer. Chemotherapy. 2010;56(6):459–65.

    Article  CAS  PubMed  Google Scholar 

  45. Petrelli F, et al. Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf. 2012;11(Suppl 1):S9–19.

    Article  CAS  PubMed  Google Scholar 

  46. Fakih M. Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park). 2008;22(1):74–6.

    PubMed  Google Scholar 

  47. Tejpar S, et al. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol. 2007;8(5):387–94.

    Article  CAS  PubMed  Google Scholar 

  48. Vincenzi B, et al. Early magnesium reduction in advanced colorectal cancer patients treated with cetuximab plus irinotecan as predictive factor of efficacy and outcome. Clin Cancer Res. 2008;14(13):4219–24.

    Article  CAS  PubMed  Google Scholar 

  49. Vincenzi B, et al. Early magnesium modifications as a surrogate marker of efficacy of cetuximab-based anticancer treatment in KRAS wild-type advanced colorectal cancer patients. Ann Oncol. 2011;22(5):1141–6.

    Article  CAS  PubMed  Google Scholar 

  50. Gilbar PJ, et al. Syndrome of inappropriate antidiuretic hormone secretion induced by a single dose of oral cyclophosphamide. Ann Pharmacother. 2012;46(9):e23.

    Article  PubMed  Google Scholar 

  51. Garofeanu CG, et al. Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis. 2005;45(4):626–37.

    Article  PubMed  Google Scholar 

  52. Rossi R, et al. Concentrating capacity in ifosfamide-induced severe renal dysfunction. Ren Fail. 1995;17(5):551–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gurevich F, Perazella MA. Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med. 2009;122(4):322–8.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu X, et al. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  55. Wu S, et al. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  56. Robinson ES, et al. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol. 2010;5(3):477–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Maitland ML, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009;15(19):6250–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Izzedine H, et al. Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis. 2007;50(2):203–18.

    Article  CAS  PubMed  Google Scholar 

  59. Bollee G, et al. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24(2):682–5.

    Article  CAS  PubMed  Google Scholar 

  60. Eremina V, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Wu S, et al. Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol. 2010;21(8):1381–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Frangie C, et al. Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol. 2007;8(2):177–8.

    Article  PubMed  Google Scholar 

  63. Humphreys BD, et al. Gemcitabine-associated thrombotic microangiopathy. Cancer. 2004;100(12):2664–70.

    Article  PubMed  Google Scholar 

  64. Glezerman I, et al. Gemcitabine nephrotoxicity and hemolytic uremic syndrome: report of 29 cases from a single institution. Clin Nephrol. 2009;71(2):130–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zemstov A, Omueti-AK, Zemstov R, Yang M. Livedo Reticularis as initial clinical manifestation of gemcitabine induced hemolytic uremic syndrome. J Dermatol. 2012;39(5):487–9.

    Article  Google Scholar 

  66. Venat-Bouvet L, et al. Thrombotic microangiopathy and digital necrosis: two unrecognized toxicities of gemcitabine. Anticancer Drugs. 2003;14(10):829–32.

    Article  CAS  PubMed  Google Scholar 

  67. Izzedine H, et al. Gemcitabine-induced thrombotic microangiopathy: a systematic review. Nephrol Dial Transplant. 2006;21(11):3038–45.

    Article  CAS  PubMed  Google Scholar 

  68. de Jesus-Gonzalez N, et al. Management of antiangiogenic therapy-induced hypertension. Hypertension. 2012;60(3):607–15.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Izzedine H, et al. Thrombotic microangiopathy related to anti-VEGF agents: intensive versus conservative treatment? Ann Oncol. 2011;22(2):487–90.

    Article  CAS  PubMed  Google Scholar 

  70. Fracasso PM, et al. Membranoproliferative glomerulonephritis following gemcitabine and vinorelbine chemotherapy for peritoneal mesothelioma. J Natl Cancer Inst. 1999;91(20):1779–80.

    Article  CAS  PubMed  Google Scholar 

  71. Markowitz GS, et al. Treatment with IFN-{alpha}, -{beta}, or -{gamma} is associated with collapsing focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5(4):607–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Thaunat O, et al. Nephrotic syndrome associated with hemophagocytic syndrome. Kidney Int. 2006;69(10):1892–8.

    Article  CAS  PubMed  Google Scholar 

  73. Colovic M, et al. Interferon alpha sensitisation induced fatal renal insufficiency in a patient with chronic myeloid leukaemia: case report and review of literature. J Clin Pathol. 2006;59(8):879–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Di Giacomo AM, Biagioli M, Maio M. The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol. 2010;37(5):499–507.

    Article  PubMed  Google Scholar 

  75. Jolly EC, Clatworthy MR, Lawrence C, Nathan PD, Farrington K. Anti-CTLA-4 (CD152) monoclonal antibody-induced autoimmune interstitial nephritis. NDT. 2009;2(4):300–302.

    Google Scholar 

  76. Dillard T, et al. Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary. 2010;13(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  77. Weber J. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12(7):864–72.

    Article  CAS  PubMed  Google Scholar 

  78. Winn SK, et al. Biopsy-proven acute interstitial nephritis associated with the tyrosine kinase inhibitor sunitinib: a class effect? Nephrol Dial Transplant. 2009;24(2):673–5.

    Article  CAS  PubMed  Google Scholar 

  79. Perazella MA. Crystal-induced acute renal failure. Am J Med. 1999;106(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  80. Pinheiro FV, et al. Decrease of adenosine deaminase activity and increase of the lipid peroxidation after acute methotrexate treatment in young rats: protective effects of grape seed extract. Cell Biochem Funct. 2010;28(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  81. Shirali AC, Perazella MA. Tubulointerstitial injury associated with chemotherapeutic agents. Adv Chronic Kidney Dis. 2014;21(1):56–63.

    Article  PubMed  Google Scholar 

  82. Widemann BC, et al. High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer. 2004;100(10):2222–32.

    Article  CAS  PubMed  Google Scholar 

  83. Saland JM, et al. Effective removal of methotrexate by high-flux hemodialysis. Pediatr Nephrol. 2002;17(10):825–9.

    Article  PubMed  Google Scholar 

  84. Wall SM, et al. Effective clearance of methotrexate using high-flux hemodialysis membranes. Am J Kidney Dis. 1996;28(6):846–54.

    Article  CAS  PubMed  Google Scholar 

  85. Widemann BC, et al. Glucarpidase, leucovorin, and thymidine for high-dose methotrexateinduced renal dysfunction: clinical and pharmacologic factors affecting outcome. J Clin Oncol. 2010;28(25):3979–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Schacht RG, et al. Nephrotoxicity of nitrosoureas. Cancer. 1981;48(6):1328–34.

    Article  CAS  PubMed  Google Scholar 

  87. Oliverio VT. Toxicology and pharmacology of the nitrosoureas. Cancer Chemother Rep 3. 1973;4(3):13–20.

    Google Scholar 

  88. Li J, Khot A, Burbury K. Acute kidney injury requiring dialysis following carmustine and etoposide during autologous stem cell transplantation. Chemotherapy. 2012;58(5):349–51.

    Article  CAS  PubMed  Google Scholar 

  89. Sahni V, Choudhury D, Ahmed Z. Chemotherapy-associated renal dysfunction. Nat Rev Nephrol. 2009;5(8):450–62.

    Article  CAS  PubMed  Google Scholar 

  90. Farry JK, Flombaum CD, Latcha S. Long term renal toxicity of ifosfamide in adult patients–5 year data. Eur J Cancer. 2012;48(9):1326–31.

    Article  CAS  PubMed  Google Scholar 

  91. Mulder RL, et al. Glomerular function time trends in long-term survivors of childhood cancer: a longitudinal study. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1736–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anushree Shirali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valika, A., Shirali, A. (2015). Nephrotoxicity of Chemotherapy Agents. In: Jhaveri, K., Salahudeen, A. (eds) Onconephrology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2659-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2659-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2658-9

  • Online ISBN: 978-1-4939-2659-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics