• Paul Forfia
Part of the Respiratory Medicine book series (RM, volume 12)


In this chapter we aim to explore the role of the echocardiographic-Doppler examination in the evaluation and management of patients with pulmonary hypertension (PH). Too often, the echo-Doppler examination is primarily viewed as a method of “screening” for the presence of PH by Doppler estimation of increased pulmonary arterial pressure (PAP). While Doppler pressure estimation is important, an overemphasis on PAP estimation often occurs without recognition of the inherent imprecision of these methods and importantly, often neglects critically important two-dimensional (2D) and additional Doppler parameters that provide pivotal diagnostic, prognostic, and therapy-guiding information. It is the integration of relevant 2D and Doppler parameters that provide a comprehensive view of the underlying pathophysiology of PH. For example, several signature findings, well studied and validated, will help in differentiating the two major causes of PH, namely, PH that is caused by pulmonary venous hypertension (PHPVH) from PH that is caused by pulmonary vascular disease (PHPVD).


Pulmonary hypertension Echocardiogram Echocardiography Doppler ultrasound 


  1. 1.
    Dell’italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30:167–87.CrossRefPubMedGoogle Scholar
  2. 2.
    James TN. Anatomy of the crista supraventricularis: its importance for understanding right ventricular function, right ventricular infarction and related conditions. J Am Coll Cardiol. 1985;6:1083–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Rushmer RF, Crystal DK, Wagner C. The functional anatomy of ventricular contraction. Circ Res. 1953;1:162–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107:526–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Kerbaul F, Brimioulle S, Rondelet B, Dewachter C, Hubloue I, Naeije R. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am J Respir Crit Care Med. 2007;175:846–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Kuehne T, Yilmaz S, Steendijk P, Moore P, Groenink M, Saaed M, et al. Magnetic resonance imaging analysis of right ventricular pressure volume loops: In vivo validation and clinical application in patients with pulmonary hypertension. Circulation. 2004;110:2010–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Hopkins WE. The remarkable right ventricle of patients with Eisenmenger syndrome. Coron Artery Dis. 2005;16:19–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Schenk P, Globits S, Koller J, Brunner C, Artemiou O, Klepetko W, et al. Accuracy of echocardiographic right ventricular parameters in patients with different end-stage lung diseases prior to lung transplantation. J Heart Lung Transplant. 2000;19:145–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, et al. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000;85:837–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Brown SB, Rania A, Katz D, Szerlip M, Wiegers SE, Forfia PR. Longitudinal shortening accounts for the majority of right ventricular contraction in normal subjects and in pulmonary arterial hypertension and improves after pulmonary vasodilator therapy. Chest. 2011;140(1):27–33.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee CY, Chang SM, Hsiao SH, Tseng JC, Lin SK, Liu CP. Right heart function and scleroderma: Insights from tricuspid annular plane systolic excursion. Echocardiography. 2007;24:118–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Hammarström E, Wranne B, Pinto FJ, Puryear Y, Popp RL. Tricuspid annular motion. J Am Soc Echocardiogr. 1991;4:131–9.CrossRefPubMedGoogle Scholar
  14. 14.
    López-Candales A, Dohi K, Rajagopalan N, Edelman K, Gulyasy B, Bazaz R. Defining normal variables of right ventricular size and function in pulmonary hypertension: an echocardiographic study. Postgrad Med J. 2008;84:40–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghio S, Klersy C, Magrini G, D’Armini AM, Scelsi L, Raineri C, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Raina A, Vaidya A, Gertz ZM, Chambers S, Forfia PR. J Heart Lung Transplant. 2013;32(8):777–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Saxena N, Rajagopalan N, Edelman K, López-Candales A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography. 2006;23:750–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Rajagopalan N, Saxena N, Simon MA, Edelman K, Mathier MA, López-Candales A. Correlation of tricuspid annular velocities with invasive hemodynamics in pulmonary hypertension. Congest Heart Fail. 2007;13:200–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Urheim S, Cauduro S, Frantz R, McGoon M, Belohlavek M, Green T, et al. Relation of tissue displacement and strain to invasively determined right ventricular stroke volume. Am J Cardiol. 2005;96:1173–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Yeo TC, Dujardin KS, Tei C, Mahoney DW, McGoon MD, Seward JB. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol. 1998;81:1157–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Hardegree EL, Sachdev A, Villarraga HR, Frantz RP, et al. Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol. 2013;111(1):143–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Bommer W, Weinert L, Neumann A, Neef J, Mason DT, DeMaria A. Determination of right atrial and right ventricular size by two-dimensional echocardiography. Circulation. 1979;60:91–100.CrossRefPubMedGoogle Scholar
  23. 23.
    López-Candales A, Dohi K, Iliescu A, Peterson RC, Edelman K, Bazaz R. An abnormal right ventricular apical angle is indicative of global right ventricular impairment. Echocardiography. 2006;23:361–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Bove AA, Santamore WP. Ventricular interdependence. Prog Cardiovasc Dis. 1981;23:365–88.CrossRefPubMedGoogle Scholar
  25. 25.
    Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Götte MJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: Left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51:750–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Benza R, Biederman R, Murali S, Gupta H. Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2008;52:1683–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Gan CT, Lankhaar JW, Marcus JT, Westerhof N, Marques KM, Bronzwaer JG, et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2006;290:H1528–33.PubMedGoogle Scholar
  28. 28.
    Mauritz GJ, Marcus JT, Westerhof N, Postmus PE, Vonk-Noordegraaf A. Prolonged right ventricular post-systolic isovolumic period in pulmonary arterial hypertension is not a reflection of diastolic dysfunction. Heart. 2011;97:473–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Hinderliter AL, Willis IV PW, Long W, Clarke WR, Ralph D, Caldwell EJ, et al. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol. 1999;84:481–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Miller AJ. Some observations concerning pericardial effusions and their relationship to the venous and lymphatic circulation of the heart. Lymphology. 1970;3:76–8.PubMedGoogle Scholar
  31. 31.
    Hemnes AR, Gaine SP, Wiener CM. Poor outcomes associated with drainage of pericardial effusions in patients with pulmonary arterial hypertension. South Med J. 2008;101:490–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Fenstad ER, Le RJ, Sinak LJ, Maradit-Kremers H, et al. Pericardial effusions in pulmonary arterial hypertension: characteristics, prognosis, and role of drainage. Chest. 2013;144(5):1530–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Sivak J, Raina A, Forfia P. Assessing the physiologic contribution of right atrial function to total right ventricular function in patients with and without pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;183:4999. Abstract.Google Scholar
  35. 35.
    McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, et al. Prognosis of pulmonary arterial hypertension: ACCP evidence based clinical practice guidelines. Chest. 2004;126 Suppl 1:78S–92.CrossRefPubMedGoogle Scholar
  36. 36.
    McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and subjects. Circulation. 2001;104:2797–802.CrossRefPubMedGoogle Scholar
  37. 37.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53:1573–619.CrossRefPubMedGoogle Scholar
  38. 38.
    Berger M, Haimowitz A, Van Tosh A, Berdoff RL, Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol. 1985;6:359–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70:657–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Himelman RB, Stulbarg M, Kircher B, Lee E, Kee L, Dean NC, et al. Noninvasive evaluation of pulmonary artery pressure during exercise by saline-enhanced Doppler echocardiography in chronic pulmonary disease. Circulation. 1989;79:863–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Chan KL, Currie PJ, Seward JB, Hagler DJ, Mair DD, Tajik AJ. Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol. 1987;9:549–54.CrossRefPubMedGoogle Scholar
  42. 42.
    Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615–21.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20:857–61.CrossRefPubMedGoogle Scholar
  44. 44.
    Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66:493–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Utsunomiya H, Nakatani S, Nishihira M, Kanzaki H, Kyotani S, Nakanishi N, et al. Value of estimated right ventricular filling pressure in predicting cardiac events in chronic pulmonary arterial hypertension. J Am Soc Echocardiogr. 2009;22:1368–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension. Chest. 2011;139:988–93.CrossRefPubMedGoogle Scholar
  47. 47.
    Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68:302–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Masuyama T, Kodama K, Kitabatake A, Sato H, Nanto S, Inoue M. Continuous wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation. 1986;74:484–92.CrossRefPubMedGoogle Scholar
  49. 49.
    Lanzarini L, Fontana A, Lucca E, Campana C, Klersy C. Noninvasive estimation of both systolic and diastolic pulmonary artery pressure from Doppler analysis of tricuspid regurgitant velocity spectrum in patients with chronic heart failure. Am Heart J. 2002;144:1087–94.CrossRefPubMedGoogle Scholar
  50. 50.
    Stephen B, Dalal P, Berger M, Schweitzer P, Hecht S. Noninvasive estimation of pulmonary artery diastolic pressure in patients with tricuspid regurgitation by Doppler echocardiography. Chest. 1999;116:73–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41:1021–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Rajagopalan N, Simon MA, Suffoletto MS, Shah H, Edelman K, Mathier MA, et al. Noninvasive estimation of pulmonary vascular resistance in pulmonary hypertension. Echocardiography. 2009;26:489–94.CrossRefPubMedGoogle Scholar
  53. 53.
    Opotowsky AR, Clair M, Afilalo J, et al. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013;112(6):873–82.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Furuno Y, Nagamoto Y, Fujita M, Kaku T, Sakurai S, Kuroiwa A. Reflection as a cause of mid-systolic deceleration of pulmonary flow wave in dogs with acute pulmonary hypertension: Comparison of pulmonary artery constriction with pulmonary embolisation. Cardiovasc Res. 1991;25:118–24.CrossRefPubMedGoogle Scholar
  55. 55.
    Torbicki A, Kurzyna M, Ciurzynski M, Pruszczyk P, Pacho R, Kuch-Wocial A, et al. Proximal pulmonary emboli modify right ventricular ejection pattern. Eur Respir J. 1999;13:616–21.CrossRefPubMedGoogle Scholar
  56. 56.
    Castelain V, Hervé P, Lecarpentier Y, Duroux P, Simonneau G, Chemla D. Pulmonary artery pulse pressure and wave reflection in chronicpulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol. 2001;37:1085–92.CrossRefPubMedGoogle Scholar
  57. 57.
    Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, et al. Midsystolic ‘notching’ of the pulmonary artery Doppler flow profile identifies pulmonary vascular disease and RV dysfunction in a mixed PH cohort. Am J Respir Crit Care Med. 2009;179:A3399.Google Scholar
  58. 58.
    Goodman DJ, Harrison DC, Popp RL. Echocardiographic features of primary pulmonary hypertension. Am J Cardiol. 1974;33:438–43.CrossRefPubMedGoogle Scholar
  59. 59.
    Bossone E, Duong-Wagner TH, Paciocco G, Oral H, Ricciardi M, Bach DS, et al. Echocardiographic features of primary pulmonary hypertension. J Am Soc Echocardiogr. 1999;12:655–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Dartevelle P, Fadel E, Mussot S, Chapelier A, Hervé P, de Perrot M, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2004;23:637–48.CrossRefPubMedGoogle Scholar
  61. 61.
    Fedullo PF, Auger WR, Kerr KM, Rubin LJ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2001;345:1465–72.CrossRefPubMedGoogle Scholar
  62. 62.
    Nakayama Y, Nakanishi N, Sugimachi M, Takaki H, Kyotani S, Satoh T, et al. Characteristics of pulmonary artery pressure waveform for differential diagnosis of chronic pulmonary thromboembolism and primary pulmonary hypertension. J Am Coll Cardiol. 1997;29:1311–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Tanabe N, Okada O, Abe Y, Masuda M, Nakajima N, Kuriyama T. The influence of fractional pulse pressure on the outcome of pulmonary thromboendarterectomy. Eur Respir J. 2001;17:653–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Nakayama Y, Sugimachi M, Nakanishi N, Takaki H, Okano Y, Satoh T, et al. Noninvasive differential diagnosis between chronic pulmonary thromboembolism and primary pulmonary hypertension by means of Doppler ultrasound measurement. J Am Coll Cardiol. 1998;31:1367–71.CrossRefPubMedGoogle Scholar
  65. 65.
    Miniati M, Monti S, Pratali L, Di Ricco G, Marini C, Formichi B, et al. Value of transthoracic echocardiography in the diagnosis of pulmonary embolism: results of a prospective study in unselected patients. Am J Med. 2001;110:528–35.CrossRefPubMedGoogle Scholar
  66. 66.
    Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954;2:326–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Kasper W, Geibel A, Tiede N, Bassenge D, Kauder E, Konstantinides S, et al. Distinguishing between acute and subacute massive pulmonary embolism by conventional and Doppler echocardiography. Br Heart J. 1993;70:352–6.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Jardin F, Dubourg O, Guéret P, Delorme G, Bourdarias JP. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10:1201–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Ribeiro A, Juhlin-Dannfelt A, Brodin LA, Holmgren A, Jorfeldt L. Pulmonary embolism: relation between the degree of right ventricle overload and the extent of perfusion defects. Am Heart J. 1998;135:868–74.CrossRefPubMedGoogle Scholar
  70. 70.
    McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78:469–73.CrossRefPubMedGoogle Scholar
  71. 71.
    Hsiao SH, Lee CY, Chang SM, Yang SH, Lin SK, Huang WC. Pulmonary embolism and right heart function: Insights from myocardial Doppler tissue imaging. J Am Soc Echocardiogr. 2006;19:822–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Kurzyna M, Torbicki A, Pruszczyk P, Burakowska B, Fijałkowska A, Kober J, et al. Disturbed right ventricular ejection pattern as a new Doppler echocardiographic sign of acute pulmonary embolism. Am J Cardiol. 2002;90:507–11.CrossRefPubMedGoogle Scholar
  73. 73.
    Torbicki A, Galié N, Covezzoli A, Rossi E, De Rosa M, Goldhaber SZ, ICOPER Study Group. Right heart thrombi in pulmonary embolism: results from the International Cooperative Pulmonary Embolism Registry. J Am Coll Cardiol. 2003;41:2245–51.CrossRefPubMedGoogle Scholar
  74. 74.
    Pierre-Justin G, Pierard LA. Management of mobile right heart thrombi: a prospective series. Int J Cardiol. 2005;99:381–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Delgado JF, Conde E, Sánchez V, López-Ríos F, Gómez-Sánchez MA, Escribano P, et al. Pulmonary vascular remodeling in pulmonary hypertension due to chronic heart failure. Eur J Heart Fail. 2005;7:1011–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000;102:1718–23.CrossRefPubMedGoogle Scholar
  77. 77.
    Tribouilloy CM, Enriquez-Sarano M, Rossi A, Tajik AJ, Seward JB. Determinants of the pulmonary artery pressure rise in left ventricular dysfunction. Cardiologia. 1997;42:1051–8.PubMedGoogle Scholar
  78. 78.
    Forfia PR. Approach to patients with heart failure and pulmonary hypertension. Curr Treat Options Cardiovasc Med. 2007;9:302–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49:198–207.CrossRefPubMedGoogle Scholar
  80. 80.
    Nishimura RA, Tajik AJ. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol. 1997;30:8–18.CrossRefPubMedGoogle Scholar
  81. 81.
    Opotowsky AR, Ojeda J, Rogers F, et al. A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:765–75.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Galiè N, Hinderliter AL, Torbicki A, Fourme T, Simonneau G, Pulido T, et al. Effects of the oral endothelin-receptor antagonist bosentan on echocardiographic and Doppler measures in patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41:1380–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Brown BS, Raina A, Katz D, Szerlip M, Weigers SE, Forfia RP. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest. 2011;140(1):27–33.CrossRefPubMedGoogle Scholar
  84. 84.
    Casaclang-Verzosa G, McCully RB, Oh JK, Miller Jr FA, McGregor CG. Effects of pulmonary thromboendarterectomy on right-sided echocardiographic parameters in patients with chronic thromboembolic pulmonary hypertension. Mayo Clin Proc. 2006;81:777–82.CrossRefPubMedGoogle Scholar
  85. 85.
    Menzel T, Kramm T, Wagner S, Mohr-Kahaly S, Mayer E, Meyer J. Improvement of tricuspid regurgitation after pulmonary thromboendarterectomy. Ann Thorac Surg. 2002;73:756–61.CrossRefPubMedGoogle Scholar
  86. 86.
    Damato AN, Galante JG, Smith WM. Hemodynamic response to treadmill exercise in normal subjects. J Appl Physiol. 1966;21:959–66.PubMedGoogle Scholar
  87. 87.
    Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61:260–70.PubMedGoogle Scholar
  88. 88.
    Bossone E, Rubenfire M, Bach DS, Ricciardi M, Armstrong WF. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol. 1999;33:1662–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects. A systematic review. Eur Respir J. 2009;34:888–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Section of Cardiology, Department of MedicineTemple UniversityPhiladelphiaUSA

Personalised recommendations