Bayesian Data Analysis and MCMC

  • David Ruppert
  • David S. Matteson
Part of the Springer Texts in Statistics book series (STS)


Bayesian statistics is based up a philosophy different from that of other methods of statistical inference. In Bayesian statistics all unknowns, and in particular unknown parameters, are considered to be random variables and their probability distributions specify our beliefs about their likely values. Estimation, model selection, and uncertainty analysis are implemented by using Bayes’s theorem to update our beliefs as new data are observed.


  1. Albert, J. (2007) Bayesian Computation with R, Springer, New York.CrossRefzbMATHGoogle Scholar
  2. Albert, J. H. and Chib, S. (1993) Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts, Journal of Business & Economic Statistics, 11, 1–15.Google Scholar
  3. Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis 2nd ed., Springer-Verlag, Berlin.CrossRefzbMATHGoogle Scholar
  4. Bernardo, J. M., and Smith, A. F. M. (1994) Bayesian Theory, Wiley, Chichester.CrossRefzbMATHGoogle Scholar
  5. Box, G. E. P., and Tiao, G. C. (1973) Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.zbMATHGoogle Scholar
  6. Brooks, S. P. and Gelman, A. (1998) General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics, 7, 434–455.MathSciNetGoogle Scholar
  7. Carlin, B. P., and Louis, T. A. (2000) Empirical Bayes: Past, present and future. Journal of the American Statistical Association, 95, 1286–1289.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Carlin, B., and Louis, T. A. (2008) Bayesian Methods for Data Analysis, 3rd ed., Chapman & Hall, New York.zbMATHGoogle Scholar
  9. Chib, S., and Ergashev, B. (2009) Analysis of multifactor affine yield curve models. Journal of the American Statistical Association, 104, 1324–1337.CrossRefzbMATHMathSciNetGoogle Scholar
  10. Chib, S., and Greenberg, E. (1994) Bayes inference in regression models with ARMA(p, q) errors. Journal of Econometrics, 64, 183–206.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Chib, S., and Greenberg, E. (1995) Understanding the Metropolis–Hastings algorithm. American Statistician, 49, 327–335.Google Scholar
  12. Congdon, P. (2001) Bayesian Statistical Modelling, Wiley, Chichester.zbMATHGoogle Scholar
  13. Congdon, P. (2003) Applied Bayesian Modelling, Wiley, Chichester.CrossRefzbMATHGoogle Scholar
  14. Daniels, M. J., and Kass, R. E. (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94, 1254–1263.CrossRefzbMATHMathSciNetGoogle Scholar
  15. Edwards, W. (1982) Conservatism in human information processing. In Judgement Under Uncertainty: Heuristics and Biases, D. Kahneman, P. Slovic, and A. Tversky, ed., Cambridge University Press, New York.Google Scholar
  16. Gelman, A., and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequence (with discussion). Statistical Science, 7, 457–511.CrossRefGoogle Scholar
  17. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013) Bayesian Data Analysis, 3rd ed., Chapman & Hall, London.Google Scholar
  18. Greyserman, A., Jones, D. H., and Strawderman, W. E. (2006) Portfolio selection using hierarchical Bayesian analysis and MCMC methods, Journal of Banking and Finance, 30, 669–678.CrossRefGoogle Scholar
  19. Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. (1998) Markov chain Monte Carlo in practice: A roundtable discussion. American Statistician, 52, 93–100.MathSciNetGoogle Scholar
  20. Kim, S., Shephard, N., and Chib, S. (1998) Stochastic volatility: likelihood inference and comparison with ARCH models.Review of Economic Studies, 65, 361–393.Google Scholar
  21. Ledoit, O., and Wolf, M. (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603–621.CrossRefGoogle Scholar
  22. Lehmann, E. L. (1983) Theory of Point Estimation, Wiley, New York.CrossRefzbMATHGoogle Scholar
  23. Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2013) The BUGS Book, Chapman & Hall.Google Scholar
  24. Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000) OpenBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.CrossRefGoogle Scholar
  25. Rachev, S. T., Hsu, J. S. J., Bagasheva, B. S., and Fabozzi, F. J. (2008) Bayesian Methods in Finance, Wiley, Hoboken, NJ.Google Scholar
  26. Robert, C. P. (2007) The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2nd ed., Springer, New York.Google Scholar
  27. Robert, C. P., and Casella, G. (2005) Monte Carlo Statistical Methods, 2nd ed., Springer, New York.Google Scholar
  28. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, Methodological, 64, 583–616.CrossRefzbMATHGoogle Scholar
  29. Stein, C. (1956) Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical and Statistical Probability, J. Neyman, ed., University of California, Berkeley, pp. 197–206, Volume 1.Google Scholar
  30. van der Vaart, A. W. (1998) Asymptotic Statistics, Cambridge University Press, Cambridge.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David Ruppert
    • 1
  • David S. Matteson
    • 2
  1. 1.Department of Statistical Science and School of ORIECornell UniversityIthacaUSA
  2. 2.Department of Statistical Science Department of Social StatisticsCornell UniversityIthacaUSA

Personalised recommendations