Use of Satellite Image Derived Products for Early Warning and Monitoring of the Impact of Drought on Food Security in Africa

  • Christophe Sannier
  • Sven Gilliams
  • Frédéric Ham
  • Erwann Fillol


African and other countries in the world suffer from regular occurrence of extreme weather events of which droughts form a significant part. This is seriously affecting the ability of those countries to cover their population needs in food supply and to maintain their livelihood. However, the pattern of droughts is extremely variable both temporally and spatially and it is crucial that decision makers be informed in advance of the extent and location of potential drought conditions to target relief measures.

Approaches to food security monitoring based on the temporal and spatial analyses of Satellite image derived products are presented. These approaches demonstrate that the extent and severity of a drought can effectively be characterised in near real time. Examples of previous work in Zambia showed the benefit of integrating historical agricultural statistics with satellite derived products to better attribute vegetation development variability to agricultural production thus providing a means to predict potential crop production levels for the current growing season. Other work in Namibia, Niger, Senegal, South Sudan and Botswana shows that such techniques can be used to monitor rangeland primary production levels for a given season.

Lessons from the implementation of these approaches operationally are summarized, emphasizing the importance of institutional support.


Crop production Rangeland conditions Biomass NDVI Vegetation biophysical variables Time series analysis 


  1. Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M et al (2007) LAI, fAPAR and fCover CYCLOPES global products derived from vegetation: part 1: principles of the algorithm. Remote Sens Environ 110(3):275–286CrossRefGoogle Scholar
  2. Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581Google Scholar
  3. Carfagna E, Gallego FJ (2006) Using remote sensing for agricultural statistics. Int Stat Rev 73(3):389–404CrossRefGoogle Scholar
  4. Diallo O, Diouf A, Hanan N P, Ndiaye A, Prévost Y (1991) AVHRR monitoring of savanna primary production in Senegal, West Africa: 1987–1988. Int J Remote Sens 12:1259–1279CrossRefGoogle Scholar
  5. Fillol E, Metais T, Gómez A (2008) Estimation de la quantité de biomasse sur la zone Sahélienne Mali-Niger par télédétection pour l’aide à la gestion de l’activité pastorale. Paper presented at the 2008 Toulouse Space Show, Pierre Baudis Center, Toulouse, 22–25 April 2008Google Scholar
  6. Gobron N, Pinty B, Mélin F, Taberner M, Verstraete M, Belward A, Lavergne T et al (2005) The state of vegetation in Europe following the 2003 drought. Int J Remote Sens 26(9):2013–2020CrossRefGoogle Scholar
  7. Haub C, Gilliams S (2010) GMFS service integration and know how transfer to Africa. Paper presented at the ESA Living Planet Symposium 2010, Bergen, Norway, 28 June—2 July 2010Google Scholar
  8. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  9. Hutchinson CF (1991) Uses of satellite data for famine early warning in sub- Saharan Africa. Int J Remote Sens 12:1405–1421CrossRefGoogle Scholar
  10. Kalensky ZD (1998) Africover—land cover database and map of Africa. Can J Remote Sens 24(3):292–297CrossRefGoogle Scholar
  11. Kennedy P (1989) Monitoring the vegetation of tunisian grazing lands using the normalized difference vegetation index. Ambio 18:119–123Google Scholar
  12. Knyazikhin Y, Glassy J, Privette JL, Tian P, Lotsch A, Zhang Y, Wang Y, Morisette JT, Votava P, Myneni RB, Nemani RR, Running SW (1999) MODIS Leaf Area Index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation(fPAR). Product (MOD15) Algorithm Theoretical Basis Document. Accessed 29 Sept 2013
  13. Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11:1405–1419CrossRefGoogle Scholar
  14. Lambin EF, Cashman P, Moody A, Parkhurst BH, Pax MH, Schaaf CB (1993) Agricultural production monitoring in the sahel using remote sensing: present possibilities and research needs. J Environ Manag 38:301–322CrossRefGoogle Scholar
  15. Le Comte DM (1989) Using AVHRR for early warning of famine in Africa. Photogramm Eng Remote Sens 55:168–169Google Scholar
  16. Lobell DB, Burke MB, Tebaldi C, Mastrandea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610Google Scholar
  17. Maselli F, Conese C, Petkov L, Gilabert MA (1993) Environmental monitoring and crop forecasting in the sahel through the use of NOAA-NDVI data. A case study: Niger 1986–1989. Int J Remote Sens 14:3471–3487CrossRefGoogle Scholar
  18. Prince SD (1991) Satellite remote sensing of primary production: comparison of results for sahelian grasslands 1981–1988. Int J Remote Sens 12:1301–1311CrossRefGoogle Scholar
  19. Prince SD, Astle WL (1986) Satellite remote sensing of rangelands in Botswana. I. Landsat MSS and herbaceous vegetation. Int J Remote Sens 7:1533–1553CrossRefGoogle Scholar
  20. Rasmussen MS (1992) Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. Int J Remote Sens 13:3431–3442CrossRefGoogle Scholar
  21. Rossi S, Weissteiner C, Laguardia G, Kurnik B, Robustelli M, Niemeyer S, Gobron N (2008) Potential of MERIS fAPAR for drought detection. In: Lacoste H, Ouwehand L (eds) Proceedings of the 2nd MERIS/(A)ATSR User Workshop, Frascati (Italy), 22–26 September 2008. ESA SP-666, ESA Communication Production OfficeGoogle Scholar
  22. Sannier CAD, Taylor JC, du Plessis W (1998) Real-time vegetation monitoring with NOAA-AVHRR in Southern Africa for wildlife management and food security assessment. Int J Remote Sens 19(4):621–639CrossRefGoogle Scholar
  23. Tucker C J (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christophe Sannier
    • 1
  • Sven Gilliams
    • 2
  • Frédéric Ham
    • 3
  • Erwann Fillol
    • 3
  1. 1.Systèmes d,Information à Référence Spatiale (SIRS)Villeneuve d’AscqFrance
  2. 2.Vlaamse Instelling Technologish Onderzoek (VITO)MolBelgium
  3. 3.Fundación Acción Contra el Hambre (ACF Spain)MadridSpain

Personalised recommendations