Advertisement

Flux Transport Dynamos: From Kinematics to Dynamics

  • Bidya Binay Karak
  • Jie Jiang
  • Mark S. Miesch
  • Paul Charbonneau
  • Arnab Rai Choudhuri
Part of the Space Sciences Series of ISSI book series (SSSI, volume 53)

Abstract

Over the past several decades, Flux-Transport Dynamo (FTD) models have emerged as a popular paradigm for explaining the cyclic nature of solar magnetic activity. Their defining characteristic is the key role played by the mean meridional circulation in transporting magnetic flux and thereby regulating the cycle period. Most FTD models also incorporate the so-called Babcock-Leighton (BL) mechanism in which the mean poloidal field is produced by the emergence and subsequent dispersal of bipolar active regions. This feature is well grounded in solar observations and provides a means for assimilating observed surface flows and fields into the models in order to forecast future solar activity, to identify model biases, and to clarify the underlying physical processes. Furthermore, interpreting historical sunspot records within the context of FTD models can potentially provide insight into why cycle features such as amplitude and duration vary and what causes extreme events such as Grand Minima. Though they are generally robust in a modeling sense and make good contact with observed cycle features, FTD models rely on input physics that is only partially constrained by observation and that neglects the subtleties of convective transport, convective field generation, and nonlinear feedbacks. Here we review the formulation and application of FTD models and assess our current understanding of the input physics based largely on complementary 3D MHD simulations of solar convection, dynamo action, and flux emergence.

Keywords

Sun Solar cycle Dynamo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.C. Augustson, A.S. Brun, M.S. Miesch, J. Toomre, Cycling dynamo in a young sun: grand minima and equatorward propagation. Astrophys. J. (2014 submitted) Google Scholar
  2. H.W. Babcock, The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961) ADSGoogle Scholar
  3. S.A. Balbus, E. Schaan, The stability of stratified, rotating systems and the generation of vorticity in the sun. Mon. Not. R. Astron. Soc. 426, 1546–1557 (2012) ADSGoogle Scholar
  4. S.A. Balbus, J. Bonart, H.N. Latter, N.O. Weiss, Differential rotation and convection in the sun. Mon. Not. R. Astron. Soc. 400, 176–182 (2009) ADSGoogle Scholar
  5. S.A. Balbus, H. Latter, N. Weiss, Global model of differential rotation in the sun. Mon. Not. R. Astron. Soc. 420, 2457–2466 (2012) ADSGoogle Scholar
  6. T. Baranyi, L. Gyori, A. Ludmány, H.E. Coffey, Comparison of sunspot area data bases. Mon. Not. R. Astron. Soc. 323, 223–230 (2001) ADSGoogle Scholar
  7. A.J. Barker, L.J. Silvers, M. Proctor, N. Weiss, Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone. Mon. Not. R. Astron. Soc. 424, 115–127 (2012) ADSGoogle Scholar
  8. I. Baumann, D. Schmitt, M. Schüssler, S.K. Solanki, Evolution of the large-scale magnetic field on the solar surface: a parameter study. Astron. Astrophys. 426, 1075–1091 (2004) ADSGoogle Scholar
  9. P. Beaudoin, P. Charbonneau, E. Racine, P.K. Smolarkiewicz, Torsional oscillations in a global solar dynamo. Sol. Phys. 282, 335–360 (2013) ADSGoogle Scholar
  10. J. Beer, S. Tobias, N.O. Weiss, An active sun throughout the Maunder minimum. Sol. Phys. 181, 237–249 (1998) ADSGoogle Scholar
  11. A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory Phys. Rep. 417, 1–209 (2005) ADSMathSciNetGoogle Scholar
  12. A. Brandenburg, F. Krause, R. Meinel, D. Moss, I. Tuominen, The stability of nonlinear dynamos and the limited role of kinematic growth rates. Astron. Astrophys. 213, 411–422 (1989) ADSGoogle Scholar
  13. A. Brandenburg, D. Moss, I. Tuominen, Turbulent pumping in the solar dynamo, in The Solar Cycle, vol. 27 (1992), p. 536 Google Scholar
  14. A. Brandenburg, N. Kleeorin, I. Rogachevskii, Large-scale magnetic flux concentrations from turbulent stresses. Astron. Nachr. 331, 5–13 (2010) ADSMATHGoogle Scholar
  15. A. Brandenburg, K. Koen, N. Kleeorin, I. Rogachevskii, The negative effective magnetic pressure in stratified forced turbulence. Astrophys. J. 749, 179 (2012) ADSGoogle Scholar
  16. B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Persistent magnetic wreathes in a rapidly rotating sun. Astrophys. J. 711, 424–438 (2010) ADSGoogle Scholar
  17. B.P. Brown, M.S. Miesch, M.K. Browning, A.S. Brun, J. Toomre, Magnetic cycles in a convective dynamo simulation of a young solar-type star. Astrophys. J. 731, 69 (2011) ADSGoogle Scholar
  18. M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys. J. Lett. 648, L157–L160 (2006) ADSGoogle Scholar
  19. A.S. Brun, J. Toomre, Turbulent convection under the influence of rotation: sustaining a strong differential rotation. Astrophys. J. 570, 865–885 (2002) ADSGoogle Scholar
  20. A.S. Brun, M.S. Miesch, J. Toomre, Modeling the dynamical coupling of the solar convection zone to the radiative interior. Astrophys. J. 742, 79 (2011) ADSGoogle Scholar
  21. P. Caligari, F. Moreno-Insertis, M. Schüssler, Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886–902 (1995) ADSGoogle Scholar
  22. R. Cameron, M. Schüssler, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801–811 (2007) ADSGoogle Scholar
  23. R.H. Cameron, D. Schmitt, J. Jiang, E. Işık, Surface flux evolution constraints for flux transport dynamos. Astron. Astrophys. 542, A127 (2012) ADSGoogle Scholar
  24. R.H. Cameron, M. Dasi-Espuig, J. Jiang, E. Işık, D. Schmitt, M. Schüssler, Limits to solar cycle predictability: cross-equatorial flux plumes. Astron. Astrophys. 557, A141 (2013) ADSGoogle Scholar
  25. S. Chakraborty, P. Chatterjee, A.R. Choudhuri, Why does the sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102 (2009) ADSGoogle Scholar
  26. P. Charbonneau, Multiperiodicity, chaos and intermittency in a reduced model of the solar cycle. Sol. Phys. 199, 385 (2001) ADSGoogle Scholar
  27. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010) ADSGoogle Scholar
  28. P. Charbonneau, Where is the solar dynamo? J. Phys. Conf. Ser. 440, 012014 (2013) ADSGoogle Scholar
  29. P. Charbonneau, M. Dikpati, Stochastic fluctuations in a Babcock-Leighton model of the solar cycle. Astrophys. J. 543, 1027–1043 (2000) ADSGoogle Scholar
  30. P. Charbonneau, G. Blais-Laurier, C. St-Jean, Intermittency and phase persistence in a Babcock-Leighton model of the solar cycle. Astrophys. J. 616, L183–L186 (2004) ADSGoogle Scholar
  31. P. Charbonneau, C. St-Jean, P. Zacharias, Fluctuations in Babcock-Leighton dynamos. I. Period doubling and transition to chaos. Astrophys. J. 619, 613–622 (2005) ADSGoogle Scholar
  32. P. Charbonneau, G. Beaubien, C. St-Jean, Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys. J. 658, 657–662 (2007) ADSGoogle Scholar
  33. P. Chatterjee, A.R. Choudhuri, On magnetic coupling between the two hemispheres in solar dynamo models. Sol. Phys. 239, 29–39 (2006) ADSGoogle Scholar
  34. P. Chatterjee, D. Nandy, A.R. Choudhuri, Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron. Astrophys. 427, 1019–1030 (2004) ADSGoogle Scholar
  35. M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010) ADSGoogle Scholar
  36. D.-Y. Chou, D.-C. Dai, Solar cycle variations of subsurface meridional flows in the sun. Astrophys. J. 559, L175–L178 (2001) ADSGoogle Scholar
  37. A.R. Choudhuri, The evolution of loop structures in flux rings within the solar convection zone. Sol. Phys. 123, 217–239 (1989) ADSGoogle Scholar
  38. A.R. Choudhuri, A correction to Spruit’s equation for the dynamics of thin flux tubes. Astron. Astrophys. 239, 335–339 (1990) ADSMathSciNetGoogle Scholar
  39. A.R. Choudhuri, Stochastic fluctuations of the solar dynamo. Sol. Phys. 253, 277–285 (1992) MATHGoogle Scholar
  40. A.R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge, 1998). QB466.F58 C46 Google Scholar
  41. A.R. Choudhuri, On the connection between mean field dynamo theory and flux tubes. Sol. Phys. 215, 31–55 (2003) ADSGoogle Scholar
  42. A.R. Choudhuri, The origin of the solar magnetic cycle. Pramana 77, 77–96 (2011) ADSGoogle Scholar
  43. A.R. Choudhuri, P.A. Gilman, The influence of the Coriolis force on flux tubes rising through the solar convection zone. Astrophys. J. 316, 788–800 (1987) ADSGoogle Scholar
  44. A.R. Choudhuri, B.B. Karak, A possible explanation of the Maunder minimum from a flux transport dynamo model. Res. Astron. Astrophys. 9, 953–958 (2009) ADSGoogle Scholar
  45. A.R. Choudhuri, B.B. Karak, Origin of grand minima in sunspot cycles. Phys. Rev. Lett. 109, 171103 (2012) ADSGoogle Scholar
  46. A.R. Choudhuri, M. Schüssler, M. Dikpati, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29 (1995) ADSGoogle Scholar
  47. A.R. Choudhuri, D. Nandy, P. Chatterjee, Reply to the comments of Dikpati et al.. Astron. Astrophys. 437, 703–704 (2005) ADSGoogle Scholar
  48. A.R. Choudhuri, P. Chatterjee, J. Jiang, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103 (2007) ADSGoogle Scholar
  49. J. Christensen-Dalsgaard, Helioseismology. Rev. Mod. Phys. 74, 1073–1129 (2002) ADSGoogle Scholar
  50. C. Cincunegui, R.F. Diaz, P.J.D. Mauas, A possible activity cycle in Proxima Centauri. Astron. Astrophys. 461, 1107–1113 (2007) ADSGoogle Scholar
  51. M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, K. Peñuela, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7 (2010) ADSGoogle Scholar
  52. M. Dikpati, Generating the suns global meridional circulation from differential rotation and turbulent Reynolds stresses. Astrophys. J. 438, 2380–2394 (2014) ADSGoogle Scholar
  53. M. Dikpati, P. Charbonneau, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astron. Astrophys. 518, 508–520 (1999) ADSGoogle Scholar
  54. M. Dikpati, A.R. Choudhuri, On the large-scale diffuse magnetic field of the sun. Sol. Phys. 161, 9–27 (1995) ADSGoogle Scholar
  55. M. Dikpati, P.A. Gilman, Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498–514 (2006) ADSGoogle Scholar
  56. M. Dikpati, G. de Toma, P.A. Gilman, C.N. Arge, O.R. White, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136–1151 (2004) ADSGoogle Scholar
  57. M. Dikpati, G. de Toma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, 5102 (2006) ADSGoogle Scholar
  58. S. D’Silva, A.R. Choudhuri, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621 (1993) ADSGoogle Scholar
  59. B.R. Durney, On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Sol. Phys. 160, 213–235 (1995) ADSGoogle Scholar
  60. B.R. Durney, On a Babcock-Leighton solar dynamo model with a deep-seated generating layer for the toroidal magnetic field. IV. Astrophys. J. 724, 1065 (1997) ADSGoogle Scholar
  61. B.R. Durney, On the differences between odd and even solar cycles. Sol. Phys. 196, 421 (2000) ADSGoogle Scholar
  62. J.R. Elliott, M.S. Miesch, J. Toomre, Turbulent solar convection and its coupling with rotation: the effect of Prandtl number and thermal boundary conditions on the resulting differential rotation. Astrophys. J. 533, 546–556 (2000) ADSGoogle Scholar
  63. Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6, 4 (2009). http://www.livingreviews.org/lrsp-2009-4 ADSGoogle Scholar
  64. Y. Fan, F. Fang, A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35 (2014) ADSGoogle Scholar
  65. Y. Fan, G.H. Fisher, E.E. Deluca, The origin of morphological asymmetries in bipolar active regions. Astrophys. J. 405, 390–401 (1993) ADSGoogle Scholar
  66. N.A. Featherstone, M.S. Miesch, Meridional circulation in solar and stellar convection zones. Astrophys. J. (2014 submitted) Google Scholar
  67. A. Ferriz-Mas, M. Schüssler, Instabilities of magnetic flux tubes in a stellar convection zone II. Flux rings outside the equatorial plane. Geophys. Astrophys. Fluid Dyn. 81, 233–265 (1995) ADSGoogle Scholar
  68. P. Foukal, An explanation of the differences between the sunspot area scales of the Royal Greenwich and Mt. Wilson Observatories, and the SOON program. Sol. Phys. 289(5), 1517–1529 (2014) ADSGoogle Scholar
  69. D.J. Galloway, N.O. Weiss, Convection and magnetic fields in stars. Astrophys. J. 243, 945–953 (1981) ADSGoogle Scholar
  70. T. Gastine, J. Wicht, J.M. Aurnou, Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156–172 (2013) ADSGoogle Scholar
  71. M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, L133–L137 (2010) ADSGoogle Scholar
  72. P.A. Gilman, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II—Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. Ser. 53, 243–268 (1983) ADSGoogle Scholar
  73. P.A. Gilman, M. Miesch, Limits to penetration of meridional circulation below the solar convection zone. Astrophys. J. 611, 568–574 (2004) ADSGoogle Scholar
  74. L. Gizon, Helioseismology of time-varying flows through the solar cycle. Sol. Phys. 224, 217–228 (2004) ADSGoogle Scholar
  75. G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. The model and method. J. Comput. Phys. 55, 461–484 (1984) ADSGoogle Scholar
  76. G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone. Astrophys. J. 291, 300–307 (1985) ADSGoogle Scholar
  77. G.A. Glatzmaier, P.H. Roberts, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75 (1995) ADSGoogle Scholar
  78. A. Goel, A.R. Choudhuri, The hemispheric asymmetry of solar activity during the last century and the solar dynamo. Res. Astron. Astrophys. 9, 115–126 (2009) ADSGoogle Scholar
  79. I. González-Hernandez, R. Komm, F. Hill, R. Howe, T. Corbard, D.A. Haber, Meridional circulation variability from large-aperture ring-diagram analysis of global oscillation network group and Michelson Doppler Imager data. Astrophys. J. 638, 576–583 (2006) ADSGoogle Scholar
  80. G.A. Guerrero, E.M. de Gouveia Dal Pino, Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model. Astron. Astrophys. 485, 267–273 (2008) ADSGoogle Scholar
  81. G.A. Guerrero, J.D. Muñoz, Kinematic solar dynamo models with a deep meridional flow. Mon. Not. R. Astron. Soc. 350, 317–322 (2004) ADSGoogle Scholar
  82. S.M. Hanasoge, T. Duvall, M.L. DeRosa, Seismic constraints on interior solar convection. Astrophys. J. Lett. 712, L98–L102 (2010) ADSGoogle Scholar
  83. S.M. Hanasoge, T. Duvall, K.R. Sreenivasan, Anomalously weak solar convection. Proc. Natl. Acad. Sci. USA (2012). doi: 10.1073/pnas.1206570109 Google Scholar
  84. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010) ADSGoogle Scholar
  85. D.H. Hathaway, Supergranules as probes of the sun’s meridional circulation. Astrophys. J. 760, 84 (2012), 6pp. ADSGoogle Scholar
  86. D.H. Hathaway, L. Rightmire, Variations in the sun’s meridional flow over a solar cycle. Science 327, 1350 (2010) ADSGoogle Scholar
  87. D.H. Hathaway, L. Rightmire, Variations in the axisymmetric transport of magnetic elements on the sun: 1996–2010. Astrophys. J. 729, 80 (2011) ADSGoogle Scholar
  88. P.H. Haynes, C.J. Marks, M.E. McIntyre, T.G. Shepherd, K.P. Shine, On the downward control of extratropical diabatic circulations by eddy-induced mean zonal flows. J. Atmos. Sci. 48, 651–678 (1991) ADSGoogle Scholar
  89. G. Hazra, B.B. Karak, A.R. Choudhuri, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93 (2014) ADSGoogle Scholar
  90. H. Hotta, T. Yokoyama, Solar parity issue with flux-transport dynamo. Astrophys. J. 714, L308–L312 (2010) ADSGoogle Scholar
  91. H. Hotta, M. Rempel, T. Yokoyama, High-resolution calculation of the solar global convection with the reduced sound speed technique: II. Near surface shear layer with the rotation. Astrophys. J. 786, 24 (2014) ADSGoogle Scholar
  92. R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009). http://www.livingreviews.org/lrsp-2009-1 ADSGoogle Scholar
  93. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm et al., Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000) ADSGoogle Scholar
  94. P. Hoyng, Turbulent transport of magnetic fields. III. Stochastic excitation of global magnetic modes. Astrophys. J. 332, 857–871 (1988) ADSGoogle Scholar
  95. P. Hoyng, Helicity fluctuations in mean field theory: an explanation for the variability of the solar cycle? Astron. Astrophys. 272, 321 (1993) ADSMathSciNetGoogle Scholar
  96. J. Jiang, P. Chatterjee, A.R. Choudhuri, Solar activity forecast with a dynamo model. Mon. Not. R. Astron. Soc. 381, 1527–1542 (2007) ADSGoogle Scholar
  97. J. Jiang, R.H. Cameron, D. Schmitt, E. Işık, Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Astrophys. 553, A128 (2013) ADSGoogle Scholar
  98. J. Jiang, R.H. Cameron, M. Schüssler, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5 (2014a) ADSGoogle Scholar
  99. J. Jiang, D.H. Hathaway, R.H. Cameron, S.K. Solanki, L. Upton, Magnetic flux transport at the solar surface. Space Sci. Rev. (2014b). doi: 10.1007/s11214-014-0083-1
  100. L. Jouve, A.S. Brun, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239–250 (2007) ADSGoogle Scholar
  101. P.J. Käpyla, M.J. Mantere, A. Brandenburg, Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. 755, L22 (2012) ADSGoogle Scholar
  102. P.J. Käpylä, M.J. Mantere, E. Cole, J. Warnecke, A. Brandenburg, Effects of enhanced stratification on equatorward dynamo wave propagation. Astrophys. J. 778, 41 (2013) ADSGoogle Scholar
  103. P.J. Käpylä, M. Mantere, A. Brandenburg, Confirmation of bistable stellar differential rotation profiles. Astron. Astrophys. (2014 accepted) Google Scholar
  104. B.B. Karak, Importance of meridional circulation in flux transport dynamo: the possibility of a Maunder-like grand minimum. Astrophys. J. 724, 1021–1029 (2010) ADSGoogle Scholar
  105. B.B. Karak, A.R. Choudhuri, The Waldmeier effect and the flux transport solar dynamo. Mon. Not. R. Astron. Soc. 410, 1503–1512 (2011) ADSGoogle Scholar
  106. B.B. Karak, A.R. Choudhuri, Quenching of meridional circulation in flux transport dynamo models. Sol. Phys. 278, 137–148 (2012) ADSGoogle Scholar
  107. B.B. Karak, A.R. Choudhuri, Studies of grand minima in sunspot cycles by using a flux transport solar dynamo model. Res. Astron. Astrophys. 13, 1339–1357 (2013) ADSGoogle Scholar
  108. B.B. Karak, D. Nandy, Turbulent pumping of magnetic flux reduces solar cycle memory and thus impacts predictability of the sun’s activity. Astrophys. J. 761, L13 (2012) ADSGoogle Scholar
  109. B.B. Karak, P.J. Käpyla, M.J. Käpyla, A. Brandenburg, Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles. Astron. Astrophys. (2014a submitted). arXiv:1407.0984
  110. B.B. Karak, M. Rheinhardt, A. Brandenburg, P.J. Käpylä, M.J. Käpylä, Quenching and anisotropy of hydromagnetic turbulent transport. Astrophys. J. (2014b accepted). arXiv:1406.4521
  111. K. Kemel, A. Brandenburg, N. Kleeorin, D. Mitra, I. Rogachevskii, Active region formation through the negative effective magnetic pressure instability. Sol. Phys. 287, 293–313 (2013) ADSGoogle Scholar
  112. L.L. Kitchatinov, Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar cycle. Astron. Astrophys. 243, 483–491 (1991) ADSGoogle Scholar
  113. L.L. Kitchatinov, Theory of differential rotation and meridional circulation, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. by A.G. Kosovichev, E.M. de Gouveia Dal Pino, Y. Yan. Proc. IAU Symposium, vol. 294 (2013), pp. 399–410 Google Scholar
  114. L.L. Kitchatinov, S.V. Olemskoy, Does the Babcock-Leighton mechanism operate on the sun? Astron. Lett. 37, 656–658 (2011) ADSGoogle Scholar
  115. L.L. Kitchatinov, G. Rüdiger, Differential rotation in solar-type stars: revisiting the Taylor-number puzzle. Astron. Astrophys. 299, 446–452 (1995) ADSGoogle Scholar
  116. F. Krause, R. Meinel, Stability of simple nonlinear 2-dynamos. Geophys. Astrophys. Fluid Dyn. 43, 95–117 (1988) ADSGoogle Scholar
  117. M. Küker, G. Rüdiger, M. Schultz, Circulation-dominated solar shell dynamo models with positive alpha-effect. Astron. Astrophys. 374, 301–308 (2001) ADSGoogle Scholar
  118. R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1–26 (1969) ADSGoogle Scholar
  119. D.W. Longcope, A.R. Choudhuri, The orientational relaxation of bipolar active regions. Astrophys. J. 205, 63–92 (2002) Google Scholar
  120. I. Lopes, D. Passos, Solar variability induced in a dynamo code by realistic meridional circulation variations. Sol. Phys. 257, 1–12 (2009) ADSGoogle Scholar
  121. M.S. Miesch, The solar dynamo. Philos. Trans. R. Soc. Lond. A 370, 3049–3069 (2012) ADSGoogle Scholar
  122. M.S. Miesch, B.P. Brown, Convective Babcock-Leighton dynamo models. Astrophys. J. Lett. 746, L26 (2012) ADSGoogle Scholar
  123. M.S. Miesch, M. Dikpati, A three-dimensional Babcock-Leighton solar dynamo model. Astrophys. J. Lett. 785, L8 (2014), 5pp ADSGoogle Scholar
  124. M.S. Miesch, B.W. Hindman, Gyroscopic pumping in the solar near-surface shear layer. Astrophys. J. 743, 79 (2011) ADSGoogle Scholar
  125. M.S. Miesch, J. Toomre, Turbulence, magnetism and shear in stellar interiors. Annu. Rev. Fluid Mech. 41, 317–345 (2009) ADSGoogle Scholar
  126. M.S. Miesch, A.S. Brun, J. Toomre, Solar differential rotation influenced by latitudinal entropy variations in the tachocline. Astrophys. J. 641, 618–625 (2006) ADSGoogle Scholar
  127. M.S. Miesch, N.A. Featherstone, M. Rempel, R. Trampedach, On the amplitude of convective velocities in the deep solar interior. Astrophys. J. 757, 128 (2012) ADSGoogle Scholar
  128. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978) Google Scholar
  129. D. Moss, A. Brandenburg, R. Tavakol, I. Tuominen, Stochastic effects in mean-field dynamos. Astron. Astrophys. 265, 843–849 (1992) ADSGoogle Scholar
  130. A. Muñoz-Jaramillo, D. Nandy, P.C.H. Martens, A.R. Yeates, A double-ring algorithm for modeling solar active regions: unifying kinematic dynamo models and flux transport simulations. Astrophys. J. Lett. 720, L20–25 (2010) ADSGoogle Scholar
  131. A. Munoz-Jaramillo, D. Nandy, P.C.H. Martens, Magnetic quenching of turbulent diffusivity: reconciling mixing-length theory estimates with kinematic dynamo models of the solar cycle. Astrophys. J. Lett. 727, L23 (2011) ADSGoogle Scholar
  132. A. Muñoz-Jaramillo, N.R. Sheeley Jr., J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012) ADSGoogle Scholar
  133. D. Nandy, A.R. Choudhuri, Toward a mean field formulation of the Babcock-Leighton type solar dynamo. I. α-Coefficient versus Durney’s double-ring approach. Astrophys. J. 551, 576–585 (2001) ADSGoogle Scholar
  134. D. Nandy, A.R. Choudhuri, Explaining the latitudinal distribution of sunspots with deep meridional flow. Science 296, 1671–1673 (2002) ADSGoogle Scholar
  135. N.J. Nelson, M.S. Miesch, Generating buoyant magnetic flux ropes in solar-like convective dynamos. Plasma Phys. Control. Fusion 56, 064004 (2014) ADSGoogle Scholar
  136. N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Buoyant magnetic loops generated by global convective dynamo action. Sol. Phys. 289, 441–458 (2013a) ADSGoogle Scholar
  137. N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Magnetic wreathes and cycles in convective dynamos. Astrophys. J. 762, 73 (2013b) ADSGoogle Scholar
  138. A.A. Norton, P. Charbonneau, D. Passos, Hemispheric coupling: comparing dynamo simulations and observations. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0100-4
  139. S.V. Olemskoy, L.L. Kitchatinov, Grand minima and North-South asymmetry of solar activity. Astrophys. J. 777, 71 (2013) ADSGoogle Scholar
  140. S.V. Olemskoy, A.R. Choudhuri, L.L. Kitchatinov, Fluctuations in the alpha-effect and grand solar minima. Astron. Rep. 57, 458–468 (2013) ADSGoogle Scholar
  141. A.J.H. Ossendrijver, P. Hoyng, D. Schmitt, Stochastic excitation and memory of the solar dynamo. Astrophys. J. 313, 938–948 (1996) ADSGoogle Scholar
  142. A.J.H. Ossendrijver, M. Stix, A. Brandenburg, G. Rüdiger, Magnetoconvection and dynamo coefficients. Dependence of the alpha effect on rotation and magnetic field. Astron. Astrophys. 376, 713–726 (2001) ADSGoogle Scholar
  143. A.J.H. Ossendrijver, M. Stix, A. Brandenburg, G. Rüdiger, Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field. Astron. Astrophys. 394, 735–745 (2002) ADSMATHGoogle Scholar
  144. E.N. Parker, Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955) ADSMathSciNetGoogle Scholar
  145. E.N. Parker, Solar magnetism: the state of our knowledge and ignorance. Space Sci. Rev. 144, 15–24 (2009) ADSGoogle Scholar
  146. D. Passos, P. Charbonneau, Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convection. Astron. Astrophys. 568, A113 (2014) ADSGoogle Scholar
  147. D. Passos, I. Lopes, A low-order solar dynamo model: inferred meridional circulation variations since 1750. Astrophys. J. 686, 1420–1425 (2008) ADSGoogle Scholar
  148. D. Passos, I. Lopes, Grand minima under the light of a low order dynamo model. J. Atmos. Sol.-Terr. Phys. 73, 191–197 (2011) ADSGoogle Scholar
  149. D. Passos, P. Charbonneau, P. Beaudoin, An exploration of non-kinematic effects in flux transport dynamos. Sol. Phys. 279, 1–22 (2012) ADSGoogle Scholar
  150. D. Passos, D. Nandy, S. Hazra, I. Lopes, A solar dynamo model driven by mean-field alpha and Babcock-Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys. 563, A18 (2014) ADSGoogle Scholar
  151. J. Pedlosky, Geophysical Fluid Dynamics, 2nd edn. (Springer, New York, 1987) MATHGoogle Scholar
  152. K. Petrovay, Topological pumping in the lower overshoot layer, in IAU Colloq. 130: The Sun and Cool Stars. Activity, Magnetism, Dynamos, ed. by I. Tuominen, D. Moss, G. Rüdiger. Lecture Notes in Physics, vol. 380 (Springer, Berlin, 1991), p. 67 Google Scholar
  153. M. Priyal, D. Banerjee, B.B. Karak, A. Muñoz-Jaramillo, B. Ravindra, A.R. Choudhuri, J. Singh, Polar network index as a magnetic proxy for the solar cycle studies. Astrophys. J. 793, L4 (2014) ADSGoogle Scholar
  154. E. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46 (2011) ADSGoogle Scholar
  155. K.H. Rädler, On the electrodynamics of conducting fluids in turbulent motion. II. Turbulent conductivity and turbulent permeability. Z. Naturforsch. Teil A, Phys. Phys. Chem. Kosmophys. 23, 1851–1860 (1968) ADSGoogle Scholar
  156. M. Rempel, Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622, 1320–1332 (2005) ADSGoogle Scholar
  157. M. Rempel, Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys. J. 647, 662–667 (2006) ADSGoogle Scholar
  158. M. Rempel, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15 (2011) ADSGoogle Scholar
  159. M. Rempel, M. Schüssler, Intensification of magnetic fields by conversion of potential energy. Astrophys. J. 552, L171–L174 (2001) ADSGoogle Scholar
  160. F.J. Robinson, K.L. Chan, A large-eddy simulation of turbulent compressible convection: differential rotation in the solar convection zone. Mon. Not. R. Astron. Soc. 321, 723–732 (2001) ADSGoogle Scholar
  161. I. Rogachevskii, N. Kleeorin, Magnetic fluctuations and formation of large-scale inhomogeneous magnetic structures in a turbulent convection. Phys. Rev. E 76, 056307 (2007) ADSMathSciNetGoogle Scholar
  162. G. Rüdiger, L.L. Kitchatinov, R. Arlt, The penetration of meridional flow into the tachocline and its meaning for the solar dynamo. Astron. Astrophys. 444, L53–L56 (2005) ADSGoogle Scholar
  163. A. Schad, J. Timmer, M. Roth, Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells. Astrophys. J. Lett. 778, L38 (2013) ADSGoogle Scholar
  164. J. Schou, R. Howe, S. Basu, J. Christensen-Dalsgaard et al., A comparison of solar p-mode parameters from the Michelson Doppler Imager and the global oscillation network group: splitting coefficients and rotation inversions. Astrophys. J. 567, 1234–1249 (2002) ADSGoogle Scholar
  165. C. Simard, P. Charbonneau, A. Bouchat, Magnetohydrodynamics simulation-driven kinematic mean-field models of the solar cycle. Astrophys. J. 768, 16 (2013) ADSGoogle Scholar
  166. H.C. Spruit, Motion of magnetic flux tubes in the solar convection zone and chromosphere. Astron. Astrophys. 98, 155–160 (1981). In: The Sun, the Solar Wind, and the Heliosphere: Proc. IAGA ADSMATHGoogle Scholar
  167. M. Steenbeck, F. Krause, On the dynamo theory of stellar and planetary magnetic fields. I. AC dynamos of solar type. Astron. Nachr. 291, 49–84 (1969) ADSMATHGoogle Scholar
  168. M. Steenbeck, F. Krause, K.-H. Rädler, Berechnung der mittleren Lorentz-Feldstärke v×B Für ein elektrisch leitendes medium in turbulenter, durch Coriolis-Kräfte beeinflußter bewegung Z(0). Z. Naturforsch. Teil A, Phys. Phys. Chem. Kosmophys. 21, 369 (1966) ADSGoogle Scholar
  169. R.F. Stein, A. Nordlund, On the formation of active regions. Astrophys. J. 753, L13 (2012) ADSGoogle Scholar
  170. J.O. Stenflo, A.G. Kosovichev, Bipolar magnetic regions on the sun: global analysis of the SOHO/MDI data set. Astrophys. J. 745, 129 (2012) ADSGoogle Scholar
  171. M. Stix, Differential rotation and the solar dynamo. Astron. Astrophys. 47, 243–254 (1976) ADSGoogle Scholar
  172. J.L. Tassoul, Theory of Rotating Stars (Princeton University Press, Princeton, 1978) Google Scholar
  173. M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the sun. Annu. Rev. Astron. Astrophys. 41, 599–643 (2003) ADSGoogle Scholar
  174. A.G. Tlatov, V.V. Vasil’eva, A.A. Pevtsov, Distribution of magnetic bipoles on the sun over three solar cycles. Astrophys. J. 717, 357–362 (2010) ADSGoogle Scholar
  175. S.M. Tobias, N.H. Brummell, T.L. Clune, J. Toomre, Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J. 549, 1183–1203 (2001) ADSGoogle Scholar
  176. S.M. Tobias, F. Cattaneo, S. Boldyrev, MHD dynamos and turbulence, in Ten Chapters in Turbulence, ed. by P. Davidson, Y. Kaneda, K. Sreenivasan (Cambridge University Press, Cambridge, 2013) Google Scholar
  177. R. Trampedach, R.F. Stein, The mass mixing length in convective stellar envelopes. Astrophys. J. 731, 78 (2011) ADSGoogle Scholar
  178. R.K. Ulrich, Solar meridional circulation from Doppler shifts of the FeI line at 5250 a as measured by the 150-foot solar tower telescope at the Mt. Wilson Observatory. Astrophys. J. 725, 658–669 (2010) ADSGoogle Scholar
  179. I.G. Usoskin, S.K. Solanki, G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301–309 (2007) ADSGoogle Scholar
  180. A.A. van Ballegooijen, The overshoot layer at the base of the solar convection zone and the problem of magnetic flux storage. Astron. Astrophys. 113, 99–112 (1982) ADSMATHGoogle Scholar
  181. G. Vasil, N. Brummell, Constraints on the magnetic buoyancy instabilities of a shear-generated magnetic layer. Astrophys. J. 690, 783–794 (2009) ADSGoogle Scholar
  182. M. Waldmeier, Mitt. Eidgenöss. Sternwarte Zür. 14, 105 (1935) Google Scholar
  183. Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the sun’s dipole moment—new twists to the Babcock-Leighton model. Astrophys. J. 375, 761–770 (1991) ADSGoogle Scholar
  184. Y.-M. Wang, N.R. Sheeley Jr., The solar wind and interplanetary field during very low amplitude sunspot cycles. Astrophys. J. 764, 90 (2013) ADSGoogle Scholar
  185. Y.-M. Wang, A.G. Nash, N.R. Sheeley Jr., Magnetic flux transport on the sun. Science 245, 712–718 (1989) ADSGoogle Scholar
  186. Y.-M. Wang, N.R. Sheeley Jr., A.G. Nash, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431–442 (1991) ADSGoogle Scholar
  187. M.A. Weber, Y. Fan, M.S. Miesch, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741, 11 (2011) ADSGoogle Scholar
  188. N.O. Weiss, Modulation of the sunspot cycle. Astron. Geophys. 51, 3.09–3.15 (2010) Google Scholar
  189. A.R. Yeates, A. Muñoz-Jaramillo, Kinematic active region formation in a three-dimensional solar dynamo model. Mon. Not. R. Astron. Soc. 436, 3366–3379 (2013) ADSGoogle Scholar
  190. A.R. Yeates, D. Nandy, D.H. Mackay, Exploring the physical basis of solar cycle predictions: flux transport dynamics and the persistence of memory in advection versus diffusion dominated solar convection zones. Astrophys. J. 673, 544–556 (2008) ADSGoogle Scholar
  191. H. Yoshimura, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740–748 (1975) ADSMathSciNetGoogle Scholar
  192. J. Zhao, A.G. Kosovichev, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the sun by time-distance helioseismology. Astrophys. J. 603, 776–784 (2004) ADSGoogle Scholar
  193. J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall, T. Hartlep, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun. Astrophys. J. Lett. 774, L29 (2013) ADSGoogle Scholar
  194. U. Ziegler, G. Rüdiger, Box simulations of rotating magnetoconvection. Effects of penetration and turbulent pumping. Astron. Astrophys. 401, 433–442 (2003) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bidya Binay Karak
    • 1
  • Jie Jiang
    • 2
  • Mark S. Miesch
    • 3
  • Paul Charbonneau
    • 4
  • Arnab Rai Choudhuri
    • 5
  1. 1.NORDITAKTH Royal Institute and Stockholm UniversityStockholmSweden
  2. 2.Key Laboratory of Solar Activity, National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  3. 3.High Altitude ObservatoryNCARBoulderUSA
  4. 4.Département de PhysiqueUniversité de MontréalMontréalCanada
  5. 5.Department of PhysicsIndian Institute of SciencesBangaloreIndia

Personalised recommendations