Skip to main content

Magnetic Flux Transport at the Solar Surface

  • Chapter
The Solar Activity Cycle

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 53))

  • 1434 Accesses

Abstract

After emerging to the solar surface, the Sun’s magnetic field displays a complex and intricate evolution. The evolution of the surface field is important for several reasons. One is that the surface field, and its dynamics, sets the boundary condition for the coronal and heliospheric magnetic fields. Another is that the surface evolution gives us insight into the dynamo process. In particular, it plays an essential role in the Babcock-Leighton model of the solar dynamo. Describing this evolution is the aim of the surface flux transport model. The model starts from the emergence of magnetic bipoles. Thereafter, the model is based on the induction equation and the fact that after emergence the magnetic field is observed to evolve as if it were purely radial. The induction equation then describes how the surface flows—differential rotation, meridional circulation, granular, supergranular flows, and active region inflows—determine the evolution of the field (now taken to be purely radial). In this paper, we review the modeling of the various processes that determine the evolution of the surface field. We restrict our attention to their role in the surface flux transport model. We also discuss the success of the model and some of the results that have been obtained using this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • V.I. Abramenko, Fractal multi-scale nature of solar/stellar magnetic fields, in IAU Symposium, ed. by A.G. Kosovichev, E. de Gouveia Dal Pino, Y. Yan, IAU Symposium, vol. 294 (2013), pp. 289–300. doi:10.1017/S1743921313002652

    Google Scholar 

  • V.I. Abramenko, V. Carbone, V. Yurchyshyn, P.R. Goode, R.F. Stein, F. Lepreti, V. Capparelli, A. Vecchio, Turbulent diffusion in the photosphere as derived from photospheric bright point motion. Astrophys. J. 743, 133 (2011). doi:10.1088/0004-637X/743/2/133

    ADS  Google Scholar 

  • H.W. Babcock, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J. 133, 572 (1961). doi:10.1086/147060

    ADS  Google Scholar 

  • H.W. Babcock, H.D. Babcock, The Sun’s magnetic field, 1952–1954. Astrophys. J. 121, 349 (1955). doi:10.1086/145994

    ADS  Google Scholar 

  • L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. (Space Phys.) 114, 7104 (2009). doi:10.1029/2009JA014299

    ADS  Google Scholar 

  • S. Basu, H.M. Antia, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488–495 (2010). doi:10.1088/0004-637X/717/1/488

    ADS  Google Scholar 

  • S. Basu, H.M. Antia, S.C. Tripathy, Ring diagram analysis of near-surface flows in the Sun. Astrophys. J. 512, 458–470 (1999). doi:10.1086/306765

    ADS  Google Scholar 

  • I. Baumann, S.K. Solanki, On the size distribution of sunspot groups in the Greenwich sunspot record 1874–1976. Astron. Astrophys. 443, 1061–1066 (2005). doi:10.1051/0004-6361:20053415

    ADS  Google Scholar 

  • I. Baumann, D. Schmitt, M. Schüssler, A necessary extension of the surface flux transport model. Astron. Astrophys. 446, 307–314 (2006). doi:10.1051/0004-6361:20053488

    ADS  Google Scholar 

  • I. Baumann, D. Schmitt, M. Schüssler, S.K. Solanki, Evolution of the large-scale magnetic field on the solar surface: a parameter study. Astron. Astrophys. 426, 1075–1091 (2004). doi:10.1051/0004-6361:20048024

    ADS  Google Scholar 

  • J.G. Beck, A comparison of differential rotation measurements—(Invited review). Sol. Phys. 191, 47–70 (2000). doi:10.1023/A:1005226402796

    ADS  Google Scholar 

  • T.J. Bogdan, P.A. Gilman, I. Lerche, R. Howard, Distribution of sunspot umbral areas—1917–1982. Astrophys. J. 327, 451–456 (1988). doi:10.1086/166206

    ADS  Google Scholar 

  • D.S. Brown, R.W. Nightingale, D. Alexander, C.J. Schrijver, T.R. Metcalf, R.A. Shine, A.M. Title, C.J. Wolfson, Observations of rotating sunspots from TRACE. Sol. Phys. 216, 79–108 (2003). doi:10.1023/A:1026138413791

    ADS  Google Scholar 

  • R. Cameron, M. Schüssler, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801–811 (2007). doi:10.1086/512049

    ADS  Google Scholar 

  • R. Cameron, A. Vögler, M. Schüssler, Decay of a simulated mixed-polarity magnetic field in the solar surface layers. Astron. Astrophys. 533, 86 (2011). doi:10.1051/0004-6361/201116974

    Google Scholar 

  • R.H. Cameron, M. Schüssler, Changes of the solar meridional velocity profile during cycle 23 explained by flows toward the activity belts. Astrophys. J. 720, 1030–1032 (2010). doi:10.1088/0004-637X/720/2/1030

    ADS  Google Scholar 

  • R.H. Cameron, M. Schüssler, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron. Astrophys. 548, 57 (2012). doi:10.1051/0004-6361/201219914

    Google Scholar 

  • R.H. Cameron, J. Jiang, D. Schmitt, M. Schüssler, Surface flux transport modeling for solar cycles 15–21: effects of cycle-dependent tilt angles of sunspot groups. Astrophys. J. 719, 264–270 (2010). doi:10.1088/0004-637X/719/1/264

    ADS  Google Scholar 

  • R.H. Cameron, M. Dasi-Espuig, J. Jiang, E. Işık, D. Schmitt, M. Schüssler, Limits to solar cycle predictability: cross-equatorial flux plumes. Astron. Astrophys. 557, 141 (2013). doi:10.1051/0004-6361/201321981

    ADS  Google Scholar 

  • R.H. Cameron, J. Jiang, M. Schüssler, L. Gizon, Physical causes of solar cycle amplitude variability. J. Geophys. Res. (Space Phys.) 119, 680–688 (2014). doi:10.1002/2013JA019498

    ADS  Google Scholar 

  • R. Centeno, H. Socas-Navarro, B. Lites, M. Kubo, Z. Frank, R. Shine, T. Tarbell, A. Title, K. Ichimoto, S. Tsuneta, Y. Katsukawa, Y. Suematsu, T. Shimizu, S. Nagata, Emergence of small-scale magnetic loops in the quiet-Sun internetwork. Astrophys. J. Lett. 666, 137–140 (2007). doi:10.1086/521726

    ADS  Google Scholar 

  • J. Chae, Y.E. Litvinenko, T. Sakurai, Determination of magnetic diffusivity from high-resolution solar magnetograms. Astrophys. J. 683, 1153–1159 (2008). doi:10.1086/590074

    ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi:10.12942/lrsp-2010-3

    ADS  Google Scholar 

  • P. Chatterjee, D. Nandy, A.R. Choudhuri, Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron. Astrophys. 427, 1019–1030 (2004). doi:10.1051/0004-6361:20041199

    ADS  Google Scholar 

  • M.C.M. Cheung, M. Schüssler, T.D. Tarbell, A.M. Title, Solar surface emerging flux regions: a comparative study of radiative MHD modeling and hinode SOT observations. Astrophys. J. 687, 1373–1387 (2008). doi:10.1086/591245

    ADS  Google Scholar 

  • M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010). doi:10.1088/0004-637X/720/1/233

    ADS  Google Scholar 

  • A.R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  • A.R. Choudhuri, P.A. Gilman, The influence of the Coriolis force on flux tubes rising through the solar convection zone. Astrophys. J. 316, 788–800 (1987). doi:10.1086/165243

    ADS  Google Scholar 

  • T. Corbard, M.J. Thompson, The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Sol. Phys. 205, 211–229 (2002). doi:10.1023/A:1014224523374

    ADS  Google Scholar 

  • S. Danilovic, B. Beeck, A. Pietarila, M. Schüssler, S.K. Solanki, V. Martínez Pillet, J.A. Bonet, J.C. del Toro Iniesta, V. Domingo, P. Barthol, T. Berkefeld, A. Gandorfer, M. Knölker, W. Schmidt, A.M. Title, Transverse component of the magnetic field in the solar photosphere observed by SUNRISE. Astrophys. J. Lett. 723, 149–153 (2010). doi:10.1088/2041-8205/723/2/L149

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, 7 (2010). doi:10.1051/0004-6361/201014301

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle (Corrigendum). Astron. Astrophys. 556, 3 (2013). doi:10.1051/0004-6361/201014301e

    ADS  Google Scholar 

  • A.G. de Wijn, J.O. Stenflo, S.K. Solanki, S. Tsuneta, Small-scale solar magnetic fields. Space Sci. Rev. 144, 275–315 (2009). doi:10.1007/s11214-008-9473-6

    ADS  Google Scholar 

  • C.R. DeVore, The decay of the large-scale solar magnetic field. Sol. Phys. 112, 17–35 (1987). doi:10.1007/BF00148484

    ADS  Google Scholar 

  • C.R. DeVore, N.R. Sheeley Jr., Simulations of the Sun’s polar magnetic fields during sunspot cycle 21. Sol. Phys. 108, 47–59 (1987). doi:10.1007/BF00152076

    ADS  Google Scholar 

  • C.R. DeVore, J.P. Boris, N.R. Sheeley Jr., The concentration of the large-scale solar magnetic field by a meridional surface flow. Sol. Phys. 92, 1–14 (1984). doi:10.1007/BF00157230

    ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, R.K. Ulrich, Physical origin of differences among various measures of solar meridional circulation. Astrophys. J. 722, 774–778 (2010). doi:10.1088/0004-637X/722/1/774

    ADS  Google Scholar 

  • I. Domínguez Cerdeña, Evidence of mesogranulation from magnetograms of the Sun. Astron. Astrophys. 412, 65–68 (2003). doi:10.1051/0004-6361:20034617

    Google Scholar 

  • C.J. Durrant, J. McCloughan, A method of evolving synoptic maps of the solar magnetic field, II. Comparison with observations of the polar fields. Sol. Phys. 219, 55–78 (2004). doi:10.1023/B:SOLA.0000021830.88336.86

    ADS  Google Scholar 

  • C.J. Durrant, J.M. Kress, P.R. Wilson, The evolution of trailing plumes from active regions. Sol. Phys. 201, 57–69 (2001). doi:10.1023/A:1010393806958

    ADS  Google Scholar 

  • T.L. Duvall Jr., S.M. Jefferies, J.W. Harvey, M.A. Pomerantz, Time-distance helioseismology. Nature 362, 430–432 (1993). doi:10.1038/362430a0

    ADS  Google Scholar 

  • F.W. Dyson, E.W. Maunder, Sun, axis, the position of, from photographs, 1874–1912. Mon. Not. R. Astron. Soc. 73, 673 (1913)

    ADS  Google Scholar 

  • Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6(4) (2009). doi:10.12942/lrsp-2009-4. http://www.livingreviews.org/lrsp-2009-4

  • P.M. Giles, T.L. Duvall Jr., A.G. Kosovichev, Solar rotation and large-scale flows determined by time-distance helioseismology MDI, in New Eyes to See Inside the Sun and Stars, ed. by F.-L. Deubner, J. Christensen-Dalsgaard, D. Kurtz, IAU Symposium, vol. 185 (1998), p. 149

    Google Scholar 

  • P.M. Giles, T.L. Duvall, P.H. Scherrer, R.S. Bogart, A subsurface flow of material from the Sun’s equator to its poles. Nature 390, 52–54 (1997). doi:10.1038/36294

    ADS  Google Scholar 

  • L. Gizon, Helioseismology of time-varying flows through the solar cycle. Sol. Phys. 224, 217–228 (2004). doi:10.1007/s11207-005-4983-9

    ADS  Google Scholar 

  • L. Gizon, A.C. Birch, Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005). doi:10.12942/lrsp-2005-6

    ADS  Google Scholar 

  • L. Gizon, M. Rempel, Observation and modeling of the solar-cycle variation of the meridional flow. Sol. Phys. 251, 241–250 (2008). doi:10.1007/s11207-008-9162-3

    ADS  Google Scholar 

  • L. Gizon, A.C. Birch, H.C. Spruit, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289–338 (2010). doi:10.1146/annurev-astro-082708-101722

    ADS  Google Scholar 

  • L. Gizon, T.L. Duvall, J. Schou, Wave-like properties of solar supergranulation. Nature 421, 43–44 (2003). doi:10.1038/nature01287

    ADS  Google Scholar 

  • L. Gizon, T.L. Duvall Jr., R.M. Larsen, Probing surface flows and magnetic activity with time-distance helioseismology, in Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, ed. by P. Brekke, B. Fleck, J.B. Gurman, IAU Symposium, vol. 203 (2001), p. 189

    Google Scholar 

  • I. González Hernández, S. Kholikov, F. Hill, R. Howe, R. Komm, Subsurface meridional circulation in the active belts. Sol. Phys. 252, 235–245 (2008). doi:10.1007/s11207-008-9264-y

    ADS  Google Scholar 

  • I. González Hernández, R. Howe, R. Komm, F. Hill, Meridional circulation during the extended solar minimum: another component of the torsional oscillation? Astrophys. J. Lett. 713, 16–20 (2010). doi:10.1088/2041-8205/713/1/L16

    ADS  Google Scholar 

  • L. Győri, T. Baranyi, A. Ludmány, Photospheric data programs at the Debrecen Observatory, in IAU Symposium, ed. by D. Prasad Choudhary, K.G. Strassmeier, IAU Symposium, vol. 273 (2011), pp. 403–407. doi:10.1017/S174392131101564X

    Google Scholar 

  • M. Hagenaar, M. Cheung, Magnetic flux emergence on different scales, in The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding, ed. by B. Lites, M. Cheung, T. Magara, J. Mariska, K. Reeves, Astronomical Society of the Pacific Conference Series, vol. 415 (2009), p. 167

    Google Scholar 

  • D.H. Hathaway, Doppler measurements of the Sun’s meridional flow. Astrophys. J. 460, 1027 (1996). doi:10.1086/177029

    ADS  Google Scholar 

  • D.H. Hathaway, L. Rightmire, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350 (2010). doi:10.1126/science.1181990

    ADS  Google Scholar 

  • D.H. Hathaway, L. Rightmire, Variations in the axisymmetric transport of magnetic elements on the Sun: 1996–2010. Astrophys. J. 729, 80 (2011). doi:10.1088/0004-637X/729/2/80

    ADS  Google Scholar 

  • D.H. Hathaway, L. Upton, O. Colegrove, Giant convection cells found on the Sun. Science 342, 1217–1219 (2013). doi:10.1126/science.1244682

    ADS  Google Scholar 

  • R. Howard, P.A. Gilman, Meridional motions of sunspots and sunspot groups. Astrophys. J. 307, 389–394 (1986). doi:10.1086/164425

    ADS  Google Scholar 

  • R. Howard, J. Harvey, Spectroscopic determinations of solar rotation. Sol. Phys. 12, 23–51 (1970). doi:10.1007/BF02276562

    ADS  Google Scholar 

  • R. Howard, B.J. Labonte, The sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett. 239, 33–36 (1980). doi:10.1086/183286

    ADS  Google Scholar 

  • R. Howard, P.I. Gilman, P.A. Gilman, Rotation of the sun measured from Mount Wilson white-light images. Astrophys. J. 283, 373–384 (1984). doi:10.1086/162315

    ADS  Google Scholar 

  • R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009). doi:10.12942/lrsp-2009-1

    ADS  Google Scholar 

  • R. Howe, F. Hill, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, R. Ulrich, The torsional oscillation and the new solar cycle. J. Phys. Conf. Ser. 271(1), 012074 (2011). doi:10.1088/1742-6596/271/1/012074

    ADS  Google Scholar 

  • D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998). doi:10.1023/A:1005056326158

    ADS  Google Scholar 

  • R. Ishikawa, S. Tsuneta, J. Jurčák, Three-dimensional view of transient horizontal magnetic fields in the photosphere. Astrophys. J. 713, 1310–1321 (2010). doi:10.1088/0004-637X/713/2/1310

    ADS  Google Scholar 

  • S. Jafarzadeh, S.K. Solanki, A. Lagg, L.R. Bellot Rubio, M. van Noort, A. Feller, S. Danilovic, Astron. Astrophys. (2014, submitted)

    Google Scholar 

  • S. Jafarzadeh, R.H. Cameron, S.K. Solanki, A. Pietarila, A. Feller, A. Lagg, A. Gandorfer, Migration of ca ii h bright points in the internetwork. Astron. Astrophys. 563, 101 (2014). doi:10.1051/0004-6361/201323011

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, M. Schüssler, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5 (2014). doi:10.1088/0004-637X/791/1/5

    ADS  Google Scholar 

  • J. Jiang, P. Chatterjee, A.R. Choudhuri, Solar activity forecast with a dynamo model. Mon. Not. R. Astron. Soc. 381, 1527–1542 (2007). doi:10.1111/j.1365-2966.2007.12267.x

    ADS  Google Scholar 

  • J. Jiang, R. Cameron, D. Schmitt, M. Schüssler, Modeling the Sun’s open magnetic flux and the heliospheric current sheet. Astrophys. J. 709, 301–307 (2010a). doi:10.1088/0004-637X/709/1/301

    ADS  Google Scholar 

  • J. Jiang, E. Işik, R.H. Cameron, D. Schmitt, M. Schüssler, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597–602 (2010b). doi:10.1088/0004-637X/717/1/597

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, D. Schmitt, M. Schüssler, The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys. 528, 82 (2011a). doi:10.1051/0004-6361/201016167

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, D. Schmitt, M. Schüssler, The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron. Astrophys. 528, 83 (2011b). doi:10.1051/0004-6361/201016168

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, D. Schmitt, M. Schüssler, Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev. 176, 289–298 (2013a). doi:10.1007/s11214-011-9783-y

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, D. Schmitt, E. Işık, Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Astrophys. 553, 128 (2013b). doi:10.1051/0004-6361/201321145

    ADS  Google Scholar 

  • C. Jin, J. Wang, M. Zhao, Vector magnetic fields of solar granulation. Astrophys. J. 690, 279–287 (2009). doi:10.1088/0004-637X/690/1/279

    ADS  Google Scholar 

  • R.W. Komm, R.F. Howard, J.W. Harvey, Meridional flow of small photospheric magnetic features. Sol. Phys. 147, 207–223 (1993a). doi:10.1007/BF00690713

    ADS  Google Scholar 

  • R.W. Komm, R.F. Howard, J.W. Harvey, Rotation rates of small magnetic features from two- and one-dimensional cross-correlation analyses. Sol. Phys. 145, 1–10 (1993b). doi:10.1007/BF00627979

    ADS  Google Scholar 

  • R. Komm, R. Howe, B.R. Durney, F. Hill, Temporal variation of angular momentum in the solar convection zone. Astrophys. J. 586, 650–662 (2003). doi:10.1086/367608

    ADS  Google Scholar 

  • R.B. Leighton, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547 (1964). doi:10.1086/148058

    ADS  MATH  Google Scholar 

  • R.B. Leighton, R.W. Noyes, G.W. Simon, Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474 (1962). doi:10.1086/147285

    ADS  Google Scholar 

  • J. Li, R.K. Ulrich, Long-term measurements of sunspot magnetic tilt angles. Astrophys. J. 758, 115 (2012). doi:10.1088/0004-637X/758/2/115

    ADS  Google Scholar 

  • B.W. Lites, M. Kubo, H. Socas-Navarro, T. Berger, Z. Frank, R. Shine, T. Tarbell, A. Title, K. Ichimoto, Y. Katsukawa, S. Tsuneta, Y. Suematsu, T. Shimizu, S. Nagata, The horizontal magnetic flux of the quiet-Sun internetwork as observed with the hinode spectro-polarimeter. Astrophys. J. 672, 1237–1253 (2008). doi:10.1086/522922

    ADS  Google Scholar 

  • D. Mackay, A. Yeates, The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Sol. Phys. 9, 6 (2012). doi:10.12942/lrsp-2012-6

    ADS  Google Scholar 

  • D.H. Mackay, E.R. Priest, M. Lockwood, The evolution of the Sun’s open magnetic flux—I. A single bipole. Sol. Phys. 207, 291–308 (2002a). doi:10.1023/A:1016249917230

    ADS  Google Scholar 

  • D.H. Mackay, E.R. Priest, M. Lockwood, The evolution of the Sun’s open magnetic flux—II. Full solar cycle simulations. Sol. Phys. 209, 287–309 (2002b). doi:10.1023/A:1021230604497

    ADS  Google Scholar 

  • V. Martinez Pillet, B.W. Lites, A. Skumanich, Active region magnetic fields. I. Plage fields. Astrophys. J. 474, 810 (1997). doi:10.1086/303478

    ADS  Google Scholar 

  • J. McCloughan, C.J. Durrant, A method of evolving synoptic maps of the solar magnetic field. Sol. Phys. 211, 53–76 (2002). doi:10.1023/A:1022400324489

    ADS  Google Scholar 

  • N. Meunier, Large-scale dynamics of active regions and small photospheric magnetic features. Astrophys. J. 527, 967–976 (1999). doi:10.1086/308111

    ADS  Google Scholar 

  • N. Meunier, Magnetic network dynamics: activity level, feature size and anchoring depth. Astron. Astrophys. 436, 1075–1086 (2005). doi:10.1051/0004-6361:20042414

    ADS  Google Scholar 

  • M.S. Miesch, Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1 (2005). doi:10.12942/lrsp-2005-1

    ADS  Google Scholar 

  • J.M. Mosher, The magnetic history of solar active regions, Ph.D. thesis, California Institute of Technology, Pasadena, 1977

    Google Scholar 

  • A. Muñoz-Jaramillo, M. Dasi-Espuig, L.A. Balmaceda, E.E. DeLuca, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett. 767, 25 (2013). doi:10.1088/2041-8205/767/2/L25

    ADS  Google Scholar 

  • H.W. Newton, M.L. Nunn, The Sun’s rotation derived from sunspots 1934–1944 and additional results. Mon. Not. R. Astron. Soc. 111, 413 (1951)

    ADS  Google Scholar 

  • Å. Nordlund, R.F. Stein, M. Asplund, Solar surface convection. Living Rev. Sol. Phys. 6, 2 (2009). doi:10.12942/lrsp-2009-2

    ADS  Google Scholar 

  • E.N. Parker, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491 (1955). doi:10.1086/146010

    ADS  Google Scholar 

  • M. Rempel, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15 (2011). doi:10.1088/0004-637X/740/1/15

    ADS  Google Scholar 

  • M. Rieutord, F. Rincon, The Sun’s supergranulation. Living Rev. Sol. Phys. 7, 2 (2010). doi:10.12942/lrsp-2010-2

    ADS  Google Scholar 

  • L. Rightmire-Upton, D.H. Hathaway, K. Kosak, Measurements of the Sun’s high-latitude meridional circulation. Astrophys. J. 761, 14 (2012). doi:10.1088/2041-8205/761/1/L14

    ADS  Google Scholar 

  • G. Rüdiger, M. Küker, R.S. Schnerr, Cross helicity at the solar surface by simulations and observations. Astron. Astrophys. 546, 23 (2012). doi:10.1051/0004-6361/201219268

    Google Scholar 

  • K.H. Schatten, S. Sofia, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14, 632–635 (1987). doi:10.1029/GL014i006p00632

    ADS  Google Scholar 

  • K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411–414 (1978). doi:10.1029/GL005i005p00411

    ADS  Google Scholar 

  • P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer, MDI Engineering Team, The solar oscillations investigation—Michelson Doppler Imager. Sol. Phys. 162, 129–188 (1995). doi:10.1007/BF00733429

    ADS  Google Scholar 

  • P.H. Scherrer, J. Schou, R.I. Bush, A.G. Kosovichev, R.S. Bogart, J.T. Hoeksema, Y. Liu, T.L. Duvall, J. Zhao, A.M. Title, C.J. Schrijver, T.D. Tarbell, S. Tomczyk, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol. Phys. 275, 207–227 (2012). doi:10.1007/s11207-011-9834-2

    ADS  Google Scholar 

  • J. Schou, Migration of zonal flows detected using Michelson Doppler Imager f-mode frequency splittings. Astrophys. J. Lett. 523, 181–184 (1999). doi:10.1086/312279

    ADS  Google Scholar 

  • J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. di Mauro, W.A. Dziembowski, A. Eff-Darwich, D.O. Gough, D.A. Haber, J.T. Hoeksema, R. Howe, S.G. Korzennik, A.G. Kosovichev, R.M. Larsen, F.P. Pijpers, P.H. Scherrer, T. Sekii, T.D. Tarbell, A.M. Title, M.J. Thompson, J. Toomre, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417 (1998). doi:10.1086/306146

    ADS  Google Scholar 

  • J. Schou, P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, M.C. Rabello-Soares, R.S. Bogart, J.T. Hoeksema, Y. Liu, T.L. Duvall, D.J. Akin, B.A. Allard, J.W. Miles, R. Rairden, R.A. Shine, T.D. Tarbell, A.M. Title, C.J. Wolfson, D.F. Elmore, A.A. Norton, S. Tomczyk, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 275, 229–259 (2012). doi:10.1007/s11207-011-9842-2

    ADS  Google Scholar 

  • C.J. Schrijver, Simulations of the photospheric magnetic activity and outer atmospheric radiative losses of cool stars based on characteristics of the solar magnetic field. Astrophys. J. 547, 475–490 (2001). doi:10.1086/318333

    ADS  Google Scholar 

  • C.J. Schrijver, M.L. De Rosa, Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003). doi:10.1023/A:1022908504100

    ADS  Google Scholar 

  • C.J. Schrijver, Y. Liu, The global solar magnetic field through a full sunspot cycle: observations and model results. Sol. Phys. 252, 19–31 (2008). doi:10.1007/s11207-008-9240-6

    ADS  Google Scholar 

  • C.J. Schrijver, S.F. Martin, Properties of the large- and small-scale flow patterns in and around AR 19824. Sol. Phys. 129, 95–112 (1990). doi:10.1007/BF00154367

    ADS  Google Scholar 

  • C.J. Schrijver, M.L. De Rosa, A.M. Title, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577, 1006–1012 (2002). doi:10.1086/342247

    ADS  Google Scholar 

  • C.J. Schrijver, R.A. Shine, H.J. Hagenaar, N.E. Hurlburt, A.M. Title, L.H. Strous, S.M. Jefferies, A.R. Jones, J.W. Harvey, T.L. Duvall Jr., Dynamics of the chromospheric network: mobility, dispersal, and diffusion coefficients. Astrophys. J. 468, 921 (1996). doi:10.1086/177747

    ADS  Google Scholar 

  • M. Schüssler, I. Baumann, Modeling the Sun’s open magnetic flux. Astron. Astrophys. 459, 945–953 (2006). doi:10.1051/0004-6361:20065871

    ADS  Google Scholar 

  • M. Schüssler, M. Rempel, The dynamical disconnection of sunspots from their magnetic roots. Astron. Astrophys. 441, 337–346 (2005). doi:10.1051/0004-6361:20052962

    ADS  Google Scholar 

  • M. Schüssler, A. Vögler, Strong horizontal photospheric magnetic field in a surface dynamo simulation. Astron. Astrophys. 481, 5–8 (2008). doi:10.1051/0004-6361:20078998

    Google Scholar 

  • M. Schüssler, P. Caligari, A. Ferriz-Mas, F. Moreno-Insertis, Instability and eruption of magnetic flux tubes in the solar convection zone. Astron. Astrophys. 281, 69–72 (1994)

    ADS  Google Scholar 

  • N.R. Sheeley Jr., Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev. Sol. Phys. 2, 5 (2005). doi:10.12942/lrsp-2005-5

    ADS  Google Scholar 

  • N.R. Sheeley Jr., C.R. DeVore, J.P. Boris, Simulations of the mean solar magnetic field during sunspot cycle 21. Sol. Phys. 98, 219–239 (1985). doi:10.1007/BF00152457

    ADS  Google Scholar 

  • K.R. Sivaraman, S.S. Gupta, R.F. Howard, Measurement of Kodaikanal white-light images. I—A comparison of 35 years of Kodaikanal and Mount Wilson sunspot data. Sol. Phys. 146, 27–47 (1993). doi:10.1007/BF00662168

    ADS  Google Scholar 

  • H.B. Snodgrass, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288–299 (1983). doi:10.1086/161121

    ADS  Google Scholar 

  • H.B. Snodgrass, Separation of large-scale photospheric Doppler patterns. Sol. Phys. 94, 13–31 (1984). doi:10.1007/BF00154804

    ADS  Google Scholar 

  • H.B. Snodgrass, R. Howard, L. Webster, Recalibration of Mount Wilson Doppler measurements (Research note). Sol. Phys. 90, 199–202 (1984). doi:10.1007/BF00153796

    ADS  Google Scholar 

  • S.K. Solanki, The origin and the diagnostic capabilities of the Stokes V asymmetry observed in solar faculae and the network. Astron. Astrophys. 224, 225–241 (1989)

    ADS  Google Scholar 

  • S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006). doi:10.1088/0034-4885/69/3/R02

    ADS  Google Scholar 

  • S.K. Solanki, M. Schüssler, M. Fligge, Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408, 445–447 (2000). doi:10.1038/408445a

    ADS  Google Scholar 

  • S.K. Solanki, T. Wenzler, D. Schmitt, Moments of the latitudinal dependence of the sunspot cycle: a new diagnostic of dynamo models. Astron. Astrophys. 483, 623–632 (2008). doi:10.1051/0004-6361:20054282

    ADS  Google Scholar 

  • S.K. Solanki, D. Zufferey, H. Lin, I. Rueedi, J.R. Kuhn, Infrared lines as probes of solar magnetic features. XII. Magnetic flux tubes: evidence of convective collapse? Astron. Astrophys. 310, 33–36 (1996)

    ADS  Google Scholar 

  • S.K. Solanki, P. Barthol, S. Danilovic, A. Feller, A. Gandorfer, J. Hirzberger, T.L. Riethmüller, M. Schüssler, J.A. Bonet, V. Martínez Pillet, J.C. del Toro Iniesta, V. Domingo, J. Palacios, M. Knölker, N. Bello González, T. Berkefeld, M. Franz, W. Schmidt, A.M. Title, SUNRISE: instrument, mission, data, and first results. Astrophys. J. Lett. 723, 127–133 (2010). doi:10.1088/2041-8205/723/2/L127

    ADS  Google Scholar 

  • H.C. Spruit, Origin of the torsional oscillation pattern of solar rotation. Sol. Phys. 213, 1–21 (2003). doi:10.1023/A:1023202605379

    ADS  Google Scholar 

  • R.F. Stein, A. Lagerfjärd, Å. Nordlund, D. Georgobiani, Solar flux emergence simulations. Sol. Phys. 268, 271–282 (2011). doi:10.1007/s11207-010-9510-y

    ADS  Google Scholar 

  • J.O. Stenflo, A.G. Kosovichev, Bipolar magnetic regions on the Sun: global analysis of the SOHO/MDI data set. Astrophys. J. 745, 129 (2012). doi:10.1088/0004-637X/745/2/129

    ADS  Google Scholar 

  • L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, 1104 (2005). doi:10.1029/2004GL021664

    ADS  Google Scholar 

  • M.J. Thompson, J. Toomre, E.R. Anderson, H.M. Antia, G. Berthomieu, D. Burtonclay, S.M. Chitre, J. Christensen-Dalsgaard, T. Corbard, M. De Rosa, C.R. Genovese, D.O. Gough, D.A. Haber, J.W. Harvey, F. Hill, R. Howe, S.G. Korzennik, A.G. Kosovichev, J.W. Leibacher, F.P. Pijpers, J. Provost, E.J. Rhodes Jr., J. Schou, T. Sekii, P.B. Stark, P.R. Wilson, Differential rotation and dynamics of the solar interior. Science 272, 1300–1305 (1996). doi:10.1126/science.272.5266.1300

    ADS  Google Scholar 

  • L. Tian, Y. Liu, H. Wang, Latitude and magnetic flux dependence of the tilt angle of bipolar regions. Sol. Phys. 215, 281–293 (2003)

    ADS  Google Scholar 

  • A.M. Title, T.D. Tarbell, K.P. Topka, On the relation between magnetic field structures and granulation. Astrophys. J. 317, 892–899 (1987). doi:10.1086/165339

    ADS  Google Scholar 

  • S. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, A. Title, R. Shine, W. Rosenberg, C. Hoffmann, B. Jurcevich, G. Kushner, M. Levay, B. Lites, D. Elmore, T. Matsushita, N. Kawaguchi, H. Saito, I. Mikami, L.D. Hill, J.K. Owens, The solar optical telescope for the Hinode mission: an overview. Sol. Phys. 249, 167–196 (2008). doi:10.1007/s11207-008-9174-z

    ADS  Google Scholar 

  • J. Tuominen, Die systematische Strombewegung der Sonnenflecke in heliographischer Breite. Mit 1 Abbildung. Z. Astrophys. 21, 96 (1942)

    ADS  Google Scholar 

  • J. Tuominen, J. Kyrolainen, On the latitude drift of sunspot groups and solar rotation. Sol. Phys. 79, 161–172 (1982). doi:10.1007/BF00146980

    ADS  Google Scholar 

  • R.K. Ulrich, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 å as measured by the 150-foot solar tower telescope at the Mt. Wilson observatory. Astrophys. J. 725, 658–669 (2010). doi:10.1088/0004-637X/725/1/658

    ADS  Google Scholar 

  • R.K. Ulrich, J.E. Boyden, L. Webster, S.P. Padilla, H.B. Snodgrass, Solar rotation measurements at Mount Wilson. V—Reanalysis of 21 years of data. Sol. Phys. 117, 291–328 (1988). doi:10.1007/BF00147250

    ADS  Google Scholar 

  • L. Upton, D.H. Hathaway, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014). doi:10.1088/0004-637X/780/1/5

    ADS  Google Scholar 

  • A.A. van Ballegooijen, N.P. Cartledge, E.R. Priest, Magnetic flux transport and the formation of filament channels on the Sun. Astrophys. J. 501, 866 (1998). doi:10.1086/305823

    ADS  Google Scholar 

  • M. Verma, C. Denker, Horizontal flow fields observed in Hinode G-band images IV. Statistical properties of the dynamical environment around pores. ArXiv e-prints (2014)

    Google Scholar 

  • A. Vögler, M. Schüssler, A solar surface dynamo. Astron. Astrophys. 465, 43–46 (2007). doi:10.1051/0004-6361:20077253

    Google Scholar 

  • S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002). doi:10.1126/science.1069190

    ADS  Google Scholar 

  • M. Waldmeier, Ergebnisse und Probleme der Sonnenforschung (1955)

    Google Scholar 

  • Y.-M. Wang, N.R. Sheeley, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. Lett. 694, 11–15 (2009). doi:10.1088/0004-637X/694/1/L11

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Average properties of bipolar magnetic regions during sunspot cycle 21. Sol. Phys. 124, 81–100 (1989). doi:10.1007/BF00146521

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the sun’s dipole moment—new twists to the Babcock-Leighton model. Astrophys. J. 375, 761–770 (1991). doi:10.1086/170240

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Sunspot activity and the long-term variation of the Sun’s open magnetic flux. J. Geophys. Res. (Space Phys.) 107, 1302 (2002). doi:10.1029/2001JA000500

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Modeling the Sun’s large-scale magnetic field during the Maunder minimum. Astrophys. J. 591, 1248–1256 (2003). doi:10.1086/375449

    ADS  Google Scholar 

  • Y.-M. Wang, J. Lean, N.R. Sheeley Jr., Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys. J. Lett. 577, 53–57 (2002). doi:10.1086/344196

    ADS  Google Scholar 

  • Y.-M. Wang, J.L. Lean, N.R. Sheeley Jr., Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005). doi:10.1086/429689

    ADS  Google Scholar 

  • Y.-M. Wang, A.G. Nash, N.R. Sheeley Jr., Evolution of the sun’s polar fields during sunspot cycle 21—poleward surges and long-term behavior. Astrophys. J. 347, 529–539 (1989). doi:10.1086/168143

    ADS  Google Scholar 

  • Y.-M. Wang, E. Robbrecht, N.R. Sheeley Jr., On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372–1386 (2009). doi:10.1088/0004-637X/707/2/1372

    ADS  Google Scholar 

  • F. Ward, Determination of the solar-rotation rate from the motion of identifiable features. Astrophys. J. 145, 416 (1966). doi:10.1086/148783

    ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741, 11 (2011). doi:10.1088/0004-637X/741/1/11

    ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, Comparing simulations of rising flux tubes through the solar convection zone with observations of solar active regions: constraining the dynamo field strength. Sol. Phys. 287, 239–263 (2013). doi:10.1007/s11207-012-0093-7

    ADS  Google Scholar 

  • N.O. Weiss, M.J. Thompson, The solar dynamo. Space Sci. Rev. 144, 53–66 (2009). doi:10.1007/s11214-008-9435-z

    ADS  Google Scholar 

  • B.T. Welsch, G.H. Fisher, X. Sun, A magnetic calibration of photospheric Doppler velocities. Astrophys. J. 765, 98 (2013). doi:10.1088/0004-637X/765/2/98

    ADS  Google Scholar 

  • R. Wolf, Abstract of his latest results. Mon. Not. R. Astron. Soc. 21, 77 (1861)

    ADS  Google Scholar 

  • J. Worden, J. Harvey, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Sol. Phys. 195, 247–268 (2000). doi:10.1023/A:1005272502885

    ADS  Google Scholar 

  • A.R. Yeates, Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Sol. Phys. 289, 631–648 (2014). doi:10.1007/s11207-013-0301-0

    ADS  Google Scholar 

  • A.R. Yeates, D.H. Mackay, Modelling the global solar corona: III. Origin of the hemispheric pattern of filaments. Sol. Phys. 254, 77–88 (2009). doi:10.1007/s11207-008-9276-7

    ADS  Google Scholar 

  • A.R. Yeates, D.H. Mackay, A.A. van Ballegooijen, Modelling the global solar corona: filament chirality observations and surface simulations. Sol. Phys. 245, 87–107 (2007). doi:10.1007/s11207-007-9013-7

    ADS  Google Scholar 

  • J. Zhao, A.G. Kosovichev, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time-distance helioseismology. Astrophys. J. 603, 776–784 (2004). doi:10.1086/381489

    ADS  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., T. Hartlep, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, 29 (2013). doi:10.1088/2041-8205/774/2/L29

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L. (2015). Magnetic Flux Transport at the Solar Surface. In: Balogh, A., Hudson, H., Petrovay, K., von Steiger, R. (eds) The Solar Activity Cycle. Space Sciences Series of ISSI, vol 53. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2584-1_17

Download citation

Publish with us

Policies and ethics