Skip to main content

Phase Transitions in Sugars and Protein Systems: Study of Stability of Lysozyme in Amorphous Sugar Matrices

  • Chapter
Water Stress in Biological, Chemical, Pharmaceutical and Food Systems

Part of the book series: Food Engineering Series ((FSES))

  • 2217 Accesses

Abstract

In the last decades, development of products resulting from the application of molecular biology and biotechnology has demonstrated accelerated progress; as a result, the use of biological products such as proteins and enzymes has increased considerably in the food and pharmaceutical industry (Wanh 2000). Since most of these biomolecules, particularly enzymes, are extremely sensible to changes in temperature, pH, ionic force, and water concentration, scientists in these fields are in constant search of new methodologies and techniques to improve their stability. In industrial processes, biomolecules are obtained in aqueous solutions; however, in this medium their shelf life is relatively short. A remarkable improvement in the stability of protein based drugs has been obtained when these biomolecules are taken to a dry state; unfortunately, the freeze drying or spray-drying processes (which are the most common used techniques to obtain dry protein) expose these molecules to extreme conditions that cause a considerable decrease in their activity (Passot et al. 2005; Liao et al. 2004; Hinrichs et al. 2001; Heller et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSC:

Differential scanning calorimetry

DTA:

Differential thermal analysis

T g :

Glass transition temperatures

T m :

Thermal stability

References

  • Angell A (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935

    Article  CAS  Google Scholar 

  • Bell LN, Hageman MJ, Muraoka LM (1995) Thermally induced denaturation of lyophilized bovine somatotropin and lysozyme as impacted by moisture and excipients. J Pharm Sci 84:707–712

    Article  CAS  Google Scholar 

  • Buitink J, Van den Dries IJ, Hoekstra FA, Alberda M, Hemminga MA (2000) High critical temperature above T g may contribute to the stability of biological systems. Biophys J 79(2):1119–1128

    Article  CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  CAS  Google Scholar 

  • Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. C R Biol 331(10):788–795

    Article  CAS  Google Scholar 

  • Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28:3916–3922

    Article  CAS  Google Scholar 

  • Crowe LM (1984) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol A 131:505–513

    Article  Google Scholar 

  • Crowe JH, Crowe LM, Womersley C, Mouradian R (1984) Preservation of functional integrity during long term storage of a biological membrane. Biochim Biophys Acta 778(3):615–617

    Article  Google Scholar 

  • Cueto M, Dorta MJ, Munguía O, Llabrés M (2003) New approach to stability assessment of protein solution formulations by differential scanning calorimetry. Int J Pharm 252:159–166

    Article  CAS  Google Scholar 

  • Duncan QM, Royal PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179:179–207

    Article  Google Scholar 

  • Fox KC (1995) Putting proteins under glass. Science 267:1922–1923

    Article  CAS  Google Scholar 

  • Green JL, Angell CA (1989) Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem 93:2880–2882

    Article  CAS  Google Scholar 

  • Grigera JR, Bolzicco V (2008) Molecular mobility and ageing of sugar glasses. Food Chem 106(4):1314–1317

    Article  CAS  Google Scholar 

  • Heller M, Carpenter J, Randolph T (1999) Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation. Biotechnol Bioeng 63(2):166–174

    Article  CAS  Google Scholar 

  • Higl B, Kurtmann L, Carlsen CU, Ratjen J, Först P, Skibsted LH, Ulrich K, Risbo J (2007) Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. Paracasei freeze-dried in a lactose matrix. Biotechnol Progr 23:794–800

    Article  CAS  Google Scholar 

  • Hinrichs WLJ, Prinsen MG, Frijlink HW (2001) Inulin glasses for the stabilization of therapeutic proteins. Int J Pharm 215:163–174

    Article  CAS  Google Scholar 

  • Liao Y-H, Brown MB, Martin GP (2004) Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations. Eur J Pharm Biopharm 58:15–24

    Article  CAS  Google Scholar 

  • Liao Y-H, Brown M, Quader A, Martin GP (2002a) Protective mechanism of stabilizing excipients against dehydration in the freeze-drying of proteins. Pharm Res 19(12):1854–1861

    Google Scholar 

  • Liao Y-H, Brown MB, Nazir T, Quader A, Martin GP (2002b) Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme. Pharm Res 19(12):1847–1853

    Article  CAS  Google Scholar 

  • Lumry R, Eyring H (1954) Conformation changes of proteins. J Phys Chem 58:110–120

    Article  CAS  Google Scholar 

  • Lu J, Wang X-J, Liu Y-X, Ching C (2007) Thermal and FTIR investigation of freeze-dried protein-excipient mixtures. J Therm Anal Calorim 89(3):913–919

    Article  CAS  Google Scholar 

  • Martínez LM, Videa M, Mederos F, Mesquita J (2007) Constructing a high-sensitivity, computer-interfaced, differential thermal analysis device for teaching and research. J Chem Educ 84(7):1222–1223

    Article  Google Scholar 

  • Martínez LM, Videa M, Mesquita, J (2013) Design, construction and calibration of a portable multi sample DTA setup. Thermochim. Acta 560:89–94

    Google Scholar 

  • Martínez LM, Videa M, Mederos F, de Moral Y (2011) Preservation effect of vitreous non reducing carbohydrates on the enzymatic activity, denaturation temperature and retention of native structure of Lysozyme. J Mex Chem Soc 55(3):185–189

    Google Scholar 

  • Nath S, Satpathy GR, Mantri R, Deep S, Ahluwalia J (1998) Thermal stability of alcohol dehydrogenase enzyme determined by activity assay and calorimetry. Thermochim Acta 309:193–196

    Article  CAS  Google Scholar 

  • Nicholls H (2004) Cash injection for thermostable vaccines. Drug Discov Today 9(22):945

    Article  Google Scholar 

  • Ohtake S, Wang J (2011) Trehalose: current use and future applications. J Pharm Sci 100(6):2020–2053

    Article  CAS  Google Scholar 

  • Oliver AE, Leprince O, Wolkers WF, Hincha DK, Heyer AG, Crowe JH (2001) Non-disaccharide-based mechanisms of protection during drying. Criobiology 43(2):151–167

    Article  CAS  Google Scholar 

  • Passot S, Fonseca F, Alarcon-Lorca M, Rolland D, Marin M (2005) Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Eur J Pharm Biopharm 60(3):335–348

    Article  CAS  Google Scholar 

  • Patist A, Zoerb H (2005) Preservation mechanisms of trehalose in food and biosystems. Colloids Surf 40(2):107–113

    Article  CAS  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898

    Article  CAS  Google Scholar 

  • Roos Y (1993) Melting and glass transitions of low molecular weight carbohydrates. Carbohydr Res 238:39–48

    Article  CAS  Google Scholar 

  • Sheri LS, Tang X, Chang L, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103(20):4113–4121

    Google Scholar 

  • Sochava IV (1997) Heat capacity and thermodynamic characteristics of denaturation and glass transition of hydrated and anhydrous proteins. Biophys Chem 69:31–41

    Article  CAS  Google Scholar 

  • Sun WQ, Davison P, Chan HSO (1998) Protein stability in the amorphous carbohydrate matrix: relevance to anyhydrobiosis. Biochim Biophys Acta 1425:245–254

    Article  CAS  Google Scholar 

  • Wanh W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  Google Scholar 

  • Wolkers WF, Oliver A, Tablin F, Crowe JH (2004) Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res 339(6):1077–1085

    Article  CAS  Google Scholar 

  • Worrall EE, Litamoi JK, Seck BM, Ayelet G (2001) Xerovac: an ultra rapid method for the dehydration and preservation of live attenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine 19:834–839

    Article  Google Scholar 

  • Zografi G, Saleki-Gerhardt A (1994) Non-isotthermal crystallization of sucrose from amorphous state. Pharm Res 11(8):1166–1173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martínez, L.M., Videa, M., Mederos, F., de Moral, Y., Mora, M., Pérez, C. (2015). Phase Transitions in Sugars and Protein Systems: Study of Stability of Lysozyme in Amorphous Sugar Matrices. In: Gutiérrez-López, G., Alamilla-Beltrán, L., del Pilar Buera, M., Welti-Chanes, J., Parada-Arias, E., Barbosa-Cánovas, G. (eds) Water Stress in Biological, Chemical, Pharmaceutical and Food Systems. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2578-0_22

Download citation

Publish with us

Policies and ethics