Thermal Decomposition of Polymeric Materials

  • Artur Witkowski
  • Anna A. Stec
  • T. Richard Hull


Most of unwanted fires are fuelled by polymeric materials, ranging from natural polymers found in wood, cotton or wool, to synthetic polymers (“plastics”) derived from crude oil, showing much greater flammability. Polymer molecules are too large to be volatile, but break down thermally, by chain scission and chain stripping, to release fuel to the vapour phase prior to ignition. Experimental and numerical methods for investigating polymer decomposition are reviewed, followed by a description of the chemical decomposition of individual polymers. In order to use flammable synthetic polymers in high risk applications, fire retardants are frequently added to meet regulatory requirements. The range of available fire retardants is described in relation to their different modes of action. This is followed by a description of the more common test methods used to assess the flammability of polymeric materials, including ignitability, flame spread and heat release rate, together with a summary of the importance of physical properties and char formation on their burning behaviour.


Flame Retardant Heat Release Rate Chain Scission Flame Spread Fire Retardant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ASTM E176, “Standard Terminology of Fire Standards”, in Annual Book of ASTM Standards, 4.07, American Society for Testing Materials, West Conshohocken.Google Scholar
  2. 2.
    J.M.G. Cowie and V. Arrighi, Polymers: Chemistry and Physics of Modern Materials, 3rd Edition, CRC Press, Boca Raton (2008).Google Scholar
  3. 3.
    S.I. Stoliarov, N. Safronava, and R.E. Lyon, “The effect of variation in polymer properties on the rate of burning”, Fire and Materials, 33, pp. 257–271 (2009).CrossRefGoogle Scholar
  4. 4.
    S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers, Techniques and Instrumentation in Analytical Chemistry, Volume 25, 1st Edition, Elsevier B.V (2005).Google Scholar
  5. 5.
    R.E. Lyon, “Plastics and Rubber”, In Handbook of Building Materials for Fire Protection, Harper CA (ed), McGraw-Hill, Chap 3:3.1–3.51 (2004).Google Scholar
  6. 6.
    B. Schartel and T.R. Hull, “Development of fire-retarded materials - Interpretation of cone calorimeter data”, Fire and Materials, 31 (5), pp. 327–354 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Fina and G. Camino, Ignition mechanisms in polymers and polymer nanocomposites, Polym. Adv. Technol., 22, 1147–1155, (2011)Google Scholar
  8. 8.
    S. L. Madorsky, Thermal Degradation of Organic Polymers, Interscience, John Wiley, New York (1964).Google Scholar
  9. 9.
    “Plastics – Thermogravimetry (TG) of polymers – General Principles”, ISO 11358 (1997).Google Scholar
  10. 10.
    P.G. Laye, Differential Thermal Analysis and Differential Scanning Calorimetry, in Principles of Thermal Analysis and Calorimetry, Edited by P.J. Haines, Royal Society of Chemistry, Cambridge, UK (2002).Google Scholar
  11. 11.
    ISO 11357–1 to 6:2005–2011 “Plastics - Differential scanning calorimetry (DSC) - Parts 1–6.Google Scholar
  12. 12.
    M. Reading, A. Luget, and R. Wilson, “Modulated differential scanning calorimetry”, Thermochimica Acta, 238, pp. 295–307 (1994).CrossRefGoogle Scholar
  13. 13.
    S. Zhang, T.R. Hull, A.R. Horrocks, G. Smart, B.K. Kandola, J. Ebdon, P. Joseph and B. Hunt: Thermal degradation analysis and XRD characterisation of fibre-forming synthetic polypropylene containing nanoclay: Polym.Degrad.Stab., 92, 727–732, (2007).Google Scholar
  14. 14.
    A. Witkowski, A.A. Stec and T.R. Hull, The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA, Polym. Degrad. Stab., 97, 2231–2240, (2012).Google Scholar
  15. 15.
    M. Sacristan, T.R. Hull, A.A. Stec, J.C. Ronda, M. Galia, and V. Cadiz, “Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches,” Polymer Degradation and Stability, 95, pp. 1269–1274 (2010).CrossRefGoogle Scholar
  16. 16.
    I.C. McNeill, L. Ackerman, S.N. Gupta, M. Zulfiquar, and S. Zulfiquar, “Part A: Polymer Chemistry”, Journal of Polymer Science, 15, p. 2381 (1977).Google Scholar
  17. 17.
    J.P. Lewicki, K. Pielichowski, P.T. De La Croix, B. Janowski, D. Todd, and J.J. Liggat, “Thermal degradation studies of polyurethane/POSS nanohybrid elastomers”, Polymer Degradation and Stability, 95, pp. 1099–105 (2010).CrossRefGoogle Scholar
  18. 18.
    ASTM D7309-11, “Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry” (2011).Google Scholar
  19. 19.
    R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman and T. Kashiwagi, “PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations”, Fire Mater., 24, 201–208, (2000).CrossRefGoogle Scholar
  21. 21.
    M.V. Petrova, F.A. Williams, A small detailed chemical-kinetic mechanism for hydrocarbon combustion, Combustion and Flame, 144, 526–544,(2006).CrossRefGoogle Scholar
  22. 22.
    R. E. Lyon, N. Safronava, and S. I. Stoliarov, The Role of Thermal Decomposition Kinetics in the Burning of Polymers. Proceedings of the 12th International Conference on Fire Science and Engineering (INTERFLAM), 2010.Google Scholar
  23. 23.
    L. Reich and S.S. Stivala, Elements of Polymer Degradation, McGraw-Hill, New York (1971).Google Scholar
  24. 24.
    K. McGrattan, R. McDermott, and W. Mell, et al., “Modeling the burning of complicated objects using Lagrangian particles”, in Conference proceedings of the twelfth international interflame conference, pp. 743–753 (2010).Google Scholar
  25. 25.
    R.E. Lyon, N. Safronava, and E. Oztekin, “A simple method for determining kinetic parameters for materials in fire models”, Fire Safety Science, 10, pp. 765–777 (2011).CrossRefGoogle Scholar
  26. 26.
    H. L. Friedman, “New methods for evaluating kinetic parameters from thermal analysis data”, Journal of Polymer Science, Polymer Letter 7(1), pp. 41–46 (1969).Google Scholar
  27. 27.
    C. Lautenberger, G. Rein, and C. Fernandez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data”, Fire Safety Journal, 41, pp. 204–214 (2006).CrossRefGoogle Scholar
  28. 28.
    G. Rein, C. Lautenberger, and C. Fernandez-Pello, “Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion”, Combustion and Flame, 146, pp. 95–108 (2006).CrossRefGoogle Scholar
  29. 29.
    A. Matala, S. Hostikka and J. Mangs, “Estimation of pyrolysis model parameters for solid materials using thermogravimetric data”, Fire Safety Science, 9, pp. 1213–1223 (2009).CrossRefGoogle Scholar
  30. 30.
    C. Lautenberger and C. Fernandez-Pello, “Generalized pyrolysis model for combustible solids”, Fire Safety Journal, 44, pp. 819–839 (2009).CrossRefGoogle Scholar
  31. 31.
    C. Lautenberger and C. Fernandez-Pello, “Optimization algorithms for material pyrolysis property estimation”, Fire Safety Science, 10, pp. 751–764 (2011).CrossRefGoogle Scholar
  32. 32.
    M. Chaos, M. M. Khan, and N. Krishnamoorthy, et al., “Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests”, Proceedings of the Combustion Institute, 33(2), pp. 2599–2606 (2011).Google Scholar
  33. 33.
    A.K. Galwey and M.E. Brown, “Arrhenius parameters and compensation behaviour in solid-state decompositions”, Thermochimica Acta, 300, pp. 107–115 (1997).CrossRefGoogle Scholar
  34. 34.
    A.V. Nikolaev, V.A. Logvinenko, and V.M. Gorbatchev, “Special features of the compensation effect in nonisothermal kinetics of solid-phase reactions”, Journal of Thermal Analysis, 6, pp. 473–577 (1974).CrossRefGoogle Scholar
  35. 35.
    A. Matala and S. Hostikka, “Pyrolysis modeling of PVC cable materials”, Fire Safety Science, 10, pp. 917–930 (2011).CrossRefGoogle Scholar
  36. 36.
    J.H. Flynn, in Encyclopedia of Polymer Science and Engineering, ed. H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges, pp. 690–723 (Suppl.), New York, Wiley (1989).Google Scholar
  37. 37.
    S. Vyazovkin and C.A. Wight, “Kinetics in Solids”, Annual Review of Physical Chemistry, 48,125-149 (1997).CrossRefGoogle Scholar
  38. 38.
    S. Vyazovkin, and C.A. Wight, “Model-free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data”, Thermochimica Acta, 340/341, pp. 53–68 (1999).Google Scholar
  39. 39.
    J.H. Flynn and L.A. Wall, “General Treatment of the Thermogravimetry of Polymers”, Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, 70A(6), pp. 487–523 (1966).CrossRefGoogle Scholar
  40. 40.
    A.K. Galwey and M.E. Brown, “Kinetic Background to Thermal Analysis and Calorimetry”, in Handbook of Thermal Analysis and Calorimetry, Volume 1, Principles and Practice (M.E. Brown, ed.), Elsevier, New York, pp. 147–224 (1998).Google Scholar
  41. 41.
    H.E. Kissinger, “Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis”, Journal of Research of the National Bureau of Standards, 57(4), pp. 217–221 (1956).CrossRefGoogle Scholar
  42. 42.
    H.E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Analytical Chemistry, 29(11), pp. 1702–1706 (1957).CrossRefGoogle Scholar
  43. 43.
    J.H. Flynn, “Temperature Dependence of the Rate of Reaction in Thermal Analysis”, Journal of Thermal Analysis, 36, pp. 1579–1573 (1990).CrossRefGoogle Scholar
  44. 44.
    T. Ozawa, “Kinetic Analysis of Derivative Curves in Thermal Analysis”, Journal of Thermal Analysis, 2, pp. 301–324 (1970).CrossRefGoogle Scholar
  45. 45.
    K.B. McGrattan, B. Klein, S. Hostikka, and J. Floyd, “Fire dynamics simulator (version 5) user’s guide”, NIST Special Publication 1019–5, National Institute of Standards and Technology, Gaithersburg, MD (2007).Google Scholar
  46. 46.
    G.R. Heal, “Thermogravimetry and Derivative Thermogravimetry in Principles of Thermal Analysis and Calorimetry”, (P. J. Haines, ed.), Royal Society of Chemistry, Cambridge, UK (2002).Google Scholar
  47. 47.
    J. Criado, M. Gonzalez, A. Ortega and C. Real, “Some considerations regarding the determination of the activation energy of solid-state reactions from a series of isothermal data”, Journal of Thermal Analysis, 29, pp. 243–250 (1984).CrossRefGoogle Scholar
  48. 48.
    F. Rogers and T. Ohlemiller, “Pyrolysis kinetics of a polyurethane foam by thermogravimetry; a general kinetic method”, Journal of Macromolecular Science, 1, pp. 169–185 (1981).CrossRefGoogle Scholar
  49. 49.
    J.H. Sharp and S.A. Wentworth, ”Kinetic analysis of thermogravimetric data,” Analytical Chemistry, 41, pp. 2060–2062 (1969).Google Scholar
  50. 50.
    B.N.N. Achar, G.W. Brindley and J.H. Sharp, “Kinetics and mechanism of dehydroxylation processes,” Proceedings of the International Clay Conference, p. 67, Jerusalem (1966).Google Scholar
  51. 51.
    E.S. Freeman and B. Carroll, “The Application of Thermoanalytical Decomposition of Calcium Oxalate Monohydrate,” Journal of Physical Chemistry, 62, pp. 394–397 (1958).CrossRefGoogle Scholar
  52. 52.
    E.S. Freeman and B. Carroll, “Interpretation of the kinetics of thermogravimetric analysis,” Journal of Physical Chemistry, 73, pp. 751–752 (1969).CrossRefGoogle Scholar
  53. 53.
    A.W. Coats and J.P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, 201, pp. 68–69 (1964).CrossRefGoogle Scholar
  54. 54.
    A.W. Coats and J.P. Redfern, “Kinetic parameters from thermogravimetric data. II.,” Journal of Polymer Science, Part B: Polymer Letter 3, pp. 917–920 (1965).Google Scholar
  55. 55.
    J.P. Elder, “The general applicability of the Kissinger equation in thermal analysis,” Journal of Thermal Analysis, 30, pp. 657–669 (1985).CrossRefGoogle Scholar
  56. 56.
    P. Simon, “Isoconversional methods: Fundamentals, meaning and application,” Journal of Thermal Analysis and Calorimetry, 76, pp. 123–132 (2004).CrossRefGoogle Scholar
  57. 57.
    J. Zsako, “Kinetic Analysis of Thermogravimetric Data, VI, Some Problems of Deriving Kinetic Parameters from TG Curves,” Journal of Thermal Analysis, 5, pp. 239–251 (1973).CrossRefGoogle Scholar
  58. 58.
    J. Zsako, “Kinetic analysis of thermogravimetric data XXIX. Remarks on the ‘many curves’ method,” Journal of Thermal Analysis, 46, pp. 1845–1864 (1996).CrossRefGoogle Scholar
  59. 59.
    S. Vyazovkin, “Computational aspects of kinetic analysis.: Part C. The ICTAC Kinetics Project — the light at the end of the tunnel?,” Thermochimica Acta, 355, pp. 155–163 (2000).CrossRefGoogle Scholar
  60. 60.
    A. Khawam and D.R. Flanagan, “Role of isoconversional methods in varying activation energies of solid-state kinetics. I. Isothermal kinetic studies,” Thermochimica Acta, 429, pp. 93–102 (2005).CrossRefGoogle Scholar
  61. 61.
    T. Ozawa, “A new method of analyzing thermogravimetric data,” Bulletin of the Chemical Society of Japan, 38, pp. 1881–1886 (1965).CrossRefGoogle Scholar
  62. 62.
    J.H. Flynn and L.A. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” Journal of Polymer Science, Part B: Polymer Letter, 4, pp. 323–328 (1966).Google Scholar
  63. 63.
    C. Doyle, “Kinetic analysis of thermogravimetric data”, Journal of Applied Polymer Science, Vol. 5, No. 15, pp. 285–292 (1961).CrossRefGoogle Scholar
  64. 64.
    S. Vyazovkin and D. Dollimore, “Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids,” Journal of Chemical Information and Computer Sciences, 36, pp. 42–45 (1996).CrossRefGoogle Scholar
  65. 65.
    M.E. Brown, Introduction to thermal analysis: Techniques and applications, Chapter 10, 2nd ed, Kluwer, Amsterdam (2001).Google Scholar
  66. 66.
    A.K. Galwey and M.E. Brown, “Thermal decomposition of ionic solids: Chemical properties and reactivities of ionic crystalline phases”, Elsevier, Amsterdam, pp. 139–171 (1999).Google Scholar
  67. 67.
    W. Gautschi and W.F. Cahill, “Exponential integral and related functions”, in Handbook of mathematical functions with formulas, graphs, and mathematical tables (M. Abramowitz and I. Stegun, eds.), National Bureau of Standards, Washington, DC, pp. 227–237 (1964).Google Scholar
  68. 68.
    S. Vyazovkin, “Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature,” Journal of Computational Chemistry, 18, pp. 393–402 (1997).CrossRefGoogle Scholar
  69. 69.
    S. Vyazovkin, “Modification of the integral isoconversional method to account for variation in the activation energy,” Journal of Computational Chemistry, 22, pp. 178–183 (2001).CrossRefGoogle Scholar
  70. 70.
    A. Matala, C. Lautenberger and S. Hostikka, “Generalized direct method for pyrolysis kinetic parameter estimation and comparison to existing methods”, Journal of Fire Sciences, 30(4), pp. 339–356 (2012).CrossRefGoogle Scholar
  71. 71.
    R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRefGoogle Scholar
  72. 72.
    T. Ohlemiller, “Modeling of smoldering combustion propagation”, Progress in Energy and Combustion Science, 11, 277–310 (1985).CrossRefGoogle Scholar
  73. 73.
    A. Matala, “Estimation of Solid Phase Reaction Parameters for Fire Simulation”, Master’s thesis, Helsinki University of Technology, Finland (2008).Google Scholar
  74. 74.
    C. Lautenberger, “A Generalized Pyrolysis Model for Combustible Solids”, Users’ guide (2009).Google Scholar
  75. 75.
    S.I. Stoliarov, S. Crowley, R.E. Lyon, and G.T. Linteris, “Prediction of the burning rates of non-charring polymers”, Combustion and Flame, 156, pp. 1068–1083 (2009).CrossRefGoogle Scholar
  76. 76.
    S.I. Stoliarov, N. Safronava, R.E. Lyon, “The effect of variation in polymer properties on the rate of burning,” Fire and Materials, 33, pp. 257–271 (2009).CrossRefGoogle Scholar
  77. 77.
    C. Lautenberger, E. Kim, N. Dembsey, and C. Fernandez-Pello, “The Role of Decomposition Kinetics in Pyrolysis Modeling – Application to a Fire Retardant Polyester Composite”, Fire Safety Science, 9, pp. 1201–1212 (2008).CrossRefGoogle Scholar
  78. 78.
    J.E.J. Staggs, “A theory for quasi-steady single-step thermal degradation of polymers”, Fire and Materials, 22, 1998, pp. 109–118 (1998).CrossRefGoogle Scholar
  79. 79.
    J. Zhang, M.A. Delichatsios, and S. Bourbigot, “Experimental and numerical study of the effects of nanoparticles on pyrolysis of polyamide 6 (PA6) nanocomposite in the cone calorimeter”, Combustion and Flame, 156, pp. 2056–2062 (2009).CrossRefGoogle Scholar
  80. 80.
    F. Jia, E.R. Galea, and M.K. Patel, “The numerical simulation of the non-charring pyrolysis process and fire development within a compartment”, Applied Mathematical Modelling, 23, pp. 587–607 (1999).MATHCrossRefGoogle Scholar
  81. 81.
    C. Lautenberger, Ph.D. Thesis, University of California, Berkeley, CA, USA (2007) available at <>
  82. 82.
    C. Lautenberger, “Gpyro – A Generalized Pyrolysis Model for Combustible Solids” Users’ Guide Version 0.700 (February 19, 2009).Google Scholar
  83. 83.
    GPyro, available at <>
  84. 84.
    K.B. Mc Grattan, S. Hostikka, J.E. Floyd, H.R. Baum, and R.G. Rehm, “Fire Dynamics Simulator (Version 5). Technical Reference Guide”, Volume 1: Mathematical Model, NIST Special Publication 1018–5, Gaithersburg, MD, (October 2007).Google Scholar
  85. 85.
    FireFOAM Code, available at <>.
  86. 86.
    S.I. Stoliarov and R.E. Lyon, “Thermo-Kinetic Model of Burning”, Federal Aviation Administration Technical Note, DOT/FAA/AR-TN08/17 (2008), <>
  87. 87.
    S.I. Stoliarov and R.E. Lyon, “Thermo-kinetic model of burning for pyrolyzing materials”, in Proceedings of the Ninth International Symposium on Fire Safety Science, pp. 1141–1152 (2009).Google Scholar
  88. 88.
    L. Bustamante Valencia, Experimental and Numerical Investigation of the Thermal Decomposition of Materials at Three Scales: Application to Polyether Polyurethane Foam used in Upholstered Furniture, Ph.D. Thesis, ENSMA, Poitiers, France (2009).Google Scholar
  89. 89.
    C.R. Houck, J.A. Joines, and M.G. Kay, “GAOT: A Genetic Algorithm for Function Optimization: A Matlab Implementation”, Report NCSU-IE TR 95–09 (1995), available at <>
  90. 90.
    Q. Duan, V.K. Gupta and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” Journal of Optimization Theory and Applications, 76, pp. 501–521 (1993).MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Q. Duan, S. Sorooshian and V.K. Gupta, “Optimal Use of the SCEUA Global Optimization Method for Calibrating Watershed Models,” Journal of Hydrology, 158, pp. 265–284 (1994).CrossRefGoogle Scholar
  92. 92.
    N. Bal, Uncertainty and complexity in pyrolysis modelling, PhD Thesis, University of Edinburgh, UK (2012), available at
  93. 93.
    S.I. Stoliarov and R.E. Lyon, “Thermo-Kinetic Model of Burning”, Federal Aviation Administration Technical Note DOT/FAA/AR-TN-08/17 (2008).Google Scholar
  94. 94.
    S.I. Stoliarov, S. Crowley, R.E. Lyon, and G.T. Linteris, “Prediction of the Burning Rates of Non-Charring Polymers”, Combustion and Flame, 156, pp. 1068–1083 (2009).CrossRefGoogle Scholar
  95. 95.
    S.S. Rahatekar, M. Zammarano, S. Matko, K.K. Koziol, M.H. Windle, T. Kashiwagi, and J.W. Gilman, “Effect of Carbon Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposites”, Polymer Degradation and Stability, 98, pp. 870–879 (2010).Google Scholar
  96. 96.
    P. Patel, T.R. Hull, A.A. Stec, and R. E. Lyon, “Influence of physical properties on polymer flammability in the cone calorimeter,” Polymers for Advanced Technologies, 22, pp. 1100–1107 (2011).Google Scholar
  97. 97.
    J.G. Quintiere, Principles of Fire Behaviour, Delmar, Albany, NY (1997).Google Scholar
  98. 98.
    D. Drysdale, An Introduction to Fire Dynamics, 2nd Edition, John Wiley & Sons, Chichester (1999). Google Scholar
  99. 99.
    T. Faravelli, G. Bozzano, M. Colombo, E. Ranzi, M. Dente, Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures, Journal of Analytical and Applied Pyrolysis, 70, 761–777, 2003.CrossRefGoogle Scholar
  100. 100.
    Z. Gao, I. Amasaki, and M. Nakada, ”A thermogravimetric study on thermal degradation of polyethylene,” Journal of Analytical and Applied Pyrolysis, 67 (1), pp. 1–9 (2003).Google Scholar
  101. 101.
    A. Marcilla, A. Gomez, A.N. Garcia, and M.M. Olaya, “Kinetic study of the catalytic decomposition of different commercial polyethylenes over an MCM-41 catalyst”, Journal of Analytical and Applied Pyrolysis, 64, pp. 85-101(2002).CrossRefGoogle Scholar
  102. 102.
    C.F Cullis and M.M Hirschler, The combustion of organic polymers, New York, NY: Oxford University Press (1981).Google Scholar
  103. 103.
    S.L. Madorsky, "Thermal degradation of organic polymers”, Interscience Publishers, A Division of John Wiley & Sons Inc. (1964).Google Scholar
  104. 104.
    S.M. Thornberg, R. Bernstein, D.K. Derzon, A.N. Irwin, S.B. Klamo, and R.L. Clough, “The genesis of CO2 and CO in the thermooxidative degradation of polypropylene”, Polymer Degradation and Stability, 92, pp. 94–102 (2007).CrossRefGoogle Scholar
  105. 105.
    R. Bernstein, S.M. Thornberg, R.A. Assink, A.N. Irwin, J.M. Hochrein, J.R. Brown, D.K. Derzon, S.B. Klamo, and R.L. Clough, “The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labelling,” Polymer Degradation and Stability, 92, pp. 2076–2094 (2007).CrossRefGoogle Scholar
  106. 106.
    G.G. Cameron, W.A.J. Bryce, I.T. McWalter, “Thermal degradation of polystyrene-5. Effects of initiator residues,” European Polymer Journal, 20, pp. 563–569 (1984).CrossRefGoogle Scholar
  107. 107.
    N. Grassie and G. Scott, Polymer Degradation and Stabilisation, Cambridge University Press, Cambridge, UK (1985).Google Scholar
  108. 108.
    W.R. Zeng, S.F Li, and W.K. Chow, “PMMA Review on Chemical Reactions of Burning Poly(methylmethacrylate)”, Journal of Fire Sciences, 20, p. 401 (2002).Google Scholar
  109. 109.
    I.C. McNeill and A. Rincon, “Thermal degradation of polycarbonates: Reaction conditions and reaction mechanisms,” Polymer Degradation and Stability, 39, pp. 13–19 (1993).CrossRefGoogle Scholar
  110. 110.
    . A. Davis and J.H. Golden, J. Macromol. Scie. Rev. Macromol. Chem. C, 3, p. 49 (1969).Google Scholar
  111. 111.
    S.C. Moldoveanu, “Analytical Pyrolysis of Synthetic Organic Polymers”, Techniques and Instrumentation in Analytical Chemistry, Volume 25, 1st Edition, Elsevier (2005).Google Scholar
  112. 112.
    S. Smith, “The re-equilibration of polycaproamide,” Journal of Polymer Science, 30, pp. 459–478 (1958).CrossRefGoogle Scholar
  113. 113.
    L.H. Buxbaum, “The degradation of poly(ethylene terephthalate),” Angewandte Chemie International Edition, 7, pp. 182–190 (1968).CrossRefGoogle Scholar
  114. 114.
    S.V. Levchik and E.D. Weil, “A review on thermal decomposition and combustion of thermoplastic polyesters”, Polymers for Advanced Technologies, 15, pp. 691–700 (2004).CrossRefGoogle Scholar
  115. 115.
    T.R. Hull, A.A. Stec, and S. Nazare, “TGA-FTIR Investigation of The Fire Retardant Mechanism of Acrylonitrile Copolymers Containing Nanofillers,” in 235th American Chemical Society National Meeting, APR 06–10, New Orleans, LA (2008).Google Scholar
  116. 116.
    Z. Bashir, “A critical review of the stabilisation of polyacrylonitrile,” Carbon, 29, pp. 1081–1090 (1991).CrossRefGoogle Scholar
  117. 117.
    A.R. Horrocks, J. Zhang and M.E. Hall, “Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation,” Polymer International, 33, pp. 303–314 (1994).CrossRefGoogle Scholar
  118. 118.
    N. Grassie, Developments in polymer degradation, Applied Science, Vol. 1, p. 137, London (1977).Google Scholar
  119. 119.
    E. Fitzer and D. Muller, “The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor,” Carbon, 13, p. 63–69 (1975).CrossRefGoogle Scholar
  120. 120.
    L.T. Memetea, N.C. Billingham, and E.T.H. Then, “Hydroperoxides in polyacrylonitrile and their role in carbon-fibre formation,” Polymer Degradation and Stability, 47, pp. 189–201 (1995).CrossRefGoogle Scholar
  121. 121.
    N. Grassie, J.N. Hay and I.C. McNeill, “Coloration in acrylonitrile and methacrylonitrile polymers,” Journal of Polymer Science, 31, p. 205 (1958).CrossRefGoogle Scholar
  122. 122.
    J. Brandrup and L.H. Peebles, “On the chromophore of polyacrylonitrile. IV. Thermal oxidation of polyacrylonitrile and other nitrile-containing compounds”, Macromolecules, 1, 64–72, (1968).CrossRefGoogle Scholar
  123. 123.
    M.A. Geiderikh, B.E. Davydov, B.A. Krentsel, I.M. Kustanovich, L.S. Polak, A.V. Topchiev, and R.M. Voitenko, “Preparation of polymeric materials with semiconductor properties,” Journal of Polymer Science, 54, pp. 621–626 (1961).CrossRefGoogle Scholar
  124. 124.
    S.C. Martin, J.J. Liggat and C.E. Snape, “In situ NMR investigation into the thermal degradation and stabilisation of PAN,” Polymer Degradation and Stability, 74, pp. 407–412 (2001).CrossRefGoogle Scholar
  125. 125.
    W.D. Woolley, “Decomposition Products of PVC for Studies of Fires”, British Polymer Journal, 3(4), pp. 186–193 (1971).CrossRefGoogle Scholar
  126. 126.
    . W.D. Wolley, “Studies of the dehydrochlorination of PVC in nitrogen and air”, Building Research Establishment, Current Paper CP 9/74 (1974).Google Scholar
  127. 127.
    Purser, D.A., Fardell, P.J., Rowley, J., Vollam, S. and Bridgeman, B. An improved tube furnace method for the generation and measurement of toxic combustion products under a wide range of fire conditions. Proceedings of the 6th International Conference Flame Retardants ‘94, London, UK (26–27 Jan 1994). Interscience Communications.Google Scholar
  128. 128.
    K.T. Paul, “Feasibility Study to Demonstrate the Potential of Smoke Hoods in Simulated Aircraft Fire Atmospheres: Development of the fire model”, Fire and Materials, 14, pp. 43–58, (1989).CrossRefGoogle Scholar
  129. 129.
    K. Lebek, T.R. Hull, and D. Price, “Products of burning rigid PVC burning under different fire conditions Fire and Polymers”, Materials and Concepts for Hazard Prevention, ACS Symposium Series No. 922, Oxford University Press, p. 334–347 (2005).Google Scholar
  130. 130.
    T.R. Hull, A.A. Stec, and K.T. Paul, Proceedings of the 9th International Symposium on Fire Safety Science, 665–676 (2008).Google Scholar
  131. 131.
    H.F. Mark, N. Bikales, C.G. Overberger, and J.I. Kroschwitz, eds., Encyclopedia of Polymer Science and Engineering, Wiley Europe, vol 1–4 (1989).Google Scholar
  132. 132.
    E.E. Lewis and M.A. Naylor, “Pyrolysis of Polytetrafluoroethylene”. Journal of the American Chemical Society, 69, p. 1968–70 (1947).CrossRefGoogle Scholar
  133. 133.
    A. Stec and R. Hull, Fire Toxicity, Woodhead Publishing, Cambridge, 2010.CrossRefGoogle Scholar
  134. 134.
    E. Ackerman, Firestopping Through-Penetrations, in Science and Technology of Building Seals, Sealants, Glazing, and Waterproofing: Seventh Volume (J.M. Klosowski, ed.), ASTM STP 1334, American Society for Testing and Materials, West Conshohocken, PA (1998).Google Scholar
  135. 135.
    J. Harris, A. Stevenson, “On the role of nonlinearity in the dynamic behavior of rubber components”, Rubber Chemistry and Technology, 59 (5), pp. 740-764 (2011).Google Scholar
  136. 136.
    D.J. Kind and T.R. Hull, “A review of candidate fire retardants for polyisoprene,” Polymer Degradation and Stability, 97, pp. 201–213 (2012).CrossRefGoogle Scholar
  137. 137.
    D.W. Brazier and G.H. Nickel, “Thermoanalytical methods in vulcanizate analysis. Derivative thermogravimetric analysis”, Rubber Chemistry and Technology, 48 (4), pp. 661–677 (1975).CrossRefGoogle Scholar
  138. 138.
    A.K. Sircar, “Identification of natural and synthetic polyisoprene vulcanizates by thermal analysis”, Rubber Chemistry and Technology., 50 (1), pp. 71–82 (1977).CrossRefGoogle Scholar
  139. 139.
    S. Straus and S.L. Madorsky, “Thermal Degradation of Unvulcanized and Vulcanized Rubber in a Vacuum”, Industrial and engineering chemistry, 48 (7), pp. 1212–1219 (1956).CrossRefGoogle Scholar
  140. 140.
    F. Cataldo, “Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: preparation of liquid polyisoprene and terpene resin”, Journal of Analytical and Applied Pyrolysis, 44(2), pp. 121–130 (1998).CrossRefGoogle Scholar
  141. 141.
    S.V. Levchik and E.D. Weil, “Thermal decomposition, combustion and flame-retardancy of epoxy resins: a review of the recent literature,” Polymer International, 53, pp. 1901–1929 (2004).CrossRefGoogle Scholar
  142. 142.
    S.C. Lin, B.J. Bulkin and E.M. Pearce, “Thermal Degradation Study Of Phenolphthalein Polycarbonate”, Journal of polymer science, Part A-1, Polymer chemistry, 19, 2773–2797, (1981).Google Scholar
  143. 143.
    B.C. Levin, M. Paabo, J.L. Gurman and S.E. Harris, “Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires” Toxicological Sciences, 9, 236–250 (1987).CrossRefGoogle Scholar
  144. 144.
    D.A. Purser, Asphyxiant components of the fire effluents, in Fire Toxicity, (A.A Stec and T.R. Hull, eds.), Woodhead Publishing, Cambridge (2010).Google Scholar
  145. 145.
    J. Wang, H. Jiang and N. Jiang, Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochimica Acta, 2009, 496, 136–142CrossRefGoogle Scholar
  146. 146.
    A. Murari and A. Barzon, “Comparison of New PEEK Seals with Traditional Helicoflex for Ultra High Vacuum Applications”, Vacuum, Volume 72, Issue 3, pp. 327–334 (2003).CrossRefGoogle Scholar
  147. 147.
    S.K. Yesodha, C.K.S. Pillai, and N. Tsutsuni, “Stable Polymeric Materials for Non-Linear Optics: A Review Based on Azobenzene Systems”, Progress in Polymer Science, Volume 29, Issue 1, pp. 45–74 (2004).Google Scholar
  148. 148.
    M.P. Stevens, Polymer Chemistry: An Introduction, Third Edition. Oxford University Press, New York, USA (1999).Google Scholar
  149. 149.
    M.C. Kuo, C.M. Tsai, J.C. Huang, and M. Chen, “PEEK Composites Reinforced by Nano-Sized SiO2 and Al2O3 Particulates”, Materials Chemistry and Physics, Volume 90, pp. 185–195 (2005).Google Scholar
  150. 150.
    L.H. Perng, C.J. Tsai, and Y.C. Ling, “Mechanism and Kinetic Modelling of PEEK Pyrolysis by TG/MS”, Polymer, Volume 40, pp. 731–732 (1999).Google Scholar
  151. 151.
    P. Patel, T. R. Hull, R. W. McCabe, D. Flath, J. Grasmeder, and M. Percy, Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies, Polymer Degradation and Stability, 95, pp. 709–718 (2010).CrossRefGoogle Scholar
  152. 152.
    A.-M.M. Baker and J. Mead, Thermoplastics, Chapter 1, In C.A. Harper, Modern Plastics Handbook, McGraw-Hill Professional Publishing, Ohio, USA (2000).Google Scholar
  153. 153.
    R.E. Lyon and M.L. Janssens, Polymer Flammability, US Department of Transport, Report Number: DOT/FAA/AR-05/14 (2005).Google Scholar
  154. 154.
    F. D. Kopinke, M. Remmler, K. Mackenzie, Thermal decomposition of biodegradable polyesters-I: Poly(hydroxybutyric acid). Polym. Degrad. Stab., 52, 25–38, 1996.CrossRefGoogle Scholar
  155. 155.
    H. Morikawa, R.H. Marchessault, Pyrolysis of bacterial polyalkanoates, Canadian Journal of Chemistry 59, 2306,1981CrossRefGoogle Scholar
  156. 156.
    J.L. Gay-Lussac, Ann. Chim. Phys., 18, p. 211 (1821).Google Scholar
  157. 157.
    SRI Consulting, Report on Flame Retardants, Published December 2008Google Scholar
  158. 158.
    T.R. Hull, A. Witkowski, L.A. Hollingbery, “Fire retardant action of mineral fillers”, Polymer Degradation and Stability, 96, pp. 1462–1469 (2011).CrossRefGoogle Scholar
  159. 159.
    A. Bergman, A. Ryden, R.J. Law, J. de Boer, A. Covaci, M. Alaee, L. Birnbaum, M. Petreas, M. Rose, S. Sakai, N. Van den Eede and I. van der Veen, “A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals” Environment International, 49, 57–82, (2012).CrossRefGoogle Scholar
  160. 160.
    A. Schnipper, L. Smith-Hansen, and S.E. Thomsen, “Reduced Combustion Efficiency of Chlorinated Compounds Resulting In Higher Yields of Carbon Monoxide”, Fire and Materials, 19, pp. 61–64, (1995).CrossRefGoogle Scholar
  161. 161.
    V. Babushok, W. Tsang, G.T. Linteris, and D. Reinelt, “Chemical Limits to Flame Inhibition”, Combustion and Flame, 115, pp. 551–560 (1998).CrossRefGoogle Scholar
  162. 162.
    M.I. Nelson and J. Brindley, “Polymer combustion: Effects of flame emissivity” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358, 3655–3673 (2000).MATHGoogle Scholar
  163. 163.
    J.G. Quintiere, Principles of Fire Behaviour, Delmar Publishers, New York, USA, (1997).Google Scholar
  164. 164.
    . H. Zhang, Fire-Safe Polymers and Polymer Composites, US Department of Transport. Report Number: DOT/FAA/AR-04/11 (2004).Google Scholar
  165. 165.
    P. Patel, T.R Hull, and Colin Moffatt, “PEEK polymer flammability and the inadequacy of the UL‐94 classification,” Fire and Materials, 36, pp. 185–201 (2012).Google Scholar
  166. 166.
    V. Babrauskas, “Fire Test Methods for Evaluation of Fire-Retardant Efficacy in Polymeric Materials”, Chapter 3, in Fire Retardancy of Polymeric Materials (A.F. Grand and C.A. Wilkie, eds.), CRC Press, New York, USA (2000).Google Scholar
  167. 167.
    K.T. Paul and S.D. Christian, “Standard flaming ignition sources for upholstered composites, furniture and bed assembly,” Journal of Fire Sciences, 5(3), pp. 178–211 (1987).CrossRefGoogle Scholar
  168. 168.
    D. Hopkins Jr and J.G. Quintiere, “Materials fire properties and predictions for thermoplastics”, Fire Safety Journal, 26, pp. 241–268 (1996).CrossRefGoogle Scholar
  169. 169.
    D.J. Rasbash, D.D. Drysdale, and D. Deepak, “Critical heat and mass transfer at pilot ignition and extinction of a material”, Fire Safety Journal, 10, pp. 1–10 (1986).CrossRefGoogle Scholar
  170. 170.
    H.E. Thomson, D.D. Drysdale, and C.L. Beyler, “An experimental evaluation of critical surface temperatures as a criterion for piloted ignition of solid fuels”, Fire Safety Journal, 13, pp. 185–196 (1988).CrossRefGoogle Scholar
  171. 171.
    E. Mikkola and I.S. Wichman, “On the thermal ignition of combustible materials”, Fire and Materials, 14, pp. 87–96 (1989).CrossRefGoogle Scholar
  172. 172.
    T. Kashiwagi, “Radiative ignition mechanism of solid fuels”, Fire Safety Journal, 3, pp. 185–200 (1981).CrossRefGoogle Scholar
  173. 173.
    V. Babrauskas, Ignition Handbook, Fire Science Publishers, Issaquah WA, USA and SFPE, USA (2003).Google Scholar
  174. 174.
    R.E. Lyon, “Plastics and Rubber”, in Handbook of Building Materials for Fire Protection, (C.A. Harper, ed), McGraw-Hill, chap 3, 3.1-3.51 (2004).Google Scholar
  175. 175.
    R.E. Lyon, R.N. Walters, and S.I. Stoliarov, “Thermal Analysis of Polymer Flammability”, Presented at 228th ACS Meeting Philadelphia (2004).Google Scholar
  176. 176.
    A. Tewarson, “Generation of Heat and Chemical Compounds in Fires”, in The SFPE Handbook of Fire Protection Engineering, 3rd edition (P.J. DiNenno, D.D. Drysdale, C.L. Beyler, W.D. Walton, R.L.P Custer, J.R. Hall Jr and J.M. Watts Jr, eds), National Fire Protection Association, Inc., chap 3.4,3-82-3-161 (2002).Google Scholar
  177. 177.
    M. Sibulkin and M.W. Little, “Propagation and extinction of downward burning fires”, Combustion Flame, 31, pp. 197–208 (1978).CrossRefGoogle Scholar
  178. 178.
    IEC 60695-11-10 “Fire hazard testing - Part 11–10: Test flames - 50 W horizontal and vertical flame test methods,” (1999).Google Scholar
  179. 179.
    V. Babrauskas, “Ignition: A Century of Research and an Assessment of our Current Status”, Journal of Fire Protection Engineering, 17(3), pp. 165–183 (2007).CrossRefGoogle Scholar
  180. 180.
    ISO 5660–1 “Fire tests – Reaction to fire – Part 1: Rate of heat release from building products (cone calorimeter method)”, (1993).Google Scholar
  181. 181.
    A.B. Morgan and M. Bundy, “Cone Calorimeter Analysis of UL-94 V-Rated Plastics”, Fire and Materials, 31, pp. 257–283 (2007).CrossRefGoogle Scholar
  182. 182.
    Y. Wang, F. Zhang, X. Chen, Y. Jin, and J. Zhang, “Burning and Dripping Behaviours of Polymers under the UL-94 Vertical Burn Test Conditions”, Fire and Materials, 34, pp. 203–215 (2009).Google Scholar
  183. 183.
    M. Bundy and T. Ohlemiller, “Bench-Scale Flammability Measures for Electronic Equipment”, National Institute of Standards and Technology, NISTIR 7031 (2003).Google Scholar
  184. 184.
    S. Hong, J. Yang, S. Ahn, Y. Mun, and G. Lee, “Flame Retardant Performance of Various UL-94 Classified Materials Exposed to External Ignition Sources”, Fire and Materials, 28, pp. 25–31 (2004).CrossRefGoogle Scholar
  185. 185.
    B. Schartel and U. Braun, “Comprehensive Fire Behaviour Assessment of Polymeric Materials Based on Cone Calorimeter Investigations”, e-Polymers, Article 13, pp. 1–14 (2003).Google Scholar
  186. 186.
    B. Schartel and T.R. Hull, “Application of Cone Calorimetry to the Development of Materials with Improved Fire Performance”, Fire and Materials, 31, pp. 327–354 (2007).CrossRefGoogle Scholar
  187. 187.
    J.G. Quintiere, B.P. Downey, and R.E. Lyon, “An Investigation of the Vertical Bunsen Burner Test for Flammability of Plastics”, US Department of Transport, Report Number: DOT/FAA/AR-TN (2010).Google Scholar
  188. 188.
    ISO 4589–2 “Plastics – Determination of burning behaviour by oxygen index – Part-2: Ambient temperature test”, (1996).Google Scholar
  189. 189.
    ISO 5660–2 “Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 2: Smoke production rate (dynamic measurement)”, (2002).Google Scholar
  190. 190.
    B. Schartel and T.R. Hull, “Application of cone calorimetry to the development of materials with improved fire performance”, Fire and Materials, 31, pp. 327–354 (2007).CrossRefGoogle Scholar
  191. 191.
    R.E. Lyon, in Recent Advances in Flame Retardancy of Polymers, vol. 13, (M. Lewin, ed.), BCC, Inc., pp. 14-25 (2002)Google Scholar
  192. 192.
    R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRefGoogle Scholar
  193. 193.
    B. Schartel, K.H. Pawlowski, and R.E. Lyon, “Pyrolysis combustion flow calorimeter: A tool to assess flame retarded PC/ABS materials?”, Thermochimica Acta, 462, pp. 1–14 (2007).CrossRefGoogle Scholar
  194. 194.
    R.E. Lyon, R.N. Walters, M. Beach, and F.P. Schall, “Flammability Screening of Plastics Containing Flame Retardant Additives”, ADDITIVES 2007, 16th International Conference, San Antonio, TX (2007).Google Scholar
  195. 195.
    D.W. Van Krevelen, Properties of Polymers. Chapter 21 – Thermal Decomposition, 4th Edition, Elsevier Science Publishers, Amsterdam (2009).Google Scholar
  196. 196.
    R. Walters and R.E. Lyon, Calculating Polymer Flammability from Molar Group Contributions, DOT/FAA/AR-01/31 (2001).Google Scholar
  197. 197.
    P. Patel, Doctoral Thesis, University of Central Lancashire, UK (2011).Google Scholar
  198. 198.
    H. Zhang, Fire-Safe Polymers, and Polymer Composites, US Department Of Transport, Report Number: DOT/FAA/AR-04/11, Federal Aviation Administration (2004).Google Scholar
  199. 199.
    R.E. Lyon and M.L. Janssens, Polymer Flammability, US Department of Transport, Report Number: DOT/FAA/AR-05/14 (2005).Google Scholar
  200. 200.
    P. Patel, T.R. Hull, R.E. Lyon, S.I. Stoliarov, R.N. Walters, S. Crowley, and N. Safronava, “Investigation of the Thermal Decomposition and Flammability of PEEK and its Carbon and Glass-Fibre Composites”, Polymer Degradation and Stability, In Press (2011).Google Scholar
  201. 201.
    R.E. Lyon, “Solid-State Thermochemistry of Flaming Combustion,” in Fire Retardancy of Polymeric Materials (C.A. Wilkie and A.F Grand, eds.), Marcel Dekker, Inc., NY (2000).Google Scholar
  202. 202.
    R.E. Lyon, “Heat Release Capacity,” Proceedings of the 7th International Conference on Fire and Materials, San Francisco, CA, pp. 285–300 (2001).Google Scholar
  203. 203.
    R.E. Lyon, “Heat Release Kinetics,” Fire and Materials, 24, pp. 179–186 (2000).CrossRefGoogle Scholar
  204. 204.
    R.N. Walters and R.E. Lyon, “A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials,” Proceedings 42nd International SAMPE Symposium and Exhibition, 42(2), pp. 1335–1344 (1997).Google Scholar
  205. 205.
    R.N. Walters and R.E. Lyon, “A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials,” NISTIR 5904 (K. Beall, ed.), pp. 89–90 (1996).Google Scholar
  206. 206.
    R.E. Lyon and R.N. Walters, U.S. Patent 5981290, Microscale Combustion Calorimeter, 11/09/1999.Google Scholar
  207. 207.
    R.N. Walters and R.E. Lyon, “Molar Group Contributions to Polymer Flammability,” PMSE Preprints, 83, 86, ACS National Meeting, Washington, D.C. (August 2000).Google Scholar
  208. 208.
    R.N. Walters and R.E. Lyon, “Calculating Polymer Flammability from Molar Group Contributions,” Proceedings of the BCC Conference on Flame Retardancy of Polymeric Materials, Stamford, CT (May 22–24, 2000).Google Scholar

Copyright information

© Society of Fire Protection Engineers 2016

Authors and Affiliations

  • Artur Witkowski
    • 1
  • Anna A. Stec
    • 1
  • T. Richard Hull
    • 1
  1. 1.Centre for Fire and Hazards ScienceUniversity of Central Lancashire (UCLan)PrestonUK

Personalised recommendations