Skip to main content

Abstract

Calculations of fire behavior in buildings are not possible unless the heat release rate of the fire is known. This chapter on heat release rates provides both theoretical and empirical information. The chapter is organized so that theory and basic effects are considered first, then a compendium of product data is provided, which is arranged in alphabetic order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ‘Palletized’ denotes a storage configuration where pallets are stored directly on top of each other, without use of shelving.

References

  1. Babrauskas, V., and Peacock, R. D., Heat Release Rate: The Single Most Important Variable in Fire Hazard, Fire Safety J. 18, 255-272 (1992).

    Article  Google Scholar 

  2. Babrauskas, V., Lawson, J. R., Walton, W. D., and Twilley, W. H., Upholstered Furniture Heat Release Rates Measured with a Furniture Calorimeter (NBSIR 82-2604), U. S. Natl. Bur. Stand. (1982).

    Google Scholar 

  3. Heskestad, G., A Fire Products Collector for Calorimetry into the MW Range (FMRC J. I. OC2El.RA), Factory Mutual Research Corp., Norwood (1981).

    Google Scholar 

  4. Standard Test Method for Fire Testing of Real Scale Upholstered Furniture Items (ASTM E 1537), ASTM, West Conshohocken PA.

    Google Scholar 

  5. Standard Test Method for Fire Testing of Real Scale Mattresses (ASTM E 1590), ASTM, West Conshohocken PA.

    Google Scholar 

  6. Pipe Insulation: Fire Spread and Smoke Production--Full-scale Test (NT FIRE 036), NORDTEST, Espoo (1988).

    Google Scholar 

  7. Upholstered Furniture: Burning Behaviour--Full Scale Test (NT FIRE 032), 2nd ed., NORDTEST, Espoo, Finland (1991).

    Google Scholar 

  8. Standard Fire Test of Limited-Smoke Cables (UL 1685), Underwriters Laboratories, Northbrook, IL (1991).

    Google Scholar 

  9. Hirschler, M. M., Use of Heat Release Calorimetry in Standards, pp. 69-80 in Fire Calorimetry (DOT/FAA/CT-95/46), Federal Aviation Administration, Atlantic City Intl. Airport, NJ (1995).

    Google Scholar 

  10. Sundström, B., ed., Fire Safety of Upholstered Furniture--The Final Report on the CBUF Research Programme (Report EUR 16477 EN). Directorate-General Science, Research and Development (Measurements and Testing). European Commission. Distributed by Interscience Communications Ltd, London (1995).

    Google Scholar 

  11. Babrauskas, V., and Wickström, U. G., Thermoplastic Pool Compartment Fires, Combustion and Flame 34, 195-201 (1979).

    Article  Google Scholar 

  12. Dahlberg, M., Error Analysis for Heat Release Rate Measurement With the SP Industry Calorimeter (SP Report1994:29), Swedish National Testing and Research Institute, Borås (1994).

    Google Scholar 

  13. Cooper, L. Y., Some Factors Affecting the Design of a Calorimeter Hood and Exhaust, J. Fire Prot. Engineering 6, 99-112 (1994).

    Article  Google Scholar 

  14. Fisher, F. L., and Williamson, R. B., Intralaboratory Evaluation of a Room Fire Test Method (NBS-GCR-83-421), U.S. Natl. Bur. Stand. (1983).

    Google Scholar 

  15. Lee, B.T., Standard Room Fire Test Development at the National Bureau of Standards, pp. 29-44 in Fire Safety: Science and Engineering (ASTM STP 882), T. Z. Harmathy, ed., American Society for Testing and Materials, Philadelphia (1985).

    Google Scholar 

  16. Sundström, B., Room Fire Test in Full Scale for Surface Products (Rapport SP-RAPP 1984:16). Statens Provningsanstalt, Borås, Sweden (1984).

    Google Scholar 

  17. Surface Products: Room Fire Tests in Full Scale (NORDTEST Method NT FIRE 025). NORDTEST, Espoo, Finland (1986).

    Google Scholar 

  18. International Standard--Fire Tests--Full scale room test for surface products. ISO 9705:1993(E). International Organization for Standardization, Geneva (1993).

    Google Scholar 

  19. Standard Test Method for Room Test of Wall and Ceiling Materials Assemblies (ASTM E 2257), ASTM Intl., West Conshohocken PA.

    Google Scholar 

  20. Babrauskas, V., Development of the Cone Calorimeter--A Bench Scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials 8, 81-95 (1984).

    Google Scholar 

  21. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products using an Oxygen Consumption Calorimeter (ASTM E 1354), ASTM, West Conshohocken PA.

    Google Scholar 

  22. International Standard -- Fire Tests -- Reaction to Fire -- Part 1: Rate of Heat Release from Building Products (Cone Calorimeter method). ISO 5660-1:1993(E). International Organization for Standardization, Geneva (1993).

    Google Scholar 

  23. Babrauskas, V., and Grayson, S. J., eds., Heat Release in Fires, Elsevier Applied Science Publishers, London (1992).

    Google Scholar 

  24. Urbas, J., and Luebbers, G. E., The Intermediate Scale Calorimeter Development, Fire and Materials 19, 65-70 (1995).

    Article  Google Scholar 

  25. Standard Test Method for Determining of Fire and Thermal Parameters of Materials, Products, and Systems using an Intermediate Scale Calorimeter (ICAL), (ASTM E 1623), ASTM, West Conshohocken PA.

    Google Scholar 

  26. Babrauskas, V., A Closed-Form Approximation for Post-Flashover Compartment Fire Temperatures, Fire Safety J. 4, 63-73 (1981).

    Article  Google Scholar 

  27. Kokkala, M., Göransson, U., and Söderbom, J., Five Large-Scale Room Fire Experiments. Project 3. EUREFIC Fire Research Program (VTT Publications 104), VTT-Technical Research Center of Finland, Espoo (1992).

    Google Scholar 

  28. Schleich, J.-B., and Cajot, L.-G., Natural Fire Safety for Buildings, pp. 359-367 in Interflam 2001—Proc. 9 th Intl. Conf., Interscience Communications Ltd., London (2001).

    Google Scholar 

  29. Simonson, M., Blomqvist, P., Boldizar, A., Möller, K., Rosell, L., Tullin, C., Stripple, H., and Sundqvist, J. O., Fire-LCA Model: TV Case Study, Swedish National Testing and Research Institute, Borås (2000).

    Google Scholar 

  30. Tests for Flammability of Plastic Materials for Parts in Devices and Appliances (UL 94), Underwriters Laboratories, Northbrook IL.

    Google Scholar 

  31. Dembsey, N. A., Compartment Fire Measurements and Analysis for Near Field Entrainment, Model Validation and Wall Lining Fire Growth (Ph.D. dissertation), Univ. California, Berkeley (1995).

    Google Scholar 

  32. Sherratt, J., and Drysdale, D. D., The Effect of the Melt-Flow Process on the Fire Behaviour of Thermoplastics, pp. 149-159 in Interflam 2001—Proc. 9th Intl. Conf., Interscience Communications Ltd., London (2001).

    Google Scholar 

  33. Parker, W. J., Prediction of the Heat Release Rate of Wood (Ph.D. dissertation). George Washington University, Washington, DC (1988).

    Google Scholar 

  34. Hirata, T., Kashiwagi, T., and Brown, J. E., Thermal and Oxidative Degradation of Poly(methylmethacrylate): Weight Loss, Macromolecules 18, 1410-1418 (1984).

    Article  Google Scholar 

  35. Kashiwagi, T., Hirata, T., and Brown, J. E., Thermal and Oxidative Degradation of Poly(methylmethacrylate): Molecular Weight, Macromolecules 18, 131-138 (1985).

    Article  Google Scholar 

  36. Vovelle, C., Delfau, J. L., Reuillon, M., Bransier, J., and Laraqui, N., Experimental and Numerical Study of the Thermal Degradation of PMMA, pp. 43-66 in Papers of ITSEMAP International Meeting of Fire Research and Test Centers, Avila, Spain (October 7-9, 1986).

    Google Scholar 

  37. Holland, K. A., and Rae, I. D., Thermal Degradation of Polymers. Part 3. Thermal Degradation of a Compound Which Models the Head-to-Head Linkage in Poly(Methyl Methacrylate), Australian J. Chemistry 40, 687-692 (1987).

    Google Scholar 

  38. Manring, L. E., Thermal Degradation of Saturated Poly(methylmethacrylate), Macromolecules 21, 528-530 (1988).

    Article  Google Scholar 

  39. Inaba, A., Kashiwagi, T., and Brown, J. E., Effects of Initial Molecular Weight on Thermal Degradation of Poly(methyl methacrylate). Part 1, Polymer Degradation and Stability 21, 1-20 (1988).

    Article  Google Scholar 

  40. Steckler, K. D., Kashiwagi, T., Baum, H. R., and Kanemaru, K., Analytical Model for Transient Gasification of Noncharring Thermoplastic Materials, pp 895-904 in Fire Safety Science— Proc. 3 rd Intl. Symp., International Association for Fire Safety Science. Elsevier Applied Science, New York, (1991).

    Google Scholar 

  41. McGrattan, K., Hostikka, S., McDermott, R., Floyd, R., Weinschenk, C., and overholt, K., Fire Dynamics Simulator Technical Reference G uide. Vol. 1: Mathematical Model (NISTSP 1018) NIST, Gaithersburg MD (2013).

    Google Scholar 

  42. Babrauskas, V., Specimen Heat Fluxes for Bench-scale Heat Release Rate Testing, Fire and Materials 19, 243-252 (1995).

    Article  Google Scholar 

  43. Basic Considerations in the Combustion of Hydrocarbon Fuels in Air (NACA Report 1300), National Advisory Committee for Aeronautics, Washington (1957).

    Google Scholar 

  44. Babrauskas, V., Ignition Handbook, Fire Science Publishers/Society of Fire Protection Engineers, Issaquah WA (2003).

    Google Scholar 

  45. Babrauskas, V., and Krasny, J. F., Fire Behavior of Upholstered Furniture (NBS Monograph 173), U.S. Natl. Bur. Stand. (1985).

    Google Scholar 

  46. Kokkala, M., and Heinilä, M., Flame Height, Temperature, and Heat Flux Measurements on a Flame in an Open Corner of Walls, Project 5 of the EUREFIC fire research programme, Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (1991).

    Google Scholar 

  47. Quintiere, J. G., A Simulation Model for Fire Growth on Materials Subject to a Room-Corner Test, Fire Safety J. 20, 313-339 (1993).

    Article  Google Scholar 

  48. Parker, A. J., Wenzel, A. B., and Al-Hassan, T., Evaluation of Passive Fire Protection by Jet Fire Test Procedure, paper 4-d in 29 th Loss Prevention Symp., American Institute of Chemical Engineers, New York (1995).

    Google Scholar 

  49. Söderbom, J., EUREFIC--Large Scale Tests according to ISO DIS 9705. Project 4 of the EUREFIC fire research programme (SP Report 1991:27). Statens Provningsanstalt, Borås, Sweden (1991).

    Google Scholar 

  50. Lee, B.T., Standard Room Fire Test Development at the National Bureau of Standards, pp. 29-44 in Fire Safety: Science and Engineering (ASTM STP 882), T. Z. Harmathy, ed., American Society for Testing and Materials, Philadelphia (1985).

    Google Scholar 

  51. Hasemi, Y., Experimental Wall Flame Heat Transfer Correlations for the Analysis of Upward Wall Flame Spread, Fire Science and Technology 4, 75-90 (1984).

    Article  Google Scholar 

  52. Quintiere, J. G., The Application of Flame Spread Theory to Predict Material Performance, J. of Research of the National Bureau of Standards 93, 61-70 (1988).

    Article  Google Scholar 

  53. 53., Kulkarni, A. K., Kim, C. I., and Kuo, C.H., Turbulent Upward Flame Spread for Burning Vertical Walls Made of Finite Thickness (NIST-GCR-91-597), Natl. Inst. Stand. and Technol., Gaithersburg, MD (1991).

    Google Scholar 

  54. Fang, J. B., and Breese, J. N., Fire Development in Residential Basement Room (NBSIR 80-2120), U.S. Natl. Bur. Stand., Gaithersburg, MD (1980).

    Google Scholar 

  55. Babrauskas, V., and Williamson, R. B., The Historical Basis of Fire Resistance Testing, Part I, Fire Technology 14, 184-194, 205 (1978). Part II, Fire Technology 14,304-316 (1978).

    Google Scholar 

  56. Rhodes, B. T., Burning Rate and Flame Heat Flux for PMMA in the Cone Calorimeter (M.S. thesis, University of Maryland). NIST-GCR-95-664. Natl. Inst. Stand. and Technol., Gaithersburg (1994).

    Google Scholar 

  57. Hopkins, D. jr., and Quintiere, J. G., Material Fire Properties and Predictions for Thermoplastics, Fire Safety J. 26, 241-268 (1996).

    Article  Google Scholar 

  58. Gore, J., Klassen, M., Hamins, A., and Kashiwagi, T., Fuel Property Effects on Burning Rate and Radiative Transfer from Liquid Pool Flames, pp. 395-404 in Fire Safety Science—Proc. 3 rd Intl. Symp., Elsevier Applied Science, London (1991).

    Google Scholar 

  59. Janssens, M., Cone Calorimeter Measurements of the Heat of Gasification of Wood, pp. 549-558 in Interflam ‘93: Sixth Intl. Fire Conf. Proc., Interscience Communications Ltd., London (1993).

    Google Scholar 

  60. Sorathia, U., Dapp, T., Kerr, J., and Wehrle, J., Flammability Characteristics of Composites (DTRC SME 89/90), US Navy, David Taylor Research Center, Bethesda MD (1989).

    Google Scholar 

  61. Rowen, J. W., and Lyons, J. W., The Importance of Externally Imposed Heat Flux on the Burning Behavior of Materials, J. Cellular Plastics 14, 25-32 (1978).

    Article  Google Scholar 

  62. Paul, K., unpublished data, RAPRA Technology, Shawbury, England.

    Google Scholar 

  63. Elliot, P., Whiteley, R. H., and Staggs, J. E., Steady State Analysis of Cone Calorimeter Data, pp. 35-42 in Proc. 4 th IIntl. Fire and Materials Conf., Interscience Communications Ltd., London (1995).

    Google Scholar 

  64. Tsantaridis, L., Reaction to Fire Performance of Wood and Other Building Products (Ph.D. dissertation), Kungliga Tekniska Högskolan, Stockholm (2003).

    Google Scholar 

  65. Cleary, T. G., and Quintiere, J. G., Flammability Characterization of Foam Plastics (NISTIR 4664), Natl. Inst. Stand. Technol., Gaithersburg, MD (1991).

    Book  Google Scholar 

  66. Nussbaum, R. M., and Östman, B. A.-L., Larger Specimens for Determining Rate of Heat Release in the Cone Calorimeter, Fire and Materials 10, 151-160 (1986); and 11, 205 (1987).

    Google Scholar 

  67. Janssens, M., and Urbas, J., Comparison of Small and Intermediate Scale Heat Release Data, pp. 285-294 in Interflam ‘96, Interscience Communications Ltd, London (1996).

    Google Scholar 

  68. Orloff, L., Modak, A. T., and Alpert, R. L., Burning of Large-Scale Vertical Wall Surfaces, pp. 1345-54 in 16 th Symp. (Intl. ) on Combustion, The Combustion Institute, Pittsburgh (1976).

    Google Scholar 

  69. Babrauskas, V., Cone Calorimeter Annotated Bibliography, 2003 edition, Fire Science Publishers, Issaquah WA (2004).

    Google Scholar 

  70. Beard, A., and Goebeldecker, S., Fire Behaviour of Household Appliances towards External Ignition, European Fire Retardants Assn., Brussels (2007).

    Google Scholar 

  71. Ohlemiller, T. J., Shields, J. R., McLane, R. A., and Gann, R. G., Flammability Assessment Methodology for Mattresses (NISTIR 6497), Nat. Inst. Stand. and Technol., Gaithersburg MD (2000).

    Google Scholar 

  72. Bwalya, A. C., Characterization of Fires in Multi-Suite Residential Dwellings: Phase 1 – Room Fire Experiments with Individual Furnishings (IRC-RR-302), National Research Council Canada, Ottawa (2010).

    Google Scholar 

  73. Klitgaard, P. S., and Williamson, R. B., The Impact of Contents on Building Fires, J. Fire and Flammability/Consumer Product Flammability Supplement 2, 84-113 (1975).

    Google Scholar 

  74. White, J. A. jr, Western Fire Center, Inc., Kelso WA, unpublished test results (2003).

    Google Scholar 

  75. Huczek, J. P., Southwest Research Institute, San Antonio TX, unpublished test results (2003).

    Google Scholar 

  76. Tu, K. M., and Davis, S., Flame Spread of Carpet Systems Involved in Room Fires (NBSIR 76-1013),U. S. Natl. Bur. Stand., Washington (1976).

    Book  Google Scholar 

  77. Vandevelde, P., and Van Hees, P., Wind Aided Flame Spread of Floor Coverings, Development and Evaluation of Small and Large Scale Tests, pp. 57-67 in Interflam ‘96, Interscience Communications Ltd., London (1996).

    Google Scholar 

  78. Ames, S., Colwell, R., and Shaw, K., The Fire Behaviour and Fire Testing of Carpet Used as a Stair Covering, pp. 69-77 in Interflam ‘96, Interscience Communications Ltd., London (1996).

    Google Scholar 

  79. Williamson, R. B., and Dembsey, N. A., Advances in Assessment Methods for Fire Safety, Fire Safety J. 20, 15-38 (1993).

    Article  Google Scholar 

  80. Stroup, D. W., DeLauter, L., Lee, J., and Roadarmel, G., Fire Tests of Men’s Suits on Racks (FR 4013), Nat. Inst. Stand. and Technol., Gaithersburg MD (2001).

    Google Scholar 

  81. Satoh, H., and Mizuno, T., Fire Source Model Based on the Ignited Material and Its Burning Property in the Early Stages of Fire in Residential Accommodation, Fire Science & Technology 25, 163-188 (2006).

    Article  Google Scholar 

  82. Simonson, M., Report for the Fire Testing of One Printer and Two CPUs, (P008664), Swedish National Testing and Research Institute, Borås (2000).

    Google Scholar 

  83. Bundy, M., and Ohlemiller, T., Full-Scale Flammability Measures for Electronic Equipment (Tech. Note 1461), Nat. Inst. Stand. and Technol., Gaithersburg MD (2004).

    Google Scholar 

  84. Edenburn, D., Burning Mouse, Albemarle Corp. [n.p.] (2003).

    Google Scholar 

  85. Bliss, D., and Simonson, M., Fire Performance of IT Equipment Studied in the Furniture Calorimeter, pp. 171-179 in Interflam 2001—Proc. 9 th Intl. Conf., Interscience Communications Ltd., London (2001).

    Google Scholar 

  86. Steel, J. S., unpublished data, Natl. Inst. Stand. and Technol., Gaithersburg (1985).

    Google Scholar 

  87. Zicherman, J. and Stevanovic, A., unpublished test results, Fire Cause Analysis, Inc., Richmond CA, (20035).

    Google Scholar 

  88. Babrauskas, V., Harris, R. H., Jr., Gann, R. G., Levin, B. C., Lee, B. T., Peacock, R. D., Paabo, M., Twilley, W., Yoklavich, M. F., and Clark, H. M., Fire Hazard Comparison of Fire-Retarded and Non-Fire-Retarded Products (NBS Special Publication SP 749), U. S. Natl. Bur. Stand. (1988).

    Google Scholar 

  89. Mangs, J., and Keski-Rahkonen, O., Full Scale Experiments on Electronic Cabinets (VTT Publications 186), Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (1994).

    Google Scholar 

  90. Mangs, J., and Keski-Rahkonen, O., Full Scale Experiments on Electronic Cabinets II (VTT Publications 269), Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (1996).

    Google Scholar 

  91. Keski-Rahkonen, O., and Mangs, J., Maximum and Minimum Rate of Heat Release during Flashover in Electronic Cabinets of NPPs. Paper presented at Fire Safety in Power Plants and Industrial Installations, SMiRT 13 Post Conference Seminar No. 6, Gramado, Brazil. Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (1995).

    Google Scholar 

  92. Rigollet, L., and Mélis, S., Fires of Electrical Cabinets, Paper no. 023 in 11 th Intl. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France; publ. by American Nuclear Society, LaGrange Park, IL (2005).

    Google Scholar 

  93. Folke, F., Experiments in Fire Extinguishment, NFPA Quarterly 31, 115 (1937).

    Google Scholar 

  94. Nilsson, L., The Effect of Porosity and Air Flow on the Rate of Combustion of Fire in an Enclosed Space (Bulletin 18), Lund Institute of Technology, Lund, Sweden (1971).

    Google Scholar 

  95. Yamashika, S., and Kurimoto, H, Burning Rate of Wood Crib, Rept. of Fire Res. Inst. Japan, No. 41, 8 (1976).

    Google Scholar 

  96. Harmathy, T.Z., Experimental Study on the Effect of Ventilation on the Burning of Piles of Solid Fuels, Combustion and Flame 31, 259 (1978).

    Article  Google Scholar 

  97. Quintiere, J.G., and McCaffrey, B.J., The Burning of Wood and Plastic Cribs in an Enclosure, Vol. 1 (NBSIR 80-2054), [U.S.] Natl. Bur. Stand., Washington (1980).

    Google Scholar 

  98. Fons, W.L., Clements, H.B., and George, P.M., Scale Effects on Propagation Rate of Laboratory Crib Fires, in 9 th Symp. (Intl.) on Combustion, The Combustion Institute, Pittsburgh (1962).

    Google Scholar 

  99. Delichatsios, M.A., Fire Growth Rates in Wood Cribs, Combustion and Flame 27, 267 (1976).

    Article  Google Scholar 

  100. Moore, L. D., Full-scale Burning Behavior of Curtains and Drapes (NBSIR 78-1448), [U.S.] Nat. Bur. Stand., Washington (1978).

    Google Scholar 

  101. Wetterlund, I., and Göransson, U., A Full Scale Fire Test Method for Free-Hanging Curtain and Drapery Textiles (SP Report 1988:45),Swedish National Testing Institute, Borås (1988).

    Google Scholar 

  102. Yamada, T., Yanai, E., and Naba, H., A Study of Full-Scale Flammability of Flame Retardant and Non-Flame Retardant Curtains, pp. 463-473 in Proc. 4 th Asia-Oceania Symp. on Fire Science & Technology, Asia-Oceania Assn. for Fire Science & Technology/Japan Assn. for Fire Science & Engineering, Tokyo (2000).

    Google Scholar 

  103. Urban Wildland Interface Building Test Standards (12-7A-5), Fire Resistive Standards for Decks and Other Horizontal Ancillary Structures, California Office of State Fire Marshal, Sacramento (2004).

    Google Scholar 

  104. Chow, W. K., Han, S. S., Dong, H., Gao, Y., and Zou, G. W., Full-Scale Burning Tests on Heat Release Rates of Furniture, Intl. J. of Engineering Performance-Based Fire Codes 6, 168-180 (2004).

    Google Scholar 

  105. Hietaniemi, J., Mangs, J., and Hakkarainen, T., Burning of Electrical Household Appliances—An Experimental Study (VTT Research Notes 2084), Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (2001).

    Google Scholar 

  106. NIST, unpublished data.

    Google Scholar 

  107. Tewarson, A., Lee, J.L., and Pion, R.F., Categorization of Cable Flammability. Part I. Experimental Evaluation of Flammability Parameters of Cables Using Laboratory-scale Apparatus, EPRI Project RP 1165-1, Factory Mutual Research Corp., Norwood (1979).

    Google Scholar 

  108. Sumitra, P.S., Categorization of Cable Flammability. Intermediate-Scale Fire Tests of Cable Tray Installations, Interim Report NP-1881, Research Project 1165-1, Factory Mutual Research Corp., Norwood (1982).

    Google Scholar 

  109. Lee, B.T., Heat Release Rate Characteristics of Some Combustible Fuel Sources in Nuclear Power Plants, NBSIR 85-3195, [U.S.] Nat. Bur. Stand., Washington (1985).

    Google Scholar 

  110. Arvidson, M., Potato Crisps and Cheese Nibbles Burn Fiercely, Brandposten [SP] No. 32, 10-11 (2005).

    Google Scholar 

  111. Madrzykowski, D., unpublished test results (2012).

    Google Scholar 

  112. Persson, H., Evaluation of the RDD-measuring Technique. RDD-Tests of the CEA and FMRC Standard Plastic Commodities (SP Report 1991:04), SP, Borås, Sweden (1991).

    Google Scholar 

  113. Babrauskas, V., unpublished test results (1997).

    Google Scholar 

  114. Heskestad, G., Flame Heights of Fuel Arrays with Combustion in Depth, pp. 427-438 in Fire Safety Science—Proc. 5 th Intl. Symp., Intl. Assn. for Fire Safety Science (1997).

    Google Scholar 

  115. Heskestad, G., Flame Heights of Fuel Arrays with Combustion in Depth, FMRC J.I. 0Y0J3.RU(2), Factory Mutual Research Corp., Norwood MA (1995).

    Google Scholar 

  116. Dean, R. K., Stored Plastics Test Program (FMRC Serial No. 20269), Factory Mutual Research Corp., Norwood MA (1975).

    Google Scholar 

  117. Yu, H.-Z., and Kung, H.-C., Strong Buoyant Plumes of Growing Rack Storage Fires, pp. 1547-1554 in 20 th Symp. (Intl.) on Combustion, Combustion Institute, Pittsburgh PA (1984).

    Google Scholar 

  118. Yu, H.-Z., and Kung, H.-C., Strong Buoyant Plumes of Growing Rack Storage Fires, FMRC J.I. 0G2E7.RA(1), Factory Mutual Research Corp., Norwood MA (1984).

    Google Scholar 

  119. Commodities and Storage Arrangements, Record 66:3, 13-18 (May/June 1989).

    Google Scholar 

  120. Guide for Smoke and Heat Venting (NFPA 204), National Fire Protection Assn., Quincy MA (1998).

    Google Scholar 

  121. Kung, H.-C., Spaulding, R. D., and You, H.-Z., Response of Sprinkler Links to Rack Storage Fires. FMS J.I.0G2E7.RA(2). FMRC (1984).

    Google Scholar 

  122. Chicarello, P. J., and Troup, J. M. A., Fire Collector Test Procedure for Determining the Commodity Classification of Ordinary Combustible Products. FMRC J.I. 0R0E5.RR. FMRC (1990).

    Google Scholar 

  123. Yu, H.-Z., and Stavrianidis, P., The Transient Ceiling Flows of Growing Rack Storage Fires. FMRC J.I. 0N1J0.RA(3). FMRC (1989).

    Google Scholar 

  124. Yu, H.-Z., A Sprinkler-Response-Prediction Computer Program for Warehouse Applications. FMRC J.I. 0R2E1.RA. FMRC (1992).

    Google Scholar 

  125. Newman, J., and Troup, J. M. A., The Building Calorimeter: FM Global’s Novel Approach to Large-Scale Fire Testing, NFPA World Safety Conf. and Expo., Las Vegas (2005).

    Google Scholar 

  126. Yu, H.-Z., RDD and Sprinklered Fire Tests for Expanded Polystyrene Egg Crates, FMRC J.I. 0R2E3.RA(1), Factory Mutual Research Corp., Norwood MA (1990).

    Google Scholar 

  127. Sleights, J. E., SPRINK 1.0—A Sprinkler Response Computer Program for Warehouse Storage Fires (M.S. thesis), Worcester Polytechnic Institute, Worcester MA (1993).

    Google Scholar 

  128. Lee, J. L., and Dean, R. K., Fire Products Collector Tests of Polyethylene Terephthalate (PET) Plastic Bottles in Corrugated Carton, FMRC J.I. 0N0J6.RA070(A), Factory Mutual Research Corp., Norwood MA (1986).

    Google Scholar 

  129. Lee, J. L., Combustibility Evaluation of Shredded Newsprint Commodity and an Improved Polyurethane Foam Packaging Product Using the Fire Products Collector, FMRC J.I. 0K0E6.RANS, Factory Mutual Research Corp., Norwood MA (1984).

    Google Scholar 

  130. Khan, M. M., Evaluation of the Fire Behavior of Packaging Materials, presented at Defense Fire Protection Symp., Annapolis (1987).

    Google Scholar 

  131. Hasegawa, H., Alvares, N. J., and White, J. A., Fire Tests of Packaged and Palletized Computer Products, Fire Technology 35, 294-307 (1999).

    Article  Google Scholar 

  132. Hasegawa, H., private communication (2000).

    Google Scholar 

  133. Dillon, S. E., Janssens, M. L., and Garabedian, A. S., A Comparison of Building Code Classifications and Results of Intermediate-Scale Fire Testing of Stored Plastic Commodities, pp. 593-604 in Interflam 2001—Proc. 9 th Intl. Conf., Interscience Communications Ltd., London (2001).

    Google Scholar 

  134. Roberts, T. A., Merrifield, R., and Tharmalingam, S., Thermal Radiation Hazards from Organic Peroxides, J. Loss Prevention in the Process Industries 3, 244-252 (1990).

    Article  Google Scholar 

  135. Babrauskas, V., unpublished test data (1997).

    Google Scholar 

  136. Yu, H.-Z., and Stavrianidis, P., The Transient Ceiling Flows of Growing Rack Storage Fires, FMRC J.I. 0N1J0.RA(3), Factory Mutual Research Corp., Norwood MA (1989).

    Google Scholar 

  137. Mitler, H. E., Input Data for Fire Modeling, pp. 187-199 in Thirteenth Meeting of the UJNR Panel on Fire Research and Safety, March 13-20, 1996 (NISTIR 6030, vol. 1), Nat. Inst. Stand. and Technol., Gaithersburg MD (1997).

    Google Scholar 

  138. Messa, S., Designing Fires for FIRESTARR, LSF Fire Laboratories, Montano Lucino, Italy (2000).

    Google Scholar 

  139. Chow, W. K., Zou, G., Dong, H., and Gao, Y., Necessity of Carrying out Full-Scale Burning Tests for Post-Flashover Retail Shop Fires, Intl. J. on Engineering Performance-Based Fire Codes 5, 20-27 (2003).

    Google Scholar 

  140. Madrzykowski, D., and Kerber, S, Fire Fighting Tactics under Wind Driven Conditions: Laboratory Experiments (TN 1618), Nat. Inst. Stand & Technol., Gaithersburg MD (2009).

    Book  Google Scholar 

  141. Babrauskas, V., Bench-Scale Predictions of Mattress and Upholstered Chair Fires, pp. 50-62 in Fire and Flammability of Furnishings (ASTM STP 1233). American Society for Testing and Materials, Philadelphia (1994).

    Google Scholar 

  142. Damant, G. H., and Nurbakhsh, S., Heat Release Tests of Mattresses and Bedding Systems, State of California, Bureau of Home Furnishings and Thermal Insulation, North Highlands, CA (1991).

    Google Scholar 

  143. Holmstedt, G., and Kaiser, I., Brand I vårdbäddar (SP-RAPP 1983:04), Swedish National Testing and Research Institute, Borås, Sweden (1983).

    Google Scholar 

  144. Andersson, B., Fire Behaviour of Beds and Upholstered Furniture--An Experimental Study (LUTVDG/ISSN 0282-3756),Lund University, Dept. of Fire Safety Engineering, Lund, Sweden (1985).

    Google Scholar 

  145. Babrauskas, V., Baroudi, D., Myllymäki, J., and Kokkala, M., The Cone Calorimeter Used for Predictions of the Full-scale Burning Behaviour of Upholstered Furniture, Fire and Materials 21, 95-105 (1997).

    Article  Google Scholar 

  146. Hansen, R., and Ingason, H., Heat Release Rate Measurements of Burning Mining Vehicles in an Underground Mine, Fire Safety J. 61, 12-25 (2013).

    Article  Google Scholar 

  147. Walton, W. D., and Budnick, E. K., Quick Response Sprinklers in Office Configurations: Fire Test Results (NBSIR 88-3695), [U. S.] Natl. Bur. Stand., Gaithersburg, MD (1988).

    Google Scholar 

  148. Madrzykowski, D., and Vettori, R. L., Sprinkler Fire Suppression Algorithm for the GSA Engineering Fire Assessment System (NISTIR 4833), Natl. Inst. Stand. Technol., Gaithersburg, MD (1992).

    Book  Google Scholar 

  149. Madrzykowski, D., Office Work Station Heat Release Rate Study: Full Scale vs. Bench Scale, pp. 47-55 in Interflam ‘96, Interscience Communications Ltd., London (1996).

    Google Scholar 

  150. Madrzykowski, D., and Walton, W. D. Cook County Administration Building Fire, 69 West Washington, Chicago, Illinois, October 17, 2003: Heat Release Rate Experiments and FDS Simulations (NIST SP 1021), Nat. Inst. Stand. & Technol., Gaithersburg MD (2004).

    Book  Google Scholar 

  151. Kakegawa, S., et al., Design Fires for Means of Egress in Office Buildings Based on Full-scale Fire Experiments, pp. 975-986 in Fire Safety Science—Proc. 7 th Intl. Symp., International Association for Fire Safety Science (2003).

    Google Scholar 

  152. Krasner, L. M., Burning Characteristics of Wooden Pallets as a Test Fuel (Serial 16437), Factory Mutual Research Corp., Norwood (1968).

    Google Scholar 

  153. Babrauskas, V., Pillow Burning Rates, Fire Safety J. 8, 199-200 (1984/85).

    Google Scholar 

  154. Pipe Insulation: Fire Spread and Smoke Production--Full-scale Test (NT FIRE 036), NORDTEST, Espoo, Finland (1988).

    Google Scholar 

  155. Wetterlund, I., and Göransson, U., A New Test Method for Fire Testing of Pipe Insulation in Full Scale (SP Report 1986:33), Swedish National Testing Institute, Borås (1986).

    Google Scholar 

  156. Babrauskas, V., Toxic Fire Hazard Comparison of Pipe Insulations: The Realism of Full-scale Testing Contrasted with Assessments from Bench-scale Toxic Potency Data Alone, pp. 439-452 in Asiaflam ‘95, Interscience Communications Ltd, London (1995).

    Google Scholar 

  157. Ahonen, A., Kokkala, M. and Weckman, H., Burning Characteristics of Potential Ignition Sources of Room Fires (Research Report 285), Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (June 1984).

    Google Scholar 

  158. Damant, G., and Nurbakhsh, S., Christmas Trees--What Happens When They Ignite? Fire and Materials 18, 9-16 (1994).

    Google Scholar 

  159. Babrauskas, V., Chastagner, G., and Stauss, E., Flammability of Cut Christmas Trees, IAAI Annual General Meeting and Conference, Atlantic City NJ (2001).

    Google Scholar 

  160. Evans, D. D., Rehm, R. G., Baker, E. S., McPherson, E. G., and Wallace, J. B., Physics-Based Modeling of Community Fires, pp. 1065-1076 in Interflam 2004, Interscience Communications Ltd., London (2004).

    Google Scholar 

  161. Stroup, D. W., DeLauter, L., Lee, J., and Roadarmel, G., Scotch Pine Christmas Tree Fire Tests (FR 4010), Nat. Inst. Stand. and Technol., Gaithersburg MD (1999).

    Google Scholar 

  162. Madrzykowski, D., Impact of a Residential Sprinkler on the Heat Release Rate of a Christmas Tree Fire (NISTIR 7506), Nat. Inst. Stand & Technol., Gaithersburg MD (2008).

    Book  Google Scholar 

  163. Jackman, L., Finegan, M., and Campbell, S., Christmas Trees: Fire Research and Recommendations (LPR 17:2000), Loss Prevention Council, London (2000).

    Google Scholar 

  164. Stephens, S. L., Gordon, D. A., and Martin, R. E., Combustibility of Selected Domestic Vegetation Subjected to Desiccation, pp. 565-571 in Proc. 12 th Intl. Conf. on Fire and Forest Meteorology, Society of American Foresters, Bethesda MD (1994).

    Google Scholar 

  165. Etlinger, M. G., Fire Performance of Landscape Plants (M.S. thesis), Univ. California, Berkeley (2000).

    Google Scholar 

  166. Outline of Investigation for Artificial Christmas Trees (Subject 411), 2nd ed., Underwriters Laboratories Inc., Northbrook IL (1991).

    Google Scholar 

  167. Babrauskas, V., to be published.

    Google Scholar 

  168. McCaffrey, B., Flame Height, pp. 2-1 to 2-8 in SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Assn., Quincy MA (1995).

    Google Scholar 

  169. McCaffrey, B. J. Momentum Implications for Buoyant Diffusion Flames, Combustion and Flame 52, 149-167 (1983).

    Google Scholar 

  170. Särdqvist, S., Initial Fires: RHR, Smoke Production and CO Generation from Single Items and Room Fire Tests (LUTVDG/TVBB-3070-SE), Lund University, Dept. of Fire Safety Engineering, Lund, Sweden (1993).

    Google Scholar 

  171. Blinov, V. I., and Khudiakov, G. N., Diffusion Burning of Liquids. U.S. Army Translation. NTIS No. AD296762 (1961).

    Google Scholar 

  172. Hottel, H.C., Review Certain Laws Governing Diffusive Burning of Liquids, by V. I. Blinov and G. N. Khudiakov, Fire Research Abstracts and Reviews 1, 41-44 (1958).

    Google Scholar 

  173. Babrauskas, V., Tables and Charts, pp. A-1 to A-17 in Fire Protection Handbook, 18th ed., National Fire Protection Assn., Quincy, MA (1997).

    Google Scholar 

  174. Babrauskas, V., Estimating Large Pool Fire Burning Rates, Fire Technology 19, 251-261 (1983).

    Article  Google Scholar 

  175. Gosse, A., BG Technologies Ltd., private communication (2000).

    Google Scholar 

  176. Putorti, A. D. jr., Flammable and Combustible Liquid Spill/Burn Patterns (NIJ 604-00), National Institute of Justice, U.S. Department of Justice, Washington (2001).

    Google Scholar 

  177. Modak, A. T., Ignitability of High-Fire-Point Liquid Spills (EPRI NP-1731), Electric Power Research Inst., Palo Alto, CA (1981).

    Google Scholar 

  178. Gottuk, D. T., Scheffey, J. L., Williams, F. W., Gott, J. E., and Tabet, R. J., Optical Fire Detection (OFD) for Military Aircraft Hangars: Final Report on OFD Performance to Fuel Spill Fires and Optical Stresses (NRL/MR/6180--00-8457), Naval Research Lab., Washington (2000).

    Google Scholar 

  179. DeHaan, J. D., The Dynamics of Flash Fires Involving Flammable Hydrocarbon Liquids, Amer. J. Forensic Medicine and Pathology 17, 24-31 (1996).

    Article  Google Scholar 

  180. Babrauskas, V., COMPF2—A Program for Calculating Post-Flashover Fire Temperatures (Tech Note 991), [U. S.] Natl. Bur. Stand., Gaithersburg MD (1979).

    Google Scholar 

  181. Gore, J. P., Klassen, M., Hamins, A., and Kashiwagi, T., Fuel Property Effects on Burning Rate and Radiative Transfer From Liquid Pool Flames, pp. 395-404 in Fire Safety Science—Proc. 3 rd Intl. Symp., International Association for Fire Safety Science, Elsevier Applied Science, New York (1991).

    Google Scholar 

  182. Hamins, A., Fischer, S. J., Kashiwagi, T., Klassen, M. E., and Gore, J. P., Heat Feedback to the Fuel Surface in Pool Fires, Combustion Science and Technology 97, 37-62 (1994).

    Article  Google Scholar 

  183. Adiga, K. C., Ramaker, D. E., Tatem, P. A., and Williams, F. W., Modeling Pool-Like Gas Flames of Propane, Fire Safety J. 14, 241-250 (1989).

    Article  Google Scholar 

  184. Adiga, K. C., Ramaker, D. E., Tatem, P. A., and Williams, F., Modeling Thermal Radiation in Open Liquid Pool Fires, pp. 241-250 in Fire Safety Science—Proc. 2 nd Intl. Symp., International Association for Fire Safety Science, Hemisphere Publishing Corp., New York (1989).

    Google Scholar 

  185. Koseki, H., and Mulholland, G. W., Effect of Diameter on the Burning of Crude Oil Pool Fires, Fire Technology 27, 54-65 (1991).

    Article  Google Scholar 

  186. Koseki, H., Boilover and Crude Oil Fire, J. Applied Fire Science 3, 243-272 (1993/1994).

    Google Scholar 

  187. Chow, W. K., Necessity of Testing Combustibles under Well-developed Fires, J. Fire Sciences (2005).

    Google Scholar 

  188. Troitzsch, J. H., Flammability and Fire Behaviour of TV Sets, pp. 979-990 in Fire Safety Science—Proc. 6 th Intl. Symp., Intl. Assn. of Fire Safety Science (2000).

    Google Scholar 

  189. Nam, D.-G., Hasemi, Y., and Kamikawa, D., Investigation of an Apartment Fire—Experiments for Estimating the Cause and Mechanism of the Fire, pp. 389-400 in Fire & Materials 2005, Interscience Communications Ltd., London (2005).

    Google Scholar 

  190. Hoffmann, J. M., Hoffmann, D. J., Kroll, E. C., and Kroll, M. J., Full Scale Burn Tests of Television Sets and Electronic Appliances, Fire Technology 39, 207-224 (2003).

    Article  Google Scholar 

  191. Shipp, M., and Spearpoint, M., Measurements of the Severity of Fires Involving Private Motor Vehicles, Fire and Materials 19, 143-151 (1995).

    Article  Google Scholar 

  192. Mangs, J., and Keski-Rahkonen, O., Characterization of the Fire Behaviour of a Burning Passenger Car. Part I: Car Fire Experiments, Fire Safety J. 23, 17-35 (1994).

    Article  Google Scholar 

  193. Steinert, C., Experimentelle Untersuchhungen zum Abbrand-und Feuerubersprungsverhalten von Personenkraftwagen, VFDB-Zeitschrift, No. 4, 63-172 (2000).

    Google Scholar 

  194. Ingason, H., Gustavsson, S., and Werling, P., Brandförsök i en bergtunnel—Naturlig ventilation. Delrapport II (SP AR 1995:45), Swedish National Testing and Research Institute, Borås (1995).

    Google Scholar 

  195. Okamoto, K., Watanabe, N., Hagimoto, Y., Chigira, T., Masano, R., Miura, H., Ochiai, H., Tamura, Y., Hayano, K., Maeda, Y., and Suzuki, J., Burning Behavior of Sedan Passenger Cars, Fire Safety J. 44, 301-310 (2009).

    Article  Google Scholar 

  196. Okamoto, K., Otake, T., Miyamoto, H., Honma, M., and Watanabe, N., Burning Behavior of Minivan Passenger Cars, Fire Safety J. 62, 272-280 (2013).

    Article  Google Scholar 

  197. Ohlemiller, T. J., and Shields, J. R., Burning Behavior of Selected Automotive Parts from a Minivan (NISTIR 6143), Nat. Inst. Stand. & Technol., Gaithersburg MD (1998).

    Book  Google Scholar 

  198. Ohlemiller, T. J., Influence of Flame-Retarded Resins on the Burning Behavior of a Heating, Ventilating and Air Conditioning Unit from a Sports Coupe (NISTIR 6748), Nat. Inst. Stand. & Technol., Gaithersburg MD (2003).

    Google Scholar 

  199. Ingason, H., Gustavsson, S., and Dalhberg, M., Heat Release Rate Measurements in Tunnel Fires (SP Report 1994:08), Swedish National Testing & Research Institute, Borås (1994).

    Google Scholar 

  200. Steinert, C., Smoke and Heat Production in Tunnel Fires, pp. 123-137 in Proc. Intl. Conf. on Fires in Tunnels (SP Report 1994:54), Swedish National Testing & Research Institute, Borås (1994

    Google Scholar 

  201. Göransson, U., and Lundqvist, A., Fires in Buses and Trains: Fire Test Methods (SP Report 1990:45). Swedish National Testing and Research Institute, Borås (1990).

    Google Scholar 

  202. Peacock, R. D., Reneke, P. A., Averill, J. D., Bukowski, R. W., and Klote, J. H., Fire Safety of Passenger Trains. Phase II: Application of Fire Hazard Analysis Techniques (NISTIR 6525), Nat. Inst. Stand. & Technol., Gaithersburg MD (2002).

    Google Scholar 

  203. Hansen, P. A., Fire in Tyres: Heat Release Rate and Response of Vehicles (STF25 A95039). SINTEF NBL, Norwegian Fire Research Laboratory, Trondheim (1995).

    Google Scholar 

  204. Shipp, M. P., Fire Spread in Tyre Dumps, pp. 79-88 in Interflam ‘96. Interscience Communications Ltd., London (1996).

    Google Scholar 

  205. Murrell, J., and Briggs, P., Developments in European and International Fire Test Methods for Composites Used in Building and Transport Applications, pp. 21-32 in Proc. 2 nd Intl. Conf. on Composites in Fire, Conference Design Consultants, Newcastle upon Tyne, England (2001).

    Google Scholar 

  206. Ingason, H., and Lönnermark, A., Heat Release Rates from Heavy Goods Vehicle Trailer Fires in Tunnels, Fire Safety J. 40, 646-668 (2005).

    Article  Google Scholar 

  207. Fires in Transport Tunnels. Report on Full-Scale Tests (EUREKA Project EU 499: FIRETUN), Studiengesellschaft Stahlanwendung e.V., Düsseldorf, Germany (1995).

    Google Scholar 

  208. Proceedings of the International Conference on Fires in Tunnels, SP - Swedish National Testing and Research Institute, Borås (1994). Distributed by Interscience Communications Ltd, London.

    Google Scholar 

  209. Ingason, H., An Overview of Vehicle Fires in Tunnels, pp. 425-434 in Intl. Conf. on Tunnel Fires and Escape from Tunnels, Madrid (2001).

    Google Scholar 

  210. Mehaffey, J. R., Craft, S. T., Richardson, L. R., and Batista, M., Fire Experiments in Furnished Houses, pp. 163-174 in Proc. 4 th Intl. Symp. on Fire and Explosion Hazards, FireSERT, Univ. Ulster, Northern Ireland (2004).

    Google Scholar 

  211. Stroup, D. W., and Madrzykowski, D., Heat Release Rate Tests of Plastic Trash Containers (FR 4018), Nat. Inst. Stand. & Technol., Gaithersburg MD (2003).

    Google Scholar 

  212. Zicherman, J. B., Fire Cause Analysis, Berkeley CA; unpublished tests conducted at the Western Fire Center, Inc. (2008).

    Google Scholar 

  213. Fire Tests for Foamed Plastics Used for Decorative Purposes (UL 1975), Underwriters Laboratories Inc., Northbrook IL.

    Google Scholar 

  214. Babrauskas, V., Upholstered Furniture Heat Release Rates: Measurements and Estimation, J. Fire Sciences 1, 9-32 (1983).

    Article  Google Scholar 

  215. Flammability Information Package (Contains Technical Bulletins 116, 117, 121, 133, 106 and 26). Bureau of Home Furnishings, Dept. of Consumer Affairs, State of California, North Highlands (1987).

    Google Scholar 

  216. Babrauskas, V., Full-Scale Burning Behavior of Upholstered Chairs (Tech Note 1103), [U. S.] Natl. Bur. Stand., Gaithersburg MD (1979).

    Google Scholar 

  217. Mitler, H. E., and Tu, K.-M., Effect of Ignition Location on Heat Release Rate of Burning Upholstered Furniture, pp. 121-122 in Annual Conf. on Fire Research. Book of Abstracts. October 17-20, 1994 (NISTIR 5499), Nat. Inst. Stand. & Technol., Gaithersburg MD (1994).

    Google Scholar 

  218. Collier, P. C. R., and Whiting, P. N., Timeline for Incipient Fire Development (Study Report 194), BRANZ, Judgeford, New Zealand (2008).

    Google Scholar 

  219. Babrauskas, V., Lawson, J. R., Walton, W. D., and Twilley, W. H., Upholstered Furniture Heat Release Rates Measured with a Furniture Calorimeter (NBSIR 82-2604), [U. S.] Natl. Bur. Stand., Gaithersburg MD (1982).

    Google Scholar 

  220. Janssens, M. L., Gomez, C., Huczek, J. P., Overholt, K. J., Ewan, D. M., Hirschler, M. M., Mason, R. L., and Sharp, J. M., Reducing Uncertainty of Quantifying the Burning Rate of Upholstered Furniture (SwRI Project No. 01.15998), Prepared for National Institute of Justice, Southwest Research Institute, San Antonio TX (2012).

    Google Scholar 

  221. Medford, R. L., and Ray, D. R., Upholstered Furniture Flammability: Fires Ignited by Small Open Flames and Cigarettes, CPSC, Washington (Oct. 24, 1997).

    Google Scholar 

  222. Babrauskas, V., Blum, A., Daley, R., and Birnbaum, L., Flame Retardants in Furniture Foam: Benefits and Risks, pp. 265-278 in Fire Safety Science—Proc. 10 th Intl. Symp., Intl. Assn. for Fire Safety Science, London (2011).

    Google Scholar 

  223. Babrauskas, V., and Walton, W. D., A Simplified Characterization for Upholstered Furniture Heat Release Rates, Fire Safety J. 11, 181-192 (1986).

    Article  Google Scholar 

  224. Standard Test Method for Determining the Heat Release Rate of Upholstered Furniture and Mattress Components or Composites Using a Bench-Scale Oxygen Consumption Calorimeter (E 1474-96a). American Society for Testing and Materials, Philadelphia (1996).

    Google Scholar 

  225. Edenburn, D., Burning Video Game System (Technical Report), Albemarle Corp., [n.p.] (2003).

    Google Scholar 

  226. Babrauskas, V., Bench-Scale Methods for Prediction of Full-Scale Fire Behavior of Furnishings and Wall Linings, SFPE Technical Report 84-10, Society of Fire Protection Engineers, Boston (1984).

    Google Scholar 

  227. Wickström, U., and Göransson, U., Prediction of Heat Release Rates of Surface Materials in Large-Scale Fire Tests Based on Cone Calorimeter Results, J. Testing and Evaluation 15, 364-370 (1987).

    Article  Google Scholar 

  228. Proceedings of the International EUREFIC Seminar 1991, Interscience Communications Ltd, London (1991).

    Google Scholar 

  229. Göransson, U., Model, Based on Cone Calorimeter Results, for Explaining the Heat Release Rate Growth of Tests in a Very Large Room, pp. 39-47 in Interflam ‘93: Sixth Intl. Fire Conf. Proc., Interscience Communications Ltd., London (1993).

    Google Scholar 

  230. Sumathipala, K., Kim, A. K., and Lougheed, G. D., A Comparison of ASTM and ISO Full-scale Room Fire Test Methods, pp. 101-110 in Proc. Fire and Materials, 2 nd Intl. Conf., Interscience Communications Ltd, London (1993).

    Google Scholar 

  231. Sumathipala, K., Kim, A. K., and Lougheed, G. D., Configuration Sensitivity of Full-scale Room Fire Tests, pp. 237-246 in Proc. Fire and Materials, 3 rd Intl. Conf., Interscience Communications Ltd, London (1994).

    Google Scholar 

  232. Karlsson, B., and Magnusson, S.-E., An Example Room Fire Model, pp. 159-171 in Heat Release in Fires, op cit.

    Google Scholar 

  233. Karlsson, B., Models for Calculating Flame Spread on Wall Lining Materials and the Resulting Heat Release Rate in a Room, Fire Safety J. 23, 365-386 (1994).

    Article  Google Scholar 

  234. Magnusson, S. E., and Sundström, B., Combustible linings and room fire growth – A first analysis, pp. 45-69 in Fire Safety Science and Engineering (ASTM STP 882), American Society for Testing and Materials, Philadelphia (1985).

    Google Scholar 

  235. Cleary, T. G., and Quintiere, J. G., A Framework for Utilizing Fire Property Tests, pp. 647-656 in Fire Safety Science--Proc. of the 3 rd Intl. Symp., Elsevier Applied Science, London (1991).

    Google Scholar 

  236. Quintiere, J. G., A Simulation Model for Fire Growth on Materials Subject to a Room-Corner Test, Fire Safety J. 20, 313-339 (1993).

    Article  Google Scholar 

  237. Quintiere, J. G., Haynes, G., and Rhodes, B. T., Applications of a Model to Predict Flame Spread over Interior Finish Materials in a Compartment, J. Fire Prot. Engineering 7, 1013 (1995).

    Article  Google Scholar 

  238. Janssens, M., Grexa, O., Dietenberger, M., and White, R., Predictions of ISO 9705 Room/corner Test Using a Simple Model, pp. 73-83 in Proc. 4 th Intl. Fire and Materials Conf., Interscience Communications Ltd., London (1995).

    Google Scholar 

  239. Lawson, J. R., Walton, W. D., and Twilley, W. H., Fire Performance of Furnishings as Measured in the NBS Furniture Calorimeter. Part 1 (NBSIR 83-2787), U.S. Natl. Bur. Stand., Gaithersburg MD (1983).

    Google Scholar 

  240. Peacock, R. D., Reneke, P. A., Averill, J. D., Bukowski, R. W., and Klote, J. H., Fire Safety of Passenger Trains, Phase II: Application of Fire Hazard Analysis Techniques (NISTIR 6525), Nat. Inst. Stand. and Technol., Gaithersburg MD (2002).

    Google Scholar 

  241. Janssens, M. L., Heat Release Rate, FORUM Workshop on Measurement Needs for Fire Safety, Nat. Inst. Stand. and Technol., Gaithersburg MD (2000).

    Google Scholar 

  242. Smith, D. A., and Shaw, K., Single Burning Item (SBI) Test: The Euroclasses and Transitional Arrangements, pp. 1-9 in Interflam ’99, Interscience Communications Ltd., London (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Babrauskas, V. (2016). Heat Release Rates. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics