Skip to main content

Abstract

Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome by homologous recombination and provides a powerful tool for both the functional analysis of the gene of interest and the molecular breeding of crop plants. In this chapter, we focus on gene targeting in crop plants with effective selection systems, namely, gene-specific selection and positive–negative selection. So far japonica rice is the only crop species in which the reproducible gene targeting of the endogenous genes in the nuclear genomes has been reported: two genes by gene-specific selection and at least nine genes by positive–negative selection. Gene-specific selection and positive–negative selection are applicable to only a limited number of genes and, in principle, any genes, respectively. We discuss some characteristic features and possible future developments associated with gene targeting of an endogenous gene with positive–negative selection in crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BARI:

Border-associated random integration

BIRI:

Border-independent random integration

DSB:

Double-strand break

EGT:

Ectopic gene targeting

GT:

Gene targeting

HR:

Homologous recombination

NHEJ:

Nonhomologous end joining

OSI:

One-sided invasion

TGT:

True gene targeting

Trp:

Tryptophan

ZFN:

Zinc-finger nuclease

References

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Da Ines O, White CI (2013) Gene site-specific insertion in plants. In: Renault S, Duchateau P (eds) Site-directed insertion of transgenes. Springer, Dordrecht, pp 287–315

    Chapter  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biolechnol J 9:540–553

    Article  CAS  Google Scholar 

  • Day CD, Irish VF (1997) Cell ablation and the analysis of plant development. Trends Plant Sci 2:106–111

    Article  Google Scholar 

  • Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157–166

    Article  CAS  PubMed  Google Scholar 

  • Fauser F, Roth N, Pacher M et al (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109:7535–7540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gouble A, Smith J, Bruneau S et al (2006) Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 8:616–622

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  PubMed  Google Scholar 

  • Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407

    Article  CAS  PubMed  Google Scholar 

  • Iida S, Hiestand-Nauer R (1987) Role of the central dinucleotide at the crossover sites for the selection of quasi sites in DNA inversion mediated by the site-specific Cin recombinase of phage P1. Mol Gen Genet 208:464–468

    Article  CAS  PubMed  Google Scholar 

  • Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132–138

    Article  CAS  PubMed  Google Scholar 

  • Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K, Johzuka-Hisatomi Y, Ishida S, Iida S, Kohchi T (2013) Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep 3:1532

    PubMed Central  PubMed  Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Johzuka-Hisatomi Y, Terada R, Iida S (2008) Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction. Nucleic Acids Res 36:4727–4735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johzuka-Hisatomi Y, Noguchi H, Iida S (2011) The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea. J Plant Res 124:299–304

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Kasaoka K. Method for selecting transformed cells. World Patent Application, WO/1999/005296; 1999

    Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  CAS  PubMed  Google Scholar 

  • Li X, Burnight ER, Cooney AL, et al. piggyBac transposase tools for genome engineering. Proc Natl Acad Sci USA. 2013; 110: E2279–2287

    Google Scholar 

  • Lieberman-Lazarovich M, Levy AA (2011) Homologous recombination in plants: an antireview. Methods Mol Biol 701:51–65

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Marton I, Zuker A, Shklarman E et al (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marton I, Honig A, Omid A et al (2013) From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes. Int J Dev Biol 57:639–650

    Article  CAS  PubMed  Google Scholar 

  • Menke DB (2013) Engineering subtle targeted mutations into the mouse genome. Genesis 51:605–618

    CAS  PubMed  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  CAS  PubMed  Google Scholar 

  • Moritoh S, Eun C-H, Ono A et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85–98

    Article  CAS  PubMed  Google Scholar 

  • Mussolino C, Cathomen T (2013) RNA guides genome engineering. Nat Biotechnol 31:208–209

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KM (2003) Transgenic organisms—time for conceptual diversification? Nat Biotechnol 21:227–228

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon Y-I, Osakabe K, Toki S (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishizawa-Yokoi A, Endo M, Osakabe K, Saika H, Toki S (2014) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ono A, Yamaguchi K, Fukada-Tanaka S, Terada R, Mitsui T, Iida S (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564–574

    Article  CAS  PubMed  Google Scholar 

  • Ozawa K, Wakasa Y, Ogo Y, Matsuo K, Kawahigashi H, Takaiwa F (2012) Development of an efficient Agrobacterium-mediated gene targeting system for rice and analysis of rice knockouts lacking granule-bound starch synthase (Waxy) and β1,2-Xylosyltransferase. Plant Cell Physiol 53:755–761

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021–4026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93:5055–5060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rommens CM, Haring MA, Swords K et al (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  CAS  PubMed  Google Scholar 

  • Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156:1269–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102:12265–12269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Sorrell DA, Kolb AF (2005) Targeted modification of mammalian genomes. Biotechnol Adv 23:431–469

    Article  CAS  PubMed  Google Scholar 

  • Strotbek C, Krinninger S, Frank W (2013) The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function. Int J Dev Biol 57:553–564

    Article  CAS  PubMed  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Terada R, Asao H, Iida S (2004) A large-scale Agrobacterium-mediated transformation procedure with a strong positive–negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep 22:653–659

    Article  CAS  PubMed  Google Scholar 

  • Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S (2007) Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol 144:846–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terada R, Nagahara M, Furukawa K, Shimamoto M, Yamaguchi K, Iida S (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive–negative selection. Plant Biotechnol 27:29–37

    Article  CAS  Google Scholar 

  • Thi Dang T, Shimatani Z, Kawano Y, Terada R, Shimamoto K (2013) Gene editing a constitutively active OsRac1 by homologous recombination-based gene targeting induces immune responses in rice. Plant Cell Physiol 54:2058–2070

    Article  Google Scholar 

  • Thyagarajan B, Guimarães MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  CAS  PubMed  Google Scholar 

  • Thykjær T, Finnemann J, Schauser L, Christensen L, Poulsen C, Stougaard J (1997) Gene targeting approaches using positive–negative selection and large flanking regions. Plant Mol Biol 35:523–530

    Article  PubMed  Google Scholar 

  • Toki S, Hara N, Ono K et al (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya N (ed) (2007) Rice functional genomics—challenges, progress and prospects. Springer, New York

    Google Scholar 

  • Vergunst AC, Hooykaas PJJ (1999) Recombination in the plant genome and its application in biotechnology. Crit Rev Plant Sci 18:1–31

    Article  CAS  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    Article  CAS  PubMed  Google Scholar 

  • Wakasa Y, Hayashi S, Ozawa K, Takaiwa F (2012) Multiple roles of the ER stress sensor IRE1 demonstrated by gene targeting in rice. Sci Rep 2:944

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604

    Article  CAS  PubMed  Google Scholar 

  • Waterworth WM, Drury GE, Bray CM, West CE (2011) Repairing breaks in the plant genome: the importance of keeping it together. New Phytol 192:805–822

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2008) Molecular biology of the gene, 6th edn. Cold Spring Harbor, Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Weinthal DM, Taylor RA, Tzfira T (2013) Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol 162:390–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386–396

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S (2014) Disruption of the rice MET1b gene encoding a maintenance DNA methyltransferase resulted in viviparous germination or early embryonic lethality. Plant Mol Biol 85:219–232

    Article  CAS  PubMed  Google Scholar 

  • Yau Y-Y, Stewart CN Jr (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber CM (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Mikio Nakazono and Hirokazu Kobayashi for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaki Yamauchi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamauchi, T., Iida, S. (2015). Gene Targeting in Crop Species with Effective Selection Systems. In: Zhang, F., Puchta, H., Thomson, J. (eds) Advances in New Technology for Targeted Modification of Plant Genomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2556-8_6

Download citation

Publish with us

Policies and ethics