Advertisement

High Efficient Genome Modification by Designed Zinc Finger Nuclease

  • Yiping Qi

Abstract

Zinc finger nucleases (ZFNs) are engineered artificial nucleases for inducing site-specific DNA double-strand breaks (DSBs) at the genomic loci of interest. There are two major DNA repair mechanisms in plant cells: nonhomologous end joining (NHEJ) and homologous recombination (HR). Repair of the DNA DSBs can lead to different genome modifications, such as targeted mutagenesis or chromosomal deletions by NHEJ, and gene targeting by HR. Thanks to the recent improvement on ZFN-engineering platforms, diverse ZFN-mediated genome modifications have been achieved in different plant species, such as Arabidopsis, tobacco, petunia, maize, and soybean. The frequencies of ZFN-mediated genome modifications are typically high in somatic cells, but quite low in germinal cells. In order to fully empower ZFNs in plant genome engineering, the challenges such as low germinal transmission frequencies and cellular cytotoxicity will need to be addressed in the near future.

Keywords

Zinc finger nuclease (ZFN) Double-strand break (DSB) Nonhomologous end joining (NHEJ) Homologous recombination (HR) Plant genome engineering 

References

  1. Ainley WM, Sastry-Dent L, Welter ME et al (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11(9):1126–1134CrossRefPubMedGoogle Scholar
  2. Bae KH, Kwon YD, Shin HC et al (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 21(3):275–280CrossRefPubMedGoogle Scholar
  3. Beerli RR, Barbas CF 3rd (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20(2):135–141CrossRefPubMedGoogle Scholar
  4. Beumer KJ, Trautman JK, Bozas A et al (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105(50):19821–19826CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bhakta MS, Henry IM, Ousterout DG et al (2013) Highly active zinc-finger nucleases by extended modular assembly. Genome Res 23(3):530–538CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bibikova M, Carroll D, Segal DJ et al (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1):289–297CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846CrossRefPubMedGoogle Scholar
  8. Cai CQ, Doyon Y, Ainley WM et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69(6):699–709CrossRefPubMedGoogle Scholar
  9. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chen F, Pruett-Miller SM, Huang Y et al (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755CrossRefPubMedCentralPubMedGoogle Scholar
  12. Chen Z, Jaafar L, Agyekum DG et al (2013) Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res 41(19):e182CrossRefPubMedCentralPubMedGoogle Scholar
  13. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761CrossRefPubMedCentralPubMedGoogle Scholar
  14. Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases (TALENs). G3 (Bethesda) 3(10):1697–1705CrossRefGoogle Scholar
  15. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefPubMedCentralPubMedGoogle Scholar
  16. Cornu TI, Thibodeau-Beganny S, Guhl E et al (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16(2):352–358CrossRefPubMedGoogle Scholar
  17. Cradick TJ, Ambrosini G, Iseli C, Bucher P, McCaffrey AP (2011) ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics 12:152CrossRefPubMedCentralPubMedGoogle Scholar
  18. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67CrossRefPubMedGoogle Scholar
  19. Curtin SJ, Zhang F, Sander JD et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156(2):466–473CrossRefPubMedCentralPubMedGoogle Scholar
  20. de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ (2009) ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 7(8):821–835CrossRefPubMedGoogle Scholar
  21. de Pater S, Pinas JE, Hooykaas PJ, van der Zaal BJ (2012) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11(4):510–515CrossRefPubMedCentralPubMedGoogle Scholar
  22. Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708CrossRefPubMedCentralPubMedGoogle Scholar
  23. Doyon Y, Vo TD, Mendel MC et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8(1):74–79CrossRefPubMedGoogle Scholar
  24. Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68(5):929–937CrossRefPubMedGoogle Scholar
  25. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fu F, Voytas DF (2013) Zinc Finger Database (ZiFDB) v2.0: a comprehensive database of C2H2 zinc fingers and engineered zinc finger arrays. Nucleic Acids Res 41(Database issue):D452–D455CrossRefPubMedCentralPubMedGoogle Scholar
  27. Fu F, Sander JD, Maeder M et al (2009) Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res 37(Database issue):D279–D283CrossRefPubMedCentralPubMedGoogle Scholar
  28. Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci U S A 106(49):20984–20988CrossRefPubMedCentralPubMedGoogle Scholar
  29. Gabriel R, Lombardo A, Arens A et al (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823CrossRefPubMedGoogle Scholar
  30. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9(8):805–807CrossRefPubMedCentralPubMedGoogle Scholar
  31. Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64(2):355–365CrossRefPubMedGoogle Scholar
  32. Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA (2012) An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9(6):588–590CrossRefPubMedCentralPubMedGoogle Scholar
  33. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188CrossRefPubMedCentralPubMedGoogle Scholar
  34. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefPubMedGoogle Scholar
  35. Johnson RA, Gurevich V, Levy AA (2013) A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol 82(3):207–221CrossRefPubMedGoogle Scholar
  36. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160CrossRefPubMedCentralPubMedGoogle Scholar
  37. Kim S, Lee MJ, Kim H, Kang M, Kim JS (2011) Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat Methods 8(1):7CrossRefPubMedGoogle Scholar
  38. Lee HJ, Kim E, Kim JS (2010) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20(1):81–89CrossRefPubMedCentralPubMedGoogle Scholar
  39. Lee HJ, Kweon J, Kim E, Kim S, Kim JS (2011) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22(3):539–548CrossRefPubMedGoogle Scholar
  40. Li T, Huang S, Jiang WZ et al (2010) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39(1):359–372CrossRefPubMedCentralPubMedGoogle Scholar
  41. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392CrossRefPubMedGoogle Scholar
  42. Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691CrossRefPubMedCentralPubMedGoogle Scholar
  43. Liu Q, Xia Z, Zhong X, Case CC (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 277(6):3850–3856CrossRefPubMedGoogle Scholar
  44. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102(6):2232–2237CrossRefPubMedCentralPubMedGoogle Scholar
  45. Maeder ML, Thibodeau-Beganny S, Osiak A et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301CrossRefPubMedCentralPubMedGoogle Scholar
  46. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108(6):2623–2628CrossRefPubMedCentralPubMedGoogle Scholar
  47. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefPubMedCentralPubMedGoogle Scholar
  48. Mandell JG, Barbas CF III (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34(Web Server issue):W516–523Google Scholar
  49. Mao Y, Zhang H, Xu N, Zhang B, Gao F, Zhu JK (2013) Application of the CRISPR-Cas System for Efficient Genome Engineering in Plants. Mol Plant 6(6):2008–2011CrossRefPubMedCentralPubMedGoogle Scholar
  50. Marton I, Zuker A, Shklarman E et al (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154(3):1079–1087CrossRefPubMedCentralPubMedGoogle Scholar
  51. Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236CrossRefPubMedCentralPubMedGoogle Scholar
  52. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785CrossRefPubMedGoogle Scholar
  53. Miller JC, Tan S, Qiao G et al (2010) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148CrossRefPubMedGoogle Scholar
  54. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693CrossRefPubMedGoogle Scholar
  55. Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A 107(26):12034–12039CrossRefPubMedCentralPubMedGoogle Scholar
  56. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7(1):49–66CrossRefPubMedGoogle Scholar
  57. Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770CrossRefPubMedCentralPubMedGoogle Scholar
  58. Petolino JF, Worden A, Curlee K et al (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73(6):617–628CrossRefPubMedGoogle Scholar
  59. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14PubMedGoogle Scholar
  60. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040CrossRefPubMedCentralPubMedGoogle Scholar
  61. Qi Y, Starker CG, Zhang F, Baltes NJ, Voytas DF (2013a) Tailor-made mutations in Arabidopsis using zinc finger nucleases. Methods Mol Biol 1062:193–209CrossRefGoogle Scholar
  62. Qi Y, Zhang Y, Zhang F et al (2013b) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23(3):547–554CrossRefPubMedCentralPubMedGoogle Scholar
  63. Qi Y, Li X, Zhang Y et al (2013c) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda) 3(10):1701–1715CrossRefGoogle Scholar
  64. Ramirez CL, Foley JE, Wright DA et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5(5):374–375CrossRefPubMedGoogle Scholar
  65. Ramirez CL, Certo MT, Mussolino C et al (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 40(12):5560–5568CrossRefPubMedCentralPubMedGoogle Scholar
  66. Reyon D, Kirkpatrick JR, Sander JD et al (2011) ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 12:83CrossRefPubMedCentralPubMedGoogle Scholar
  67. Sander JD, Dahlborg EJ, Goodwin MJ et al (2010a) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69CrossRefPubMedCentralPubMedGoogle Scholar
  68. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38(Web Server issue):W462–468Google Scholar
  69. Sander JD, Ramirez CL, Linder SJ et al (2013) In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res 41(19):e181CrossRefPubMedCentralPubMedGoogle Scholar
  70. Segal DJ, Beerli RR, Blancafort P et al (2003) Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42(7):2137–2148CrossRefPubMedGoogle Scholar
  71. Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102(34):12265–12269CrossRefPubMedCentralPubMedGoogle Scholar
  72. Shan Q, Wang Y, Chen K et al (2013a) Rapid and efficient gene modification in rice and brachypodium using TALENs. Mol Plant 6(4):1365–1368CrossRefPubMedCentralPubMedGoogle Scholar
  73. Shan Q, Wang Y, Li J et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688CrossRefPubMedGoogle Scholar
  74. Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441CrossRefPubMedGoogle Scholar
  75. Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149CrossRefPubMedCentralPubMedGoogle Scholar
  76. Sollu C, Pars K, Cornu TI et al (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 38(22):8269–8276CrossRefPubMedCentralPubMedGoogle Scholar
  77. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793CrossRefPubMedGoogle Scholar
  78. Szymczak AL, Workman CJ, Wang Y et al (2004) Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594CrossRefPubMedGoogle Scholar
  79. Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57(4):747–757CrossRefPubMedGoogle Scholar
  80. Townsend JA, Wright DA, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445CrossRefPubMedCentralPubMedGoogle Scholar
  81. Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modifications in plant cells by custom-made restriction enzymes. Plant Biotechnol J 10(4):373–389CrossRefPubMedGoogle Scholar
  82. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350CrossRefPubMedGoogle Scholar
  83. Watanabe T, Ochiai H, Sakuma T et al (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017CrossRefPubMedCentralPubMedGoogle Scholar
  84. Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15(6):308–321CrossRefPubMedGoogle Scholar
  85. Weinthal DM, Taylor RA, Tzfira T (2013) Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol 162(1):390–400CrossRefPubMedCentralPubMedGoogle Scholar
  86. Wendt T, Holm PB, Starker CG et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83(3):279–285CrossRefPubMedGoogle Scholar
  87. Wright DA, Townsend JA, Winfrey RJ Jr et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44(4):693–705CrossRefPubMedGoogle Scholar
  88. Wright DA, Thibodeau-Beganny S, Sander JD et al (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1(3):1637–1652CrossRefPubMedGoogle Scholar
  89. Xie K, Yang Y (2013) RNA-guided Genome Editing in Plants Using A CRISPR-Cas System. Mol Plant 6(6):1975–1983CrossRefPubMedGoogle Scholar
  90. Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U (2005) An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol 139(3):1421–1432CrossRefPubMedCentralPubMedGoogle Scholar
  91. Zhang F, Voytas DF (2011) Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol 701:167–177CrossRefPubMedGoogle Scholar
  92. Zhang F, Maeder ML, Unger-Wallace E et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107(26):12028–12033CrossRefPubMedCentralPubMedGoogle Scholar
  93. Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiologyEast Carolina UniversityGreenvilleUSA

Personalised recommendations