Engineering Meganuclease for Precise Plant Genome Modification

  • Fayza Daboussi
  • Thomas J. Stoddard
  • Feng Zhang


Meganucleases, also termed homing endonucleases, are rare-cutting enzymes that are encoded within the genome of nearly all microbes. These enzymes recognize and cleave long DNA sequences (typically 18–30 base pairs) generating double-strand DNA breaks (DSBs). The resulting DSBs can be repaired by different pathways leading to a variety of site-specific DNA modifications, such as insertions, deletions, or point mutations. Over the past 15 years tremendous efforts have been made to engineer a number of variant meganucleases that cleave novel DNA targets. Engineered meganucleases are now being used to generate targeted genomic modifications for a variety of basic and biotechnology applications, including creating valuable traits in crop species.


Meganuclease Sequence-specific nucleases Targeted mutagenesis Homologous gene targeting Precise genome engineering 


  1. Arnould S, Chames P, Perez C et al (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355(3):443–458CrossRefPubMedGoogle Scholar
  2. Arnould S, Perez C, Cabaniols JP et al (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371(1):49–65CrossRefPubMedGoogle Scholar
  3. Ashworth J, Havranek JJ, Duarte CM et al (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441(7093):656–659CrossRefPubMedCentralPubMedGoogle Scholar
  4. Baxter SK, Lambert AR, Scharenberg AM, Jarjour J (2013) Flow cytometric assays for interrogating LAGLIDADG homing endonuclease DNA-binding and cleavage properties. Methods Mol Biol 978:45–61CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8):554–564CrossRefPubMedGoogle Scholar
  6. Beurdeley M, Bietz F, Li J et al (2013) Compact designer TALENs for efficient genome engineering. Nat Commun 4:1762CrossRefPubMedCentralPubMedGoogle Scholar
  7. Boissel S, Jarjour J, Astrakhan A et al (2014) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42(4):2591–2601CrossRefPubMedCentralPubMedGoogle Scholar
  8. Bos JL, Heyting C, Borst P, Arnberg AC, Van Bruggen EF (1978) An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA. Nature 275(5678):336–338CrossRefPubMedGoogle Scholar
  9. Certo MT, Gwiazda KS, Kuhar R et al (2012) Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods 9(10):973–975CrossRefPubMedCentralPubMedGoogle Scholar
  10. Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Paques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33(20):e178CrossRefPubMedCentralPubMedGoogle Scholar
  11. Chen Z, Zhao H (2005) A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res 33(18):e154CrossRefPubMedCentralPubMedGoogle Scholar
  12. Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29(18):3757–3774CrossRefPubMedCentralPubMedGoogle Scholar
  13. Chevalier BS, Monnat RJ Jr, Stoddard BL (2001) The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites. Nat Struct Biol 8(4):312–316CrossRefPubMedGoogle Scholar
  14. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10(4):895–905CrossRefPubMedGoogle Scholar
  15. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15(4):1968–1973PubMedCentralPubMedGoogle Scholar
  16. Daboussi F, Zaslavskiy M, Poirot L et al (2012) Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic Acids Res 40(13):6367–6379CrossRefPubMedCentralPubMedGoogle Scholar
  17. Delacote F, Perez C, Guyot V et al (2011) Identification of genes regulating gene targeting by a high-throughput screening approach. J Nucleic Acids 2011:947212CrossRefPubMedCentralPubMedGoogle Scholar
  18. Delacote F, Perez C, Guyot V et al (2013) High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes. PLoS One 8(1):e53217CrossRefPubMedCentralPubMedGoogle Scholar
  19. D’Halluin K, Vanderstraeten C, Stals E, Cornelissen M, Ruiter R (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6(1):93–102PubMedGoogle Scholar
  20. D’Halluin K, Vanderstraeten C, Van Hulle J et al (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11(8):933–941CrossRefPubMedCentralPubMedGoogle Scholar
  21. Djukanovic V, Smith J, Lowe K et al (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76(5):888–899CrossRefPubMedGoogle Scholar
  22. Duan X, Gimble FS, Quiocho FA (1997) Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89(4):555–564CrossRefPubMedGoogle Scholar
  23. Dupuy A, Valton J, Leduc S et al (2013) Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN. PLoS One 8(11):e78678CrossRefPubMedCentralPubMedGoogle Scholar
  24. Epinat JC, Arnould S, Chames P et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962CrossRefPubMedCentralPubMedGoogle Scholar
  25. Fajardo-Sanchez E, Stricher F, Paques F, Isalan M, Serrano L (2008) Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res 36(7):2163–2173CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fauser F, Roth N, Pacher M et al (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109(19):7535–7540CrossRefPubMedCentralPubMedGoogle Scholar
  27. Faye G, Dennebouy N, Kujawa C, Jacq C (1979) Inserted sequence in the mitochondrial 23S ribosomal RNA gene of the yeast Saccharomyces cerevisiae. Mol Gen Genet 168(1):101–109CrossRefPubMedGoogle Scholar
  28. Gaj T, Gersbach CA, Barbas CF 3rd, ZFN (2013) TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefPubMedCentralPubMedGoogle Scholar
  29. Galetto R, Duchateau P, Paques F (2009) Targeted approaches for gene therapy and the emergence of engineered meganucleases. Expert Opin Biol Ther 9(10):1289–1303CrossRefPubMedGoogle Scholar
  30. Gao H, Smith J, Yang M et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61(1):176–187CrossRefPubMedGoogle Scholar
  31. Gimble FS, Moure CM, Posey KL (2003) Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 334(5):993–1008CrossRefPubMedGoogle Scholar
  32. Gouble A, Smith J, Bruneau S et al (2006) Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 8(5):616–622CrossRefPubMedGoogle Scholar
  33. Grizot S, Smith J, Daboussi F et al (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37(16):5405–5419CrossRefPubMedCentralPubMedGoogle Scholar
  34. Grizot S, Epinat JC, Thomas S et al (2010) Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 38(6):2006–2018CrossRefPubMedCentralPubMedGoogle Scholar
  35. Grizot S, Duclert A, Thomas S, Duchateau P, Paques F (2011) Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease. Nucleic Acids Res 39(14):6124–6136CrossRefPubMedCentralPubMedGoogle Scholar
  36. Grosse S, Huot N, Mahiet C et al (2011) Meganuclease-mediated Inhibition of HSV1 Infection in Cultured Cells. Mol Ther 19(4):694–702CrossRefPubMedCentralPubMedGoogle Scholar
  37. Heath PJ, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol 4(6):468–476CrossRefPubMedGoogle Scholar
  38. Hu D, Crist M, Duan X, Gimble FS (1999) Mapping of a DNA binding region of the PI-SceI homing endonuclease by affinity cleavage and alanine-scanning mutagenesis. Biochemistry 38(39):12621–12628CrossRefPubMedGoogle Scholar
  39. Ichiyanagi K, Ishino Y, Ariyoshi M, Komori K, Morikawa K (2000) Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI. J Mol Biol 300(4):889–901CrossRefPubMedGoogle Scholar
  40. Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41(2):383–394CrossRefPubMedGoogle Scholar
  41. Jarjour J, West-Foyle H, Certo MT et al (2009) High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res 37(20):6871–6880CrossRefPubMedCentralPubMedGoogle Scholar
  42. Jurica MS, Monnat RJ Jr, Stoddard BL (1998) DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell 2(4):469–476CrossRefPubMedGoogle Scholar
  43. Kleinstiver BP, Wang L, Wolfs JM et al (2014) The I-TevI nuclease and linker domains contribute to the specificity of monomeric TALENs. G3 (Bethesda) 4(6):1155–1165CrossRefGoogle Scholar
  44. Lyznik LA, Djukanovic V, Yang M, Jones S (2012) Double-strand break-induced targeted mutagenesis in plants. Methods Mol Biol 847:399–416CrossRefPubMedGoogle Scholar
  45. Menoret S, Fontaniere S, Jantz D et al (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27(2):703–711CrossRefPubMedGoogle Scholar
  46. Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6(2). doi: 10.3835/plantgenome2013.03.0001in
  47. Munoz IG, Prieto J, Subramanian S et al (2011) Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39(2):729–743CrossRefPubMedCentralPubMedGoogle Scholar
  48. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther 7(1):49–66CrossRefPubMedGoogle Scholar
  49. Poland BW, Xu MQ, Quiocho FA (2000) Structural insights into the protein splicing mechanism of PI-SceI. J Biol Chem 275(22):16408–16413CrossRefPubMedGoogle Scholar
  50. Popplewell L, Koo T, Leclerc X et al (2013) Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther 24(7):692–701CrossRefPubMedGoogle Scholar
  51. Posey KL, Koufopanou V, Burt A, Gimble FS (2004) Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species. Nucleic Acids Res 32(13):3947–3956CrossRefPubMedCentralPubMedGoogle Scholar
  52. Puchta H (1999) Use of I-Sce I to induce DNA double-strand breaks in Nicotiana. Methods Mol Biol 113:447–451PubMedGoogle Scholar
  53. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57(6–8):629–637CrossRefPubMedGoogle Scholar
  54. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040CrossRefPubMedCentralPubMedGoogle Scholar
  55. Qi Y, Zhang Y, Zhang F et al (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23(3):547–554CrossRefPubMedCentralPubMedGoogle Scholar
  56. Redondo P, Prieto J, Munoz IG et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456(7218):107–111CrossRefPubMedGoogle Scholar
  57. Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34(17):4791–4800CrossRefPubMedCentralPubMedGoogle Scholar
  58. Rouet P, Smih F, Jasin M (1994a) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106PubMedCentralPubMedGoogle Scholar
  59. Rouet P, Smih F, Jasin M (1994b) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068CrossRefPubMedCentralPubMedGoogle Scholar
  60. Rousseau J, Chapdelaine P, Boisvert S et al (2011) Endonucleases: tools to correct the dystrophin gene. J Gene Med 13(10):522–537CrossRefPubMedGoogle Scholar
  61. Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135–158CrossRefPubMedGoogle Scholar
  62. Seligman LM, Chisholm KM, Chevalier BS et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30(17):3870–3879CrossRefPubMedCentralPubMedGoogle Scholar
  63. Silva GH, Dalgaard JZ, Belfort M, Van Roey P (1999) Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 286(4):1123–1136CrossRefPubMedGoogle Scholar
  64. Small I, Puchta H (2014) Emerging tools for synthetic biology in plants. Plant J 78(5):725–726CrossRefPubMedGoogle Scholar
  65. Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149CrossRefPubMedCentralPubMedGoogle Scholar
  66. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15CrossRefPubMedCentralPubMedGoogle Scholar
  67. Stoddard BL (2014) Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 5(1):7CrossRefPubMedCentralPubMedGoogle Scholar
  68. Sussman D, Chadsey M, Fauce S et al (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342(1):31–41CrossRefPubMedGoogle Scholar
  69. Taylor GK, Stoddard BL (2012) Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms. Nucleic Acids Res 40(12):5189–5200CrossRefPubMedCentralPubMedGoogle Scholar
  70. Thyme SB, Jarjour J, Takeuchi R et al (2009) Exploitation of binding energy for catalysis and design. Nature 461(7268):1300–1304CrossRefPubMedCentralPubMedGoogle Scholar
  71. Valton J, Daboussi F, Leduc S et al (2012) 5’-Cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. J Biol Chem 287(36):30139–30150CrossRefPubMedCentralPubMedGoogle Scholar
  72. Valton J, Cabaniols JP, Galetto R et al (2014) Efficient strategies for TALEN-mediated genome editing in mammalian cell lines. Methods 69(2):151–170CrossRefPubMedGoogle Scholar
  73. Volna P, Jarjour J, Baxter S et al (2007) Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases. Nucleic Acids Res 35(8):2748–2758CrossRefPubMedCentralPubMedGoogle Scholar
  74. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fayza Daboussi
    • 1
  • Thomas J. Stoddard
    • 1
  • Feng Zhang
    • 1
  1. 1.Cellectis Plant Sciences Inc.New BrightonUSA

Personalised recommendations