Skip to main content

Basic Aspects

  • Chapter
  • First Online:
Textbook of Personalized Medicine
  • 2469 Accesses

Abstract

Most of the current drugs are approved and developed based on their performance in a large population of people but medicine of the future is developing as personalized solutions for a particular patient’s needs. In case of complex disorders, the conventional “one-drug-fits-all” approach involves trial and error before an appropriate treatment is found. Clinical trial data for a new drug merely shows the average response of a study group. There is, however, considerable individual variation; some patients show no response whereas others show a dramatic response. It is obvious that the concept “one medicine for all patients with the same disease” does not hold and a more individualized approach is needed. Although individualization of certain treatments has been carried out in the pregenomic era, the concept of personalized medicine as described in this report follows progress in study of human diseases at molecular level, advances in molecular diagnostics and drug development based on genomics, proteomics, metabolomics and biomarkers. The aim of the personalized medicine is to match the right drug to the right patient and in some cases, even to design the treatment for a patient according to genotype as well as other individual characteristics. A broader term is integrated healthcare, which includes development of genomics-based personalized medicine, predisposition testing, preventive medicine, combination of diagnostics with therapeutics and monitoring of therapy. This fits in with the concept of system biology as applied to healthcare and termed systems medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beutler E, Dern RJ, Alving AS. The hemolytic effect of primaquine. VI. An in vitro test for sensitivity of erythrocytes to primaquine. J Lab Clin Med. 1955;45:40–50.

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.

    Article  CAS  PubMed  Google Scholar 

  • Bousquet J, Jorgensen C, Dauzat M, et al. Systems medicine approaches for the definition of complex phenotypes in chronic diseases and ageing. From concept to implementation and policies. Curr Pharm Des. 2014;20:5928–44.

    Article  CAS  PubMed  Google Scholar 

  • Chae H, Park SH, Lee SJ, et al. Sasang typology from a personality perspective. J Korean Orient Med. 2004;25:151–64.

    Google Scholar 

  • Chopra A, Doiphode VV. Ayurvedic medicine. Core concept, therapeutic principles, and current relevance. Med Clin North Am. 2002;86:75–89.

    Article  PubMed  Google Scholar 

  • Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ezkurdia I, Juan D, Rodriguez J, et al. Multiple evidence strands suggest that there may be as few as 19000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–78.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fahy GM. Molecular nanotechnology. Clin Chem. 1993;39:2011–6.

    CAS  PubMed  Google Scholar 

  • Fisher MA, McKinley KL, Bradley LH, et al. De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth. PLoS One. 2011;6(1):e15364.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galas DJ, Hood L. Systems biology and emerging technologies will catalyze the transition from reactive medicine to predictive, personalized, preventive and participatory (P4) medicine. IBC. 2009;1:6.

    Google Scholar 

  • Garrod AE. The inborn factors in disease. London: Oxford University Press; 1931.

    Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–6.

    Article  CAS  PubMed  Google Scholar 

  • Girirajan S, Rosenfeld JA, Cooper GM, et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet. 2010;42:203–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Girirajan S, Rosenfeld JA, Coe BP, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367:1321–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberger JJ, Buxton AE. Personalized medicine vs guideline-based medicine. JAMA. 2013;309:2559–60.

    Article  CAS  PubMed  Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet. 2009;10:551–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain KK. Health care in New China. Emmaus: Rodale Press; 1973.

    Google Scholar 

  • Jain KK. Personalized medicine. Waltham: Decision Resources Inc; 1998.

    Google Scholar 

  • Jain KK. Personalised medicine. Curr Opin Mol Ther. 2002;4:548–58.

    CAS  PubMed  Google Scholar 

  • Jain KK. Synthetic biology and personalized medicine. Med Princ Pract. 2013;22:209–19.

    Article  CAS  PubMed  Google Scholar 

  • Kalow W. Familial incidence of low pseudocholinesterase level. Lancet. 1956;2:576–7.

    Article  Google Scholar 

  • Kalow W. Pharmacogenetics: heredity and the response to drugs. Philadelphia: Saunders; 1962.

    Google Scholar 

  • Kidd JM, Cooper GM, Donahue WF, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KH, Chiu S, Lee YK, et al. Age-dependent and tissue-specific structural changes in the C57BL/6J mouse genome. Exp Mol Pathol. 2012;93:167–72.

    Article  CAS  PubMed  Google Scholar 

  • Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. Clan genomics and the complex architecture of human disease. Cell. 2011;147:32–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall A. Genset-Abbott deal heralds pharmacogenomics era. Nat Biotechnol. 1997;15:829–30.

    Article  CAS  PubMed  Google Scholar 

  • Mills RE, Luttig CT, Larkins CE, et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 2006;16:1182–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366:489–91.

    Article  PubMed  Google Scholar 

  • Motulsky AG. Drug reactions, enzymes and biochemical genetics. JAMA. 1957;165:835–7.

    Article  CAS  Google Scholar 

  • Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol. 1986;51:263–73.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J. Translational and systems medicine. J Int Med. 2012;271:108–10.

    Article  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanoski CE, Lee S, Kim MJ, et al. Systems genetics analysis of gene-by-environment interactions in human cells. Am J Hum Genet. 2010;86:399–410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skipper M, Dhand R, Campbell P. Presenting ENCODE. Nature. 2012;489:45.

    Article  CAS  PubMed  Google Scholar 

  • Solomon BD, Nguyen AD, Bear KA, Wolfsberg TG. Clinical genomic database. Proc Natl Acad Sci U S A. 2013;110:9851–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sudmant PH, Kitzman JO, Antonacci F, et al. Diversity of human copy number variation and multicopy genes. Science. 2010;330:641–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandamme D, Fitzmaurice W, Kholodenko B, Kolch W. Systems medicine: helping us understand the complexity of disease. QJM. 2013;106:891–5.

    Article  CAS  PubMed  Google Scholar 

  • Vogel F. Moderne Probleme der Humangenetik. Ergeb Inn Med Kinderheilkd. 1959;12:52–125.

    Article  Google Scholar 

  • Watson JD, Crick FHC. Genetic implications of the structure of deoxyribonucleic acid. Nature. 1953;171:964–9.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1995;13:19–50.

    Article  Google Scholar 

  • Wist AD, Berger SI, Iyengar R. Systems pharmacology and genome medicine: a future perspective. Genome Med. 2009;1:11.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2015). Basic Aspects. In: Textbook of Personalized Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2553-7_1

Download citation

Publish with us

Policies and ethics