Skip to main content

Alternative Protein Scaffolds as Novel Biotherapeutics

  • Chapter
Biobetters

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 19))

Abstract

Antibody technology has gone through a long evolution. This review summarizes crucial events during the development of this expanding field, with emphasis on recent advances in the design and manipulation of functional Ig fragments for therapeutic applications. Currently, the challenge is to create next generation types of antibodies that offer improvements over classical MAbs with regard to biomolecular attributes and clinical performance. Bispecifics such as BiTEs and DARTs offer high potency due to a novel mode of action but involve complicated construction. Apart from established Ig fragments such as Fabs, scFvs and domain antibodies, alternative binding proteins are increasingly exploited as therapeutics. These engineered “protein scaffolds”, which are based on non-immunoglobulin proteins furnished with novel binding sites, offer improved manufacturability, facilitate new functional combinations and, thus, likely enable unique therapeutic modes of action to yield promising biobetters. The four most advanced scaffold technologies, Adnectins, Affibodies, Anticalins and DARPins, which were developed beyond the academic research stage and have reached clinical studies, constitute another focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgren S, Orlova A, Wållberg H, Hansson M, Sandström M, Lewsley R, Wennborg A, Abrahmsen L, Tolmachev V, Feldwisch J (2010) Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J Nucl Med 51:1131–1138

    CAS  PubMed  Google Scholar 

  • Åkerström B, Borregaard N, Flower DA, Salier J-S (2006) Lipocalins. Landes Bioscience, Georgetown

    Google Scholar 

  • AL Hussaini MH, Ritchey J, Rettig MP, Eissenberg L, Uy GL, Chichili G, Moore PA, Johnson S, Collins L, Bonvini E, DiPersio JF (2013) Targeting CD123 in leukemic stem cells using dual affinity re-targeting molecules (DARTs®). Blood 122:360

    Google Scholar 

  • Albrecht V, Richter A, Pfeiffer S, Gebauer M, Lindner S, Gieser E, Schüller U, Schichor C, Gildehaus FJ, Bartenstein P, Tonn JC, Skerra A, Glass R. Anticalins directed against the fibronectin extra domain B (ED-B) as diagnostic tracers for glioblastomas. Submitted

    Google Scholar 

  • Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948

    CAS  PubMed  Google Scholar 

  • Arndt KM, Müller KM, Plückthun A (1998) Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry 37:12918–12926

    CAS  PubMed  Google Scholar 

  • Bain B, Brazil M (2003) Adalimumab. Nat Rev Drug Discov 2:693–694

    CAS  PubMed  Google Scholar 

  • Bao W, Holt LJ, Prince RD, Jones GX, Aravindhan K, Szapacs M, Barbour AM, Jolivette LJ, Lepore JJ, Willette RN, DeAngelis E, Jucker BM (2013) Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat. Cardiovasc Diabetol 12:148

    PubMed Central  PubMed  Google Scholar 

  • Barratt-Due A, Thorgersen EB, Lindstad JK, Pharo A, Lissina O, Lambris JD, Nunn MA, Mollnes TE (2011) Ornithodoros moubata complement inhibitor is an equally effective C5 inhibitor in pigs and humans. J Immunol 187:4913–4919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartunek J, Barbato E, Heyndrickx G, Vanderheyden M, Wijns W, Holz JB (2013) Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res 6:355–363

    PubMed  Google Scholar 

  • Batey S, Leung K, Rowlands R, Isaac S, Carvalho J, Weller S, Wydro M, Gaspar M, Medcalf M, Pegram R, Drewett V, Tuna M, Haurum J, Sun HH (2013) Preclinical evaluation of FS102: a HER2-specific Fcab with a novel mechanism of action. Mol Cancer Ther 12:B123

    Google Scholar 

  • Batori V, Koide A, Koide S (2002) Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein Eng 15:1015–1020

    CAS  PubMed  Google Scholar 

  • Bäuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944

    Google Scholar 

  • Bäuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11:22–30

    Google Scholar 

  • Baum RP, Prasad V, Muller D, Schuchardt C, Orlova A, Wennborg A, Tolmachev V, Feldwisch J (2010) Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med 51:892–897

    PubMed  Google Scholar 

  • Beck A (2011) Biosimilar, biobetter and next generation therapeutic antibodies. mAbs 3:107–110

    PubMed  Google Scholar 

  • Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    CAS  PubMed  Google Scholar 

  • Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci U S A 96:1898–1903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Better M, Chang CP, Robinson RR, Horwitz AH (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240:1041–1043

    CAS  PubMed  Google Scholar 

  • Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332:489–503

    CAS  PubMed  Google Scholar 

  • Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, Grütter MG, Plückthun A (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582

    CAS  PubMed  Google Scholar 

  • Binz HK, Amstutz P, Plückthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23:1257–1268

    CAS  PubMed  Google Scholar 

  • Binz HK, Forrer P, Stumpp MT (2014) Modified binding proteins inhibiting the VEGF-A receptor interaction. Patent publication US20140221295A1

    Google Scholar 

  • Bird RE, Walker BW (1991) Single chain antibody variable regions. Trends Biotechnol 9:132–137

    CAS  PubMed  Google Scholar 

  • Blick SK, Curran MP (2007) Certolizumab pegol: in Crohn’s disease. BioDrugs 21:195–201

    CAS  PubMed  Google Scholar 

  • Bloom L, Calabro V (2009) FN3: a new protein scaffold reaches the clinic. Drug Discov Today 14:949–955

    CAS  PubMed  Google Scholar 

  • Bloomberg (2013) Allergan shares fall after CEO says two studies delayed. http://www.bloomberg.com/news/2013-05-01/allergan-shares-fall-after-ceo-says-drug-trial-will-be-delayed.html

  • Boersma YL, Plückthun A (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 22:849–857

    CAS  PubMed  Google Scholar 

  • Bork P, Holm L, Sander C (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242:309–320

    CAS  PubMed  Google Scholar 

  • Borras L, Gunde T, Tietz J, Bauer U, Hulmann-Cottier V, Grimshaw JP, Urech DM (2010) Generic approach for the generation of stable humanized single-chain Fv fragments from rabbit monoclonal antibodies. J Biol Chem 285:9054–9066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer D (2013) A phase 2b study of Fovista™, a platelet derived growth factor (PDGF) inhibitor in combination with a vascular endothelial growth factor (VEGF) inhibitor for neovascular age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci 54:2175

    Google Scholar 

  • Brennan FR (2014) Monoclonal antibodies in phase 1 and 2 studies for immunological disorders. In: Dübel S, Reichert JM (eds) Handbook of therapeutic antibodies, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Breustedt DA, Schönfeld DL, Skerra A (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764:161–173

    CAS  PubMed  Google Scholar 

  • Brischwein K, Parr L, Pflanz S, Volkland J, Lumsden J, Klinger M, Locher M, Hammond SA, Kiener P, Kufer P, Schlereth B, Baeuerle PA (2007) Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 30:798–807

    CAS  PubMed  Google Scholar 

  • Bukowska MA, Grütter MG (2013) New concepts and aids to facilitate crystallization. Curr Opin Struct Biol 23:409–416

    CAS  PubMed  Google Scholar 

  • Campochiaro PA, Channa R, Berger BB, Heier JS, Brown DM, Fiedler U, Hepp J, Stumpp MT (2013) Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol 155:697–704

    CAS  PubMed  Google Scholar 

  • Cappuccilli G, Crea R, Shen R, Hokanson CA, Kirk PB, Liston DR (2014) Universal fibronectin type III binding-domain libraries. Patent publication US8680019B2

    Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89:4285–4289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chakravarty R, Goel S, Cai W (2014) Nanobody: the “magic bullet” for molecular imaging? Theranostics 4:386–398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chekhonin VP, Shein SA, Korchagina AA, Gurina OI (2013) VEGF in tumor progression and targeted therapy. Curr Cancer Drug Targets 13:423–443

    CAS  PubMed  Google Scholar 

  • Chen Y, Wiesmann C, Fuh G, Li B, Christinger HW, McKay P, de Vos AM, Lowman HB (1999) Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol 293:865–881

    CAS  PubMed  Google Scholar 

  • Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC (2009) Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 32:574–584

    CAS  PubMed  Google Scholar 

  • Cload S, Engle L, Lipovsek D, Madireddi M, Rakestraw GC, Swain J, Zhao W (2014) Fibronectin based scaffold domain proteins that bind to myostatin. Patent publication US20140105896A1

    Google Scholar 

  • Comer G, Hegen M, Sharma A, Shields K (2012) Methods of treating immune disorders with single domain antibodies against TNF-alpha. Patent publication WO2012131053A1

    Google Scholar 

  • Connelly R (2005) Fully human domain antibody therapeutics: the best of both worlds. Innov Pharm Technol 2005:42–45

    Google Scholar 

  • Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R (2005) Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol 350:112–125

    CAS  PubMed  Google Scholar 

  • Couillin I, Maillet I, Vargaftig BB, Jacobs M, Paesen GC, Nuttall PA, Lefort J, Moser R, Weston-Davies W, Ryffel B (2004) Arthropod-derived histamine-binding protein prevents murine allergic asthma. J Immunol 173:3281–3286

    CAS  PubMed  Google Scholar 

  • CROSS (2011) N189084: the tariff classification of AGN-150998 from Germany. http://rulings.cbp.gov

  • Das Gupta R (2014) Preclinical development of an anti-IL-23 Adnectin and advancement into the clinic. Abstract; IBC’s 9th annual next generation protein therapeutics Summit, June 4–6. San Francisco, CA

    Google Scholar 

  • Davies J, Riechmann L (1994) ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 339:285–290

    CAS  PubMed  Google Scholar 

  • Davis J, Lipovsek D, Camphausen R (2013) Fibronectin binding domains with reduced immunogenicity. Patent publication WO2013067029A2

    Google Scholar 

  • Demarest SJ, Glaser SM (2008) Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 11:675–687

    CAS  PubMed  Google Scholar 

  • Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277:35035–35043

    CAS  PubMed  Google Scholar 

  • Diem MD, Hyun L, Yi F, Hippensteel R, Kuhar E, Lowenstein C, Swift EJ, O’Neil KT, Jacobs SA (2014) Selection of high-affinity Centyrin FN3 domains from a simple library diversified at a combination of strand and loop positions. Protein Eng Des Sel 27:419–429

    PubMed  Google Scholar 

  • Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, van Dongen GA, Schroder CP, Lub-de Hooge MN, de Vries EG (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592

    CAS  PubMed  Google Scholar 

  • Dineen SP, Sullivan LA, Beck AW, Miller AF, Carbon JG, Mamluk R, Wong H, Brekken RA (2008) The Adnectin CT-322 is a novel VEGF receptor 2 inhibitor that decreases tumor burden in an orthotopic mouse model of pancreatic cancer. BMC Cancer 8:352

    PubMed Central  PubMed  Google Scholar 

  • Dirix LY, Rutten A, Huget P, Dirix M (2013) Trastuzumab emtansine in breast cancer. Expert Opin Biol Ther 13:607–614

    CAS  PubMed  Google Scholar 

  • Dreier T, Baeuerle PA, Fichtner I, Grün M, Schlereth B, Lorenczewski G, Kufer P, Lutterbüse R, Riethmüller G, Gjorstrup P, Bargou RC (2003) T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct. J Immunol 170:4397–4402

    CAS  PubMed  Google Scholar 

  • Dschietzig TB (2014) Myostatin – from the mighty mouse to cardiovascular disease and cachexia. Clin Chim Acta 433:216–224

    CAS  PubMed  Google Scholar 

  • Eggenstein E, Eichinger A, Kim HJ, Skerra A (2013) Structure-guided engineering of Anticalins with improved binding behavior and biochemical characteristics for application in radio-immuno imaging and/or therapy. J Struct Biol 185:203–214

    PubMed  Google Scholar 

  • Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsen L, Hard T (2010) Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci U S A 107:15039–15044

    PubMed Central  CAS  PubMed  Google Scholar 

  • EMEA (2007) Refusal CHMP assessment report for Mycograb. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/000658/WC500070523.pdf

  • Entwistle J, Brown JG, Chooniedass S, Cizeau J, MacDonald GC (2012) Preclinical evaluation of VB6-845: an anti-EpCAM immunotoxin with reduced immunogenic potential. Cancer Biother Radiopharm 27:582–592

    CAS  PubMed  Google Scholar 

  • EudraCT (2011) No 2011-002526-43: Single and repeat dose study of the safety and efficacy of AGN-150998 in patients with exudative age-related macular degeneration. http://www.clinicaltrialsregister.eu/ctr-search/trial/2011-002526-43/DE

  • Eyer F, Steimer W, Nitzsche T, Jung N, Neuberger H, Müller C, Schlapschy M, Zilker T, Skerra A (2012) Intravenous application of an anticalin dramatically lowers plasma digoxin levels and reduces its toxic effects in rats. Toxicol Appl Pharmacol 263:352–359

    CAS  PubMed  Google Scholar 

  • Feldwisch J, Tolmachev V, Lendel C, Herne N, Sjoberg A, Larsson B, Rosik D, Lindqvist E, Fant G, Hoiden-Guthenberg I, Galli J, Jonasson P, Abrahmsen L (2010) Design of an optimized scaffold for affibody molecules. J Mol Biol 398:232–247

    CAS  PubMed  Google Scholar 

  • Fiedler M, Skerra A (2014) Non-antibody scaffolds as alternative therapeutic agents. In: Dübel S, Reichert JM (eds) Handbook of therapeutic antibodies, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forrer P, Binz HK, Stumpp MT, Plückthun A (2004) Consensus design of repeat proteins. ChemBioChem 5:183–189

    CAS  PubMed  Google Scholar 

  • Fredslund F, Laursen NS, Roversi P, Jenner L, Oliveira CL, Pedersen JS, Nunn MA, Lea SM, Discipio R, Sottrup-Jensen L, Andersen GR (2008) Structure of and influence of a tick complement inhibitor on human complement component 5. Nat Immunol 9:753–760

    CAS  PubMed  Google Scholar 

  • Friedrich K, Hanauer JR, Prüfer S, Münch RC, Völker I, Filippis C, Jost C, Hanschmann KM, Cattaneo R, Peng KW, Plückthun A, Buchholz CJ, Cichutek K, Mühlebach MD (2013) DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther 21:849–859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garber K (2014) Bispecific antibodies rise again. Nat Rev Drug Discov 13:799–801

    CAS  PubMed  Google Scholar 

  • Garcia CC, Weston-Davies W, Russo RC, Tavares LP, Rachid MA, Alves-Filho JC, Machado AV, Ryffel B, Nunn MA, Teixeira MM (2013) Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS One 8:e64443

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gay RD, Clarke AW, Elgundi Z, Domagala T, Simpson RJ, Le NB, Doyle AG, Jennings PA (2010) Anti-TNFα domain antibody construct CEP-37247: full antibody functionality at half the size. mAbs 2:625–638

    PubMed Central  PubMed  Google Scholar 

  • Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245–255

    CAS  PubMed  Google Scholar 

  • Gebauer M, Skerra A (2012) Anticalins: small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol 503:157–188

    CAS  PubMed  Google Scholar 

  • Gebauer M, Schiefner A, Matschiner G, Skerra A (2013) Combinatorial design of an Anticalin directed against the extra-domain B for the specific targeting of oncofetal fibronectin. J Mol Biol 425:780–802

    CAS  PubMed  Google Scholar 

  • George J, Compton JR, Leary DH, Olson MA, Legler PM (2014) Structural and mutational analysis of a monomeric and dimeric form of a single domain antibody with implications for protein misfolding. Proteins 82:3101–3116

    CAS  PubMed  Google Scholar 

  • Getts DR, Getts MT, McCarthy DP, Chastain EM, Miller SD (2010) Have we overestimated the benefit of human(ized) antibodies? mAbs 2:682–694

    PubMed Central  PubMed  Google Scholar 

  • Gilbreth RN, Koide S (2012) Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol 22:413–420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gill DS, Damle NK (2006) Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol 17:653–658

    CAS  PubMed  Google Scholar 

  • Glockshuber R, Malia M, Pfitzinger I, Plückthun A (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29:1362–1367

    CAS  PubMed  Google Scholar 

  • Goel N, Stephens S (2010) Certolizumab pegol. mAbs 2:137–147

    PubMed Central  PubMed  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    CAS  PubMed  Google Scholar 

  • Grabulovski D, Kaspar M, Neri D (2007) A novel, non-immunogenic Fyn SH3-derived binding protein with tumor vascular targeting properties. J Biol Chem 282:3196–3204

    CAS  PubMed  Google Scholar 

  • Grove TZ, Cortajarena AL, Regan L (2008) Ligand binding by repeat proteins: natural and designed. Curr Opin Struct Biol 18:507–515

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hackel BJ, Wittrup KD (2010) The full amino acid repertoire is superior to serine/tyrosine for selection of high affinity immunoglobulin G binders from the fibronectin scaffold. Protein Eng Des Sel 23:211–219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hackel BJ, Ackerman ME, Howland SW, Wittrup KD (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401:84–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Halstead SK, Humphreys PD, Zitman FM, Hamer J, Plomp JJ, Willison HJ (2008) C5 inhibitor rEV576 protects against neural injury in an in vitro mouse model of Miller Fisher syndrome. J Peripher Nerv Syst 13:228–235

    PubMed  Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    CAS  PubMed  Google Scholar 

  • Hanenberg M, McAfoose J, Kulic L, Welt T, Wirth F, Parizek P, Strobel L, Cattepoel S, Spani C, Derungs R, Maier M, Plückthun A, Nitsch RM (2014) Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J Biol Chem 289:27080–27089

    CAS  PubMed  Google Scholar 

  • Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. mAbs 2:256–265

    PubMed Central  PubMed  Google Scholar 

  • Hayden-Ledbetter MS, Cerveny CG, Espling E, Brady WA, Grosmaire LS, Tan P, Bader R, Slater S, Nilsson CA, Barone DS, Simon A, Bradley C, Thompson PA, Wahl AF, Ledbetter JA (2009) CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res 15:2739–2746

    CAS  PubMed  Google Scholar 

  • Hey T, Fiedler E, Rudolph R, Fiedler M (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23:514–522

    CAS  PubMed  Google Scholar 

  • Hodge RJ, O’Connor-Semmes RL, Lin J, Chism JP, Andrews SM, Gaddy JR, Nunez DJ (2013) GSK2374697, a long-acting GLP-1 mimetic: first use of an AlbudAb™ in humans – pharmacokinetics, pharmacodynamics, safety, and tolerability in healthy volunteers. Abstract No. 60-LB; American Diabetes Association 73rd scientific sessions, June 21–25. Chicago, IL

    Google Scholar 

  • Hoffman LM, Gore L (2014) Blinatumomab, a bi-specific anti-CD19/CD3 BiTE® antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front Oncol 4:63

    PubMed Central  PubMed  Google Scholar 

  • Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, Itin C, Prang N, Baeuerle PA (2005) Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 115:98–104

    CAS  PubMed  Google Scholar 

  • Hohenester E, Engel J (2002) Domain structure and organisation in extracellular matrix proteins. Matrix Biol 21:115–128

    CAS  PubMed  Google Scholar 

  • Hohlbaum AM, Trentman S, Gille H, Allersdorfer A, Belaiba RS, Huelsmeyer M, Christian J, Sandal T, Matschiner G, Jensen K, Skerra A, Audoly LP (2011) Discovery and preclinical characterization of a novel hepcidin antagonist with tunable PK/PD properties for the treatment of anemia in different patient populations. Blood 118: Abstract 687

    Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    CAS  PubMed  Google Scholar 

  • Holliger P, Prospero T, Winter G (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A 90:6444–6448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13:29–41

    CAS  PubMed  Google Scholar 

  • Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490

    CAS  PubMed  Google Scholar 

  • Holt LJ, Basran A, Jones K, Chorlton J, Jespers LS, Brewis ND, Tomlinson IM (2008) Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Des Sel 21:283–288

    CAS  PubMed  Google Scholar 

  • Holz JB (2012) The TITAN trial – assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfus Apher Sci 46:343–346

    PubMed  Google Scholar 

  • Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T (2008) Stabilization of a β-hairpin in monomeric Alzheimer’s amyloid-β peptide inhibits amyloid formation. Proc Natl Acad Sci U S A 105:5099–5104

    Google Scholar 

  • Humphreys DP (2003) Production of antibodies and antibody fragments in Escherichia coli and a comparison of their functions, uses and modification. Curr Opin Drug Discov Devel 6:188–196

    CAS  PubMed  Google Scholar 

  • INN (2012) Proposed International Nonproprietary Names for Pharmaceutical Substances (INN): List 108. WHO Drug Inf 26:401–471

    Google Scholar 

  • Jacobs SA, Diem MD, Luo J, Teplyakov A, Obmolova G, Malia T, Gilliland GL, O’Neil KT (2012) Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng Des Sel 25:107–117

    CAS  PubMed  Google Scholar 

  • Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A 98:75–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jespers L, Schon O, Famm K, Winter G (2004a) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22:1161–1165

    CAS  PubMed  Google Scholar 

  • Jespers L, Schon O, James LC, Veprintsev D, Winter G (2004b) Crystal structure of HEL4, a soluble, refoldable human VH single domain with a germ-line scaffold. J Mol Biol 337:893–903

    CAS  PubMed  Google Scholar 

  • Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, Zhang W, Tuaillon N, Rainey J, Barat B, Yang Y, Jin L, Ciccarone V, Moore PA, Koenig S, Bonvini E (2010) Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 399:436–449

    CAS  PubMed  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    CAS  PubMed  Google Scholar 

  • Jonsson A, Dogan J, Herne N, Abrahmsén L, Nygren P-Å (2008) Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel 21:515–527

    CAS  PubMed  Google Scholar 

  • Jost C, Schilling J, Tamaskovic R, Schwill M, Honegger A, Plückthun A (2013) Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 21:1979–1991

    CAS  PubMed  Google Scholar 

  • Jung S, Plückthun A (1997) Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng 10:959–966

    CAS  PubMed  Google Scholar 

  • Jung S, Honegger A, Plückthun A (1999) Selection for improved protein stability by phage display. J Mol Biol 294:163–180

    CAS  PubMed  Google Scholar 

  • Kaspar M, Zardi L, Neri D (2006) Fibronectin as target for tumor therapy. Int J Cancer 118:1331–1339

    CAS  PubMed  Google Scholar 

  • Kim HJ, Eichinger A, Skerra A (2009) High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2. J Am Chem Soc 131:3565–3576

    CAS  PubMed  Google Scholar 

  • Kipriyanov SM (2009) Generation of bispecific and tandem diabodies. Methods Mol Biol 562:177–193

    CAS  PubMed  Google Scholar 

  • Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth CW, Matys ER, Little M (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 293:41–56

    CAS  PubMed  Google Scholar 

  • Klein D, Jacobs S, Sheri M, Anderson M, Attar R, Barnakov A, Brosnan K, Bushey B, Chevalier K, Chin D, Cornejo C, Diem M, Hyun L, Kuhar E, McCabe F, Picha K, Spinka-Doms T, Swift E, O’Neil K (2013) Bispecific Centyrin simultaneously targeting EGFR and c-Met demonstrates improved activity compared to the mixture of single agents. Cancer Res 73(8 Suppl): Abstract nr LB-312

    Google Scholar 

  • Klöhn PC, Wuellner U, Zizlsperger N, Zhou Y, Tavares D, Berger S, Zettlitz KA, Proetzel G, Yong M, Begent RH, Reichert JM (2013) IBC’s 23rd annual antibody engineering, 10th annual antibody therapeutics international conferences and the 2012 annual meeting of the antibody society, San Diego, 3–6 Dec 2012. mAbs 5, 178–201

    Google Scholar 

  • Knight DM, Wagner C, Jordan R, McAleer MF, DeRita R, Fass DN, Coller BS, Weisman HF, Ghrayeb J (1995) The immunogenicity of the 7E3 murine monoclonal Fab antibody fragment variable region is dramatically reduced in humans by substitution of human for murine constant regions. Mol Immunol 32:1271–1281

    CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  Google Scholar 

  • Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151

    CAS  PubMed  Google Scholar 

  • Koide A, Gilbreth RN, Esaki K, Tereshko V, Koide S (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A 104:6632–6637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kontermann R (2012) Dual targeting strategies with bispecific antibodies. mAbs 4:182–197

    PubMed Central  PubMed  Google Scholar 

  • Korndörfer IP, Beste G, Skerra A (2003a) Crystallographic analysis of an “anticalin” with tailored specificity for fluorescein reveals high structural plasticity of the lipocalin loop region. Proteins 53:121–129

    PubMed  Google Scholar 

  • Korndörfer IP, Schlehuber S, Skerra A (2003b) Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J Mol Biol 330:385–396

    PubMed  Google Scholar 

  • Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C (2014) Shark variable new antigen receptor biologics – a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 14:1527–1539

    CAS  PubMed  Google Scholar 

  • Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183

    CAS  PubMed  Google Scholar 

  • Kreitman RJ, Pastan I (2011) Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 17:6398–6405

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I (2012) Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 30:1822–1828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kronqvist N, Malm M, Göstring L, Gunneriusson E, Nilsson M, Hoiden Guthenberg I, Gedda L, Frejd FY, Ståhl S, Löfblom J (2011) Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules. Protein Eng Des Sel 24:385–396

    CAS  PubMed  Google Scholar 

  • Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J, Köhnke T, Lichtenegger FS, Schneider S, Metzeler KH, Fiegl M, Spiekermann K, Baeuerle PA, Hiddemann W, Riethmüller G, Subklewe M (2014) CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 123:356–365

    CAS  PubMed  Google Scholar 

  • Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, Sinclair AM, Kischel R, Frankel SR, Walter RB (2014) Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 123:554–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Le Gall F, Reusch U, Little M, Kipriyanov SM (2004) Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng Des Sel 17:357–366

    PubMed  Google Scholar 

  • Lee EC, Liang Q, Ali H, Bayliss L, Beasley A, Bloomfield-Gerdes T, Bonoli L, Brown R, Campbell J, Carpenter A, Chalk S, Davis A, England N, Fane-Dremucheva A, Franz B, Germaschewski V, Holmes H, Holmes S, Kirby I, Kosmac M, Legent A, Lui H, Manin A, O’Leary S, Paterson J, Sciarrillo R, Speak A, Spensberger D, Tuffery L, Waddell N, Wang W, Wells S, Wong V, Wood A, Owen MJ, Friedrich GA, Bradley A (2014) Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol 32:356–363

    CAS  PubMed  Google Scholar 

  • Lindenmann J (1984) Origin of the terms ‘antibody’ and ‘antigen’. Scand J Immunol 19:281–285

    CAS  PubMed  Google Scholar 

  • Lipovsek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24:3–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lipovsek D, Lippow SM, Hackel BJ, Gregson MW, Cheng P, Kapila A, Wittrup KD (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041

    CAS  PubMed  Google Scholar 

  • Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680

    PubMed  Google Scholar 

  • Löffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmüller G, Dörken B, Bargou RC (2000) A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95:2098–2103

    PubMed  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125

    CAS  PubMed  Google Scholar 

  • Malmberg J, Tolmachev V, Orlova A (2011) Imaging agents for in vivo molecular profiling of disseminated prostate cancer – targeting EGFR receptors in prostate cancer: comparison of cellular processing of [111In]-labeled affibody molecule ZEGFR:2377 and cetuximab. Int J Oncol 38:1137–1143

    Google Scholar 

  • Mamluk R, Carvajal IM, Morse BA, Wong H, Abramowitz J, Aslanian S, Lim AC, Gokemeijer J, Storek MJ, Lee J, Gosselin M, Wright MC, Camphausen RT, Wang J, Chen Y, Miller K, Sanders K, Short S, Sperinde J, Prasad G, Williams S, Kerbel R, Ebos J, Mutsaers A, Mendlein JD, Harris AS, Furfine ES (2010) Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. mAbs 2:199–208

    PubMed Central  PubMed  Google Scholar 

  • Mann A, Friedrich N, Krarup A, Weber J, Stiegeler E, Dreier B, Pugach P, Robbiani M, Riedel T, Moehle K, Robinson JA, Rusert P, Plückthun A, Trkola A (2013) Conformation-dependent recognition of HIV gp120 by designed ankyrin repeat proteins provides access to novel HIV entry inhibitors. J Virol 87:5868–5881

    PubMed Central  CAS  PubMed  Google Scholar 

  • McAleese F, Eser M (2012) RECRUIT-TandAbs: harnessing the immune system to kill cancer cells. Future Oncol 8:687–695

    CAS  PubMed  Google Scholar 

  • Melmed GY, Targan SR, Yasothan U, Hanicq D, Kirkpatrick P (2008) Certolizumab pegol. Nat Rev Drug Discov 7:641–642

    CAS  PubMed  Google Scholar 

  • Mendler CT, Skerra A (2013) Anticalins: an emerging class of novel biologics to treat cancer and other severe diseases. Drug Future 38:169–179

    Google Scholar 

  • Mendler CT, Friedrich L, Schlapschy M, Schwaiger M, Wester H-J, Skerra A (2015) High contrast tumor imaging with radio-labelled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation. mAbs 7:96–109

    Google Scholar 

  • Mercader JV, Skerra A (2002) Generation of anticalins with specificity for a nonsymmetric phthalic acid ester. Anal Biochem 308:269–277

    CAS  PubMed  Google Scholar 

  • Merlot AM, Kalinowski DS, Richardson DR (2014) Unraveling the mysteries of serum albumin – more than just a serum protein. Front Physiol 5:299

    PubMed Central  PubMed  Google Scholar 

  • Milstein C (2000) With the benefit of hindsight. Immunol Today 21:359–364

    CAS  PubMed  Google Scholar 

  • Mintz CS, Crea R (2013) Protein scaffolds – the next generation of protein therapeutics? BioProcess Int 11:40–48

    Google Scholar 

  • Moody P, Chudasama V, Nathani RI, Maruani A, Martin S, Smith ME, Caddick S (2014) A rapid, site-selective and efficient route to the dual modification of DARPins. Chem Commun (Camb) 50:4898–4900

    CAS  Google Scholar 

  • Moore PA, Zhang W, Rainey GJ, Burke S, Li H, Huang L, Gorlatov S, Veri MC, Aggarwal S, Yang Y, Shah K, Jin L, Zhang S, He L, Zhang T, Ciccarone V, Koenig S, Bonvini E, Johnson S (2011) Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 117:4542–4551

    CAS  PubMed  Google Scholar 

  • Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mosavi LK, Minor DL Jr, Peng ZY (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci U S A 99:16029–16034

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mross K, Richly H, Fischer R, Scharr D, Buchert M, Stern A, Gille H, Audoly LP, Scheulen ME (2013) First-in-human phase I study of PRS-050 (Angiocal), an Anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One 8:e83232

    PubMed Central  PubMed  Google Scholar 

  • Mukherjee R (2013) FGF21-Adnectin-Pharmacokinetic Enhancer: a modified FGF21 protein with uniquely extended pharmacokinetic profile for the treatment of metabolic diseases. Abstract; Ramanbhai Foundation 6th international symposium, February 4–6. Ahmedabad, India

    Google Scholar 

  • Munch RC, Muhlebach MD, Schaser T, Kneissl S, Jost C, Plückthun A, Cichutek K, Buchholz CJ (2011) DARPins: an efficient targeting domain for lentiviral vectors. Mol Ther 19:686–693

    PubMed Central  PubMed  Google Scholar 

  • Munch RC, Janicki H, Volker I, Rasbach A, Hallek M, Buning H, Buchholz CJ (2013) Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther 21:109–118

    PubMed Central  PubMed  Google Scholar 

  • Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    CAS  PubMed  Google Scholar 

  • Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26:230–235

    CAS  PubMed  Google Scholar 

  • NCT00217841 Aurograb and Vancomycin in MRSA Infection. http://clinicaltrials.gov

  • NCT00353964 Safety and efficacy study of rEV131 in the treatment of ocular inflammation after cataract surgery. http://clinicaltrials.gov

  • NCT00928317 Dose ranging study of ART621 in subjects diagnosed with rheumatoid arthritis taking methotrexate. http://clinicaltrials.gov

  • NCT01397409 Evaluation of AGN-150998 in exudative age-related macular degeneration (AMD). http://clinicaltrials.gov

  • NCT02013167 Ph 3 trial of Blinatumomab vs investigator’s choice of chemotherapy in patients with relapsed or refractory ALL. http://clinicaltrials.gov

  • NCT02106091 Safety study to assess AFM11 in patients with relapsed and/or refractory CD19 positive B-cell NHL or B-precursor ALL. http://clinicaltrials.gov

  • NCT02243787 Safety and tolerability study of COVA322 in patients with stable chronic moderate-to-severe plaque psoriasis. http://clinicaltrials.gov

  • Nelson AL (2010) Antibody fragments: hope and hype. mAbs 2:77–83

    PubMed Central  PubMed  Google Scholar 

  • Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27:331–337

    CAS  PubMed  Google Scholar 

  • Nielsen UB, Kirpotin DB, Pickering EM, Hong K, Park JW, Shalaby MR, Shao Y, Benz CC, Marks JD (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta 1591:109–118

    CAS  PubMed  Google Scholar 

  • Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlén M (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113

    CAS  PubMed  Google Scholar 

  • Nixon AE, Sexton DJ, Ladner RC (2014) Drugs derived from phage display – from candidate identification to clinical practice. mAbs 6:73–85

    PubMed Central  PubMed  Google Scholar 

  • Nord K, Nilsson J, Nilsson B, Uhlén M, Nygren P-Å (1995) A combinatorial library of an α-helical bacterial receptor domain. Protein Eng 8:601–608

    CAS  PubMed  Google Scholar 

  • Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren P-Å (1997) Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat Biotechnol 15:772–777

    CAS  PubMed  Google Scholar 

  • Nuttall SD, Walsh RB (2008) Display scaffolds: protein engineering for novel therapeutics. Curr Opin Pharmacol 8:609–615

    CAS  PubMed  Google Scholar 

  • Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA (2006) Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol 43:763–771

    CAS  PubMed  Google Scholar 

  • Olwill SA, Joffroy C, Gille H, Vigna E, Matschiner G, Allersdorfer A, Lunde BM, Jaworski J, Burrows JF, Chiriaco C, Christian HJ, Hülsmeyer M, Trentmann S, Jensen K, Hohlbaum AM, Audoly L (2013) A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity. Mol Cancer Ther 12:2459–2471

    CAS  PubMed  Google Scholar 

  • Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, Widstrom C, Carlsson J, Tolmachev V, Ståhl S, Nilsson FY (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348

    CAS  PubMed  Google Scholar 

  • Orlova A, Wallberg H, Stone-Elander S, Tolmachev V (2009) On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med 50:417–425

    CAS  PubMed  Google Scholar 

  • Orlova A, Tran TA, Ekblad T, Karlström AE, Tolmachev V (2010) 186Re-maSGS-ZHER2:342, a potential Affibody conjugate for systemic therapy of HER2-expressing tumours. Eur J Nucl Med Mol Imaging 37:260–269

    CAS  PubMed  Google Scholar 

  • Orlova A, Jonsson A, Rosik D, Lundqvist H, Lindborg M, Abrahmsen L, Ekblad C, Frejd FY, Tolmachev V (2013) Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2-targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med 54:961–968

    CAS  PubMed  Google Scholar 

  • Osbourn J, Groves M, Vaughan T (2005) From rodent reagents to human therapeutics using antibody guided selection. Methods 36:61–68

    CAS  PubMed  Google Scholar 

  • Pachl J, Svoboda P, Jacobs F, Vandewoude K, van der Hoven B, Spronk P, Masterson G, Malbrain M, Aoun M, Garbino J, Takala J, Drgona L, Burnie J, Matthews R, Mycograb Invasive Candidiasis Study Group (2006) A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42:1404–1413

    CAS  PubMed  Google Scholar 

  • Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217

    CAS  PubMed  Google Scholar 

  • Paesen GC, Adams PL, Harlos K, Nuttall PA, Stuart DI (1999) Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol Cell 3:661–671

    CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    CAS  PubMed  Google Scholar 

  • Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776

    CAS  PubMed  Google Scholar 

  • Power BE, Doughty L, Shapira DR, Burns JE, Bayly AM, Caine JM, Liu Z, Scott AM, Hudson PJ, Kortt AA (2003) Noncovalent scFv multimers of tumor-targeting anti-Lewisy hu3S193 humanized antibody. Protein Sci 12:734–747

    PubMed Central  CAS  PubMed  Google Scholar 

  • Premsukh A, Lavoie JM, Cizeau J, Entwistle J, MacDonald GC (2011) Development of a GMP phase III purification process for VB4-845, an immunotoxin expressed in E. coli using high cell density fermentation. Protein Expr Purif 78:27–37

    CAS  PubMed  Google Scholar 

  • Rajkovic E, Knackmuss S, Reusch U, Rothe A, Topp M, Younes A, Ravic M, Hucke C, Zhukvosky E, Little M (2012) RECRUIT-TandAb AFM13: overcoming limitations of monoclonal antibodies in Hodgkin lymphoma. Cancer Res 72(8 Suppl):Abstract nr 3521

    Google Scholar 

  • Ramamurthy V, Krystek SR Jr, Bush A, Wei A, Emanuel SL, Das Gupta R, Janjua A, Cheng L, Murdock M, Abramczyk B, Cohen D, Lin Z, Morin P, Davis JH, Dabritz M, McLaughlin DC, Russo KA, Chao G, Wright MC, Jenny VA, Engle LJ, Furfine E, Sheriff S (2012) Structures of adnectin/protein complexes reveal an expanded binding footprint. Structure 20:259–269

    CAS  PubMed  Google Scholar 

  • Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, Perbellini O, Pizzolo G, Foa R, Guarini A (2011) Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma 52:1098–1107

    CAS  PubMed  Google Scholar 

  • Rauth S, Hinz D, Eichinger A, Schneider M, Uhrig M, Mayhaus M, Riemenschneider M, Skerra A. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide. In preparation

    Google Scholar 

  • Reichert JM (2012) Marketed therapeutic antibodies compendium. mAbs 4:413–415

    PubMed Central  PubMed  Google Scholar 

  • Reichert JM (2013) Antibodies to watch in 2013: mid-year update. mAbs 5:513–517

    PubMed Central  PubMed  Google Scholar 

  • Reichert JM (2014) Antibodies to watch in 2014: mid-year update. mAbs 6:799–802

    PubMed  Google Scholar 

  • Reichert JM (2015) Antibodies to watch in 2015. mAbs 7:1–8

    Google Scholar 

  • Reiter Y, Brinkmann U, Lee B, Pastan I (1996) Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nat Biotechnol 14:1239–1245

    CAS  PubMed  Google Scholar 

  • Reuters (2014) Stage 3 phase 2 study of DARPin abicipar pegol (previously MP0112) supports progressing to phase III development program. http://uk.reuters.com/article/2014/07/01/molecular-partners-idUKnBw015546a+100+BSW20140701

  • Richie DL, Ghannoum MA, Isham N, Thompson KV, Ryder NS (2012) Nonspecific effect of Mycograb on amphotericin B MIC. Antimicrob Agents Chemother 56:3963–3964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richter A, Eggenstein E, Skerra A (2014) Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett 588:213–218

    CAS  PubMed  Google Scholar 

  • Riechmann L, Foote J, Winter G (1988) Expression of an antibody Fv fragment in myeloma cells. J Mol Biol 203:825–828

    CAS  PubMed  Google Scholar 

  • Riethmüller G (2012) Symmetry breaking: bispecific antibodies, the beginnings, and 50 years on. Cancer Immun 12:12

    PubMed Central  PubMed  Google Scholar 

  • Rose-John S, Schooltink H (2003) CDP-870 – Celltech/Pfizer. Curr Opin Investig Drugs 4:588–592

    CAS  PubMed  Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, MARINA Study Group (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    CAS  PubMed  Google Scholar 

  • Rothe A, Hosse RJ, Power BE (2006) In vitro display technologies reveal novel biopharmaceutics. FASEB J 20:1599–1610

    CAS  PubMed  Google Scholar 

  • Ruchala P, Nemeth E (2014) The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci 35:155–161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schiefner A, Skerra A (2015) The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc Chem Res 48:976–985

    Google Scholar 

  • Schiefner A, Chatwell L, Korner J, Neumaier I, Colby DW, Volkmer R, Wittrup KD, Skerra A (2011) A disulfide-free single-domain VL intrabody with blocking activity towards Huntingtin reveals a novel mode of epitope recognition. J Mol Biol 414:337–355

    CAS  PubMed  Google Scholar 

  • Schilling J, Schöppe J, Plückthun A (2014) From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J Mol Biol 426:691–721

    CAS  PubMed  Google Scholar 

  • Schlapschy M, Binder U, Börger C, Theobald I, Wachinger K, Kisling S, Haller D, Skerra A (2013) PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel 26:489–501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schlehuber S, Beste G, Skerra A (2000) A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J Mol Biol 297:1105–1120

    CAS  PubMed  Google Scholar 

  • Schmidt FS, Skerra A (1994) The bilin-binding protein of Pieris brassicae. cDNA sequence and regulation of expression reveal distinct features of this insect pigment protein. Eur J Biochem 219:855–863

    CAS  PubMed  Google Scholar 

  • Schönfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H, Hülsmeyer M, Brown N, Kaye PM, Schlehuber S, Hohlbaum AM, Skerra A (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci U S A 106:8198–8203

    PubMed Central  PubMed  Google Scholar 

  • Schweizer A, Rusert P, Berlinger L, Ruprecht CR, Mann A, Corthesy S, Turville SG, Aravantinou M, Fischer M, Robbiani M, Amstutz P, Trkola A (2008) CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics. PLoS Pathog 4:e1000109

    PubMed Central  PubMed  Google Scholar 

  • Sheridan C (2007) Pharma consolidates its grip on post-antibody landscape. Nat Biotechnol 25:365–366

    CAS  PubMed  Google Scholar 

  • Sheridan C (2015) Amgen’s bispecific antibody puffs across finish line. Nat Biotechnol 33:219–221

    Google Scholar 

  • Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16:955–960

    CAS  PubMed  Google Scholar 

  • Simon M, Frey R, Zangemeister-Wittke U, Plückthun A (2013) Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug Chem 24:1955–1966

    CAS  PubMed  Google Scholar 

  • Simon M, Stefan N, Borsig L, Plückthun A, Zangemeister-Wittke U (2014) Increasing the antitumor effect of an EpCAM-targeting fusion toxin by facile click PEGylation. Mol Cancer Ther 13:375–385

    CAS  PubMed  Google Scholar 

  • Siontorou CG (2013) Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine 8:4215–4227

    PubMed Central  PubMed  Google Scholar 

  • Skerra A (1993) Bacterial expression of immunoglobulin fragments. Curr Opin Immunol 5:256–262

    CAS  PubMed  Google Scholar 

  • Skerra A (2000a) Engineered protein scaffolds for molecular recognition. J Mol Recognit 13:167–187

    CAS  PubMed  Google Scholar 

  • Skerra A (2000b) Lipocalins as a scaffold. Biochim Biophys Acta 1482:337–350

    CAS  PubMed  Google Scholar 

  • Skerra A (2001) ‘Anticalins’: a new class of engineered ligand-binding proteins with antibody-like properties. J Biotechnol 74:257–275

    CAS  PubMed  Google Scholar 

  • Skerra A (2003) Imitating the humoral immune response. Curr Opin Chem Biol 7:683–693

    CAS  PubMed  Google Scholar 

  • Skerra A, Plückthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041

    CAS  PubMed  Google Scholar 

  • Soltys J, Kusner LL, Young A, Richmonds C, Hatala D, Gong B, Shanmugavel V, Kaminski HJ (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65:67–75

    PubMed Central  PubMed  Google Scholar 

  • Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J, Tolmachev V, Aström G, Lubberink M, Garske-Román U, Carlsson J, Lindman H (2014) First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 55:730–735

    PubMed  Google Scholar 

  • Stahl A, Stumpp MT, Schlegel A, Ekawardhani S, Lehrling C, Martin G, Gulotti-Georgieva M, Villemagne D, Forrer P, Agostini HT, Binz HK (2013) Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis 16:101–111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305:1770–1773

    CAS  PubMed  Google Scholar 

  • Stefan N, Martin-Killias P, Wyss-Stoeckle S, Honegger A, Zangemeister-Wittke U, Plückthun A (2011) DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J Mol Biol 413:826–843

    CAS  PubMed  Google Scholar 

  • Steiner M, Gutbrodt K, Krall N, Neri D (2013) Tumor-targeting antibody-anticalin fusion proteins for in vivo pretargeting applications. Bioconjug Chem 24:234–241

    CAS  PubMed  Google Scholar 

  • Steinmeyer DE, McCormick EL (2008) The art of antibody process development. Drug Discov Today 13:613–618

    CAS  PubMed  Google Scholar 

  • Steipe B, Schiller B, Plückthun A, Steinbacher S (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192

    CAS  PubMed  Google Scholar 

  • Stevens FJ, Solomon A, Schiffer M (1991) Bence Jones proteins: a powerful tool for the fundamental study of protein chemistry and pathophysiology. Biochemistry 30:6803–6805

    CAS  PubMed  Google Scholar 

  • Strand J, Varasteh Z, Eriksson O, Abrahmsen L, Orlova A, Tolmachev V (2014) Gallium-68-labeled Affibody molecule for PET imaging of PDGFRβ expression in vivo. Mol Pharm 11:3957–3964

    CAS  PubMed  Google Scholar 

  • Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD (2004) Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci U S A 101:12444–12449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strohl WR, Strohl LM (2012) Therapeutic antibody engineering: current and future advances driving the strongest growth area in the pharmaceutical industry. Woodhead, Cambridge, UK

    Google Scholar 

  • Terwisscha van Scheltinga AG, Lub-de Hooge MN, Hinner MJ, Verheijen RB, Allersdorfer A, Hülsmeyer M, Nagengast WB, Schröder CP, Kosterink JG, de Vries EG, Audoly L, Olwill SA (2014) In vivo visualization of MET tumor expression and anticalin biodistribution with the MET-specific anticalin 89Zr-PRS-110 PET tracer. J Nucl Med 55:665–671

    Google Scholar 

  • Thiel MA, Wild A, Schmid MK, Job O, Bochmann F, Loukopoulos V, Alcantara W, Schmidt A, Lichtlen P, Escher D (2013) Penetration of a topically administered anti-tumor necrosis factor alpha antibody fragment into the anterior chamber of the human eye. Ophthalmology 120:1403–1408

    PubMed  Google Scholar 

  • Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T, de Haard HJ, Leemans CR, van Dongen GA (2008) Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol Cancer Ther 7:2288–2297

    CAS  PubMed  Google Scholar 

  • Tolcher AW, Sweeney CJ, Papadopoulos K, Patnaik A, Chiorean EG, Mita AC, Sankhala K, Furfine E, Gokemeijer J, Iacono L, Eaton C, Silver BA, Mita M (2011) Phase I and pharmacokinetic study of CT-322 (BMS-844203), a targeted Adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clin Cancer Res 17:363–371

    CAS  PubMed  Google Scholar 

  • Tolmachev V, Orlova A (2009) Update on Affibody molecules for in vivo imaging of targets for cancer therapy. Minerva Biotecnol 21:21–30

    Google Scholar 

  • Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandström M, Rosik D, Carlsson J, Lundqvist H, Wennborg A, Nilsson FY (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67:2773–2782

    Google Scholar 

  • Tolmachev V, Mume E, Sjoberg S, Frejd FY, Orlova A (2009a) Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur J Nucl Med Mol Imaging 36:692–701

    PubMed  Google Scholar 

  • Tolmachev V, Wållberg H, Andersson K, Wennborg A, Lundqvist H, Orlova A (2009b) The influence of Bz-DOTA and CHX-A″-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules: implications for 114mIn-mediated targeting therapy. Eur J Nucl Med Mol Imaging 36:1460–1468

    Google Scholar 

  • Tolmachev V, Rosik D, Wallberg H, Sjoberg A, Sandstrom M, Hansson M, Wennborg A, Orlova A (2010) Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-ZEGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imaging 37:613–622

    PubMed  Google Scholar 

  • Tolmachev V, Varasteh Z, Honarvar H, Hosseinimehr SJ, Eriksson O, Jonasson P, Frejd FY, Abrahmsen L, Orlova A (2014) Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using Affibody molecule 111In-DOTA-Z09591. J Nucl Med 55:294–300

    CAS  PubMed  Google Scholar 

  • Topp MS, Goekbuget N, Stein AS, Bargou RC, Dombret H, Fielding AK, Ribera JM, Foà R, Zugmaier G, Holland C, Maniar T, Huber B, Nagorsen D, Kantarjian HM (2014) Confirmatory open-label, single-arm, multicenter phase 2 study of the BiTE antibody blinatumomab in patients (pts) with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL). J Clin Oncol 32:5s (suppl; abstr 7005)

    Google Scholar 

  • Tsianakas A, Brunner P, Ghoreschi K, Berger C, Loser K, Röcken M, Stingl G, Luger T, Jung T (2014) Topical administration of the single-chain anti-TNFα antibody DLX105 suppresses TNFα and Th17 cytokines in psoriatic skin. Abstract No. LB011; 44th annual meeting of the European Society for Dermatological Research (ESDR), Sept 10–13. Copenhagen, Denmark

    Google Scholar 

  • Van Beneden K, Verschueren K, Willems W, Wouters H, D’Artois J, De Swert K, Arold G, De Bruyn S (2014) Impact of clinical remission on physical function in patients with rheumatoid arthritis treated with ALX-0061: post-hoc analysis of phase I/II data. Ann Rheum Dis 73:506

    Google Scholar 

  • Vaneycken I, D’Huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, Caveliers V, Lahoutte T (2011) Immuno-imaging using nanobodies. Curr Opin Biotechnol 22:877–881

    PubMed  Google Scholar 

  • Vanheusden K, Detalle L, Hemeryck A, Vicari A, Grenningloh R, Poelmans S, Wouters H, Stöhr T (2013) Pre-clinical proof-of-concept of ALX-0761, a Nanobody neutralising both IL-17A and IL-17F in a cynomolgus monkey collagen induced arthritis model. Abstract No. 1287; annual meeting of the American College of Rheumatology (ACR), Oct 26–30. San Diego, CA

    Google Scholar 

  • Viardot A, Goebeler M, Pfreundschuh M, Adrian N, Libicher M, Degenhard E, Stieglmaier J, Zhang A, Nagorsen D, Bargou RC (2013) Open-label phase 2 study of the bispecific T-cell engager (BiTE®) Blinatumomab in patients with relapsed/refractory diffuse large B-cell lymphoma. Blood 122:1811

    Google Scholar 

  • Vopel S, Mühlbach H, Skerra A (2005) Rational engineering of a fluorescein-binding anticalin for improved ligand affinity. Biol Chem 386:1097–1104

    CAS  PubMed  Google Scholar 

  • Wahlberg E, Lendel C, Helgstrand M, Allard P, Dincbas-Renqvist V, Hedqvist A, Berglund H, Nygren P-Å, Härd T (2003) An affibody in complex with a target protein: structure and coupled folding. Proc Natl Acad Sci U S A 100:3185–3190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner GJ, Hillstrom JR (1991) Bispecific anti-idiotype/anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol 147:4035–4044

    CAS  PubMed  Google Scholar 

  • Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113:171–182

    CAS  PubMed  Google Scholar 

  • Weston-Davies W, Westwood JP, Nunn M (2013) Phase 1 clinical trial of novel complement C5 inhibitor coversin. Mol Immunol 56:264

    Google Scholar 

  • Wickham TJ, Reynolds J, Drummond DC, Kirpotin DB, Lahdenranta J, Leonard S, Geretti E, Lee H, Klinz S, Hendriks BS, Olivier K, Eckelhofer I, Park JW, Benz CC, Moyo VM, Niyikiza C, Nielsen UB (2010) Preclinical safety and activity of MM-302, a HER2-targeted liposomal doxorubicin designed to have an improved safety and efficacy profile over approved anthracyclines. Cancer Res 70(24 Suppl):Abstract nr P3-14–09.

    Google Scholar 

  • Wiecek AS (2010) Nanobodies: going single-domain. BioTechniques. http://www.biotechniques.com/news/Nanobodies-Going-single-domain/biotechniques-257771.html

  • Woisetschläger M, Rüker F, Mudde GC, Wozniak-Knopp G, Bauer A, Himmler G (2013) Modular antibody engineering: antigen binding immunoglobulin Fc CH3 domains as building blocks for bispecific antibodies (mAb2). In: Schmidt SR (ed) Fusion protein technologies for biopharmaceuticals (p. 583–589). Wiley, Chichester

    Google Scholar 

  • Wozniak-Knopp G, Bartl S, Bauer A, Mostageer M, Woisetschläger M, Antes B, Ettl K, Kainer M, Weberhofer G, Wiederkum S, Himmler G, Mudde GC, Rüker F (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23:289–297

    CAS  PubMed  Google Scholar 

  • Wurch T, Pierré A, Depil S (2012) Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol 30:575–582

    CAS  PubMed  Google Scholar 

  • Xavier C, Vaneycken I, D’Huyvetter M, Heemskerk J, Keyaerts M, Vincke C, Devoogdt N, Muyldermans S, Lahoutte T, Caveliers V (2013) Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med 54:776–784

    CAS  PubMed  Google Scholar 

  • Xu L, Aha P, Gu K, Kuimelis RG, Kurz M, Lam T, Lim AC, Liu H, Lohse PA, Sun L, Weng S, Wagner RW, Lipovsek D (2002) Directed evolution of high-affinity antibody mimics using mRNA display. Chem Biol 9:933–942

    CAS  PubMed  Google Scholar 

  • Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R, Nagy-Davidescu G, Dreier B, Schibli R, Binz HK, Waibel R, Plückthun A (2010) Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 70:1595–1605

    CAS  PubMed  Google Scholar 

  • Zhukovsky E, Reusch U, Burkhardt C, Knackmuss S, Fucek I, Eser M, McAleese F, Ellwanger K (2012a) A T cell-engaging CD3 Recruit-Tandab potently kills CD19+ tumor B cells. Blood 120:3721

    Google Scholar 

  • Zhukovsky E, Reusch U, Burkhardt C, Knackmuss S, Fucek I, Eser M, McAleese F, Ellwanger K, Little M (2012b) High affinity CD3 RECRUIT TandAb for T cell-mediated lysis of CD19+ tumor B cells. J Clin Oncol 30:8059

    Google Scholar 

  • Zhukovsky E, Knackmuss S, Reusch U, Wall C, Ellwanger K, Fucek I, Burkhardt C (2014) Preclinical development, primary and secondary pharmacodynamics, of the CD19/CD3 Tandab (AFM11). J Clin Oncol 32:e19546

    Google Scholar 

  • Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ, Kolmar H (2015) Structural insights and biomedical potential of IgNAR scaffolds from sharks. mAbs 7:15–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Skerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Gebauer, M., Skerra, A. (2015). Alternative Protein Scaffolds as Novel Biotherapeutics. In: Rosenberg, A., Demeule, B. (eds) Biobetters. AAPS Advances in the Pharmaceutical Sciences Series, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2543-8_13

Download citation

Publish with us

Policies and ethics