Skip to main content

Abiotic Stress in Crops: Candidate Genes, Osmolytes, Polyamines, and Biotechnological Intervention

  • Chapter
Book cover Elucidation of Abiotic Stress Signaling in Plants

Abstract

Agricultural production and quality are adversely affected by various abiotic stresses including water deficit conditions (drought), salinity, extreme temperatures (heat, cold), light intensities beyond those saturating for photosynthesis, and radiation (UVB,C). This is exacerbated when such exposure occurs during seed germination and reproductive phases of development. Estimates of crop losses can amount to billions of US dollars worldwide. To prevent such losses, it is necessary to develop stress-tolerant crops. One approach is to identify resistant germplasm using breeding strategies assisted by molecular markers and transfer those attributes to sensitive varieties, but this approach is a timely process. Introduction of genes that can improve stress tolerance in crops against heat, drought, and salinity is relatively a more effective technology. In this regard, the scientific community is well placed since a number of critical genes, particularly transcription factors that regulate gene expression in response to environmental stresses, have been identified and the proof-of-the-concept validated. Translation of the technology into major crops (rice, wheat, sorghum, and maize) and vegetable/fruit crops is the need of the times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABRE:

Abscisic acid-responsive elements

AP2:

Apetala 2

CO2 :

Carbon dioxide

DREB:

Dehydration response element-binding factors

ERF:

Ethylene response elements

PA:

Polyamines

Put:

Putrescine

SAMDC:

S-adenosylmethionine decarboxylase

SPD:

Spermidine

SPDS:

Spermidine synthase

Spm:

Spermine

SPMS:

Spermine synthase

T-Spm:

Thermospermine

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    CAS  PubMed  Google Scholar 

  • Afzal I, Munir F, Ayub CM, Basra SMA, Hameed A, Nawaz A (2009) Changes in antioxidant enzymes, germination capacity and vigour of tomato seeds in response of priming with polyamines. Seed Sci Technol 37:765–770

    Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006a) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    CAS  PubMed  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006b) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    CAS  PubMed  Google Scholar 

  • Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt and drought stresses. Plant Cell Rep 27:687–698

    CAS  PubMed  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patro’n M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburciox P (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    PubMed  Google Scholar 

  • Ali RM (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179

    CAS  Google Scholar 

  • Alia H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    CAS  PubMed  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Cell 13:99–102

    CAS  Google Scholar 

  • Altabella T, Tiburcio AF, Ferrando A (2009) Plant with resistance to low temperature and method of production thereof. Spanish patent application WO2010/004070

    Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    PubMed Central  PubMed  Google Scholar 

  • Ben-Arie R, Lurie S, Mattoo AK (1982) Temperature-dependent inhibitory effects of calcium and spermine on ethylene biosynthesis in apple discs correlate with changes in microsomal membrane microviscosity. Plant Sci Lett 24:239–247

    CAS  Google Scholar 

  • Bengtsson M, Shen Y, Oki T (2006) A SRES-based global population dataset for 1990–2100. Popul Environ 28:113–131

    Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress inducible expression of Arabidopsis thaliana DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell 26:2071–2082

    CAS  Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal cross talks in plants. Metabolites 2:516–528

    PubMed Central  PubMed  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dell’amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    CAS  PubMed  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Over-expression of oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development pattern in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97:246–254

    CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:990–991

    Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana JP, Khurana P (2013) A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One 8:e79577. doi:10.1371/journal.pone.0079577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chen WJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    CAS  PubMed  Google Scholar 

  • Cheng L, Zou YJ, Ding SL, Zhang JJ, Yu XL, Cao JS, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    CAS  PubMed  Google Scholar 

  • Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW (2010) ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav 5:428–432

    CAS  PubMed  Google Scholar 

  • Chuang CF, Running MP, Williams RW, Meyerowitz EM (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 13:334–344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cominelli E, Tonelli C (2009) A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res 19:1231–1232

    PubMed  Google Scholar 

  • Craufurd PQ, Flower DJ, Peacock JM (1993) Effect of heat and drought stress on Sorghum (Sorghum Bicolor). I. Panicle development and leaf appearance. Exp Agric 29:61–76

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol 42:55–76

    CAS  Google Scholar 

  • Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt and cold-responsive gene expression. Plant J 33:751–763

    CAS  PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    CAS  PubMed  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122:1179–1186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flores HE, Galston AW (1982) Polyamines and plant stress—activation of putrescine biosynthesis by osmotic shock. Science 217:1259–1261

    CAS  PubMed  Google Scholar 

  • Fougere F, Le-Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroides, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12:901–915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33:382–388

    CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    CAS  PubMed  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehlose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    CAS  PubMed  Google Scholar 

  • Ghaffari A, Cook HF, Lee HC (2002) Climate change and winter wheat management: a modeling scenario for South-Eastern England. Clim Change 55:509–533

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    PubMed Central  CAS  PubMed  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 12:812–818

    Google Scholar 

  • Goyal RK, Kumar V, Shukla V, Mattoo R, Liu Y, Chung SH, Giovannoni JJ, Mattoo AK (2012) Features of a unique cluster of class I small heat shock protein genes in tandem with box C/D snoRNA genes localized on chromosome 6 in tomato. Planta 235:453–471

    CAS  PubMed  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    CAS  PubMed  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    CAS  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    CAS  PubMed  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    PubMed Central  CAS  PubMed  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots over expressing apples spermidine synthase in response to salinity and hyperosmosis. Phytochem 69:2133–2141

    CAS  Google Scholar 

  • Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153:757–772

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Stress metabolism, water stress, growth, and osmotic adjustment. Phil Trans R Soc Lond B 273:479–500

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    CAS  PubMed  Google Scholar 

  • Iannacone R, Cellini F, Morelli G, Ruberti I (2012) Translational biology approaches to improve abiotic stress tolerance in crops. In: Tuteja N et al (eds) Improving crop resistance to abiotic stress. Wiley-VCH Verlag GmbH, Weinheim, pp 207–239

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  • IPCC (2008) Climate change and water. In: Bates BC, Kundzewicz ZW, Palutikof J, Wu S (eds) Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, p 210

    Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity, and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46:19–30

    CAS  Google Scholar 

  • Ito Y, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    CAS  PubMed  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci U S A 102:5280–5285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacoby M, Weisshaar B, Dröge-Laser W, Carbajosa-Viocente J, Tiedmann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisen N (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Choi YD, Kim M, Reuzev C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaminaka H, Nake C, Epple P, Dittgen J, Schutze K (2006) bZIP10–LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25:4400–4411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishana A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Plant Physiol 121:101–107

    CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Over expression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol J 23:75–83

    CAS  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with upregulation of several stress responsive genes. Plant Biotechnol J 7:512–526

    CAS  PubMed  Google Scholar 

  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kazuko YS, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Google Scholar 

  • Kim SY (2006) The role of ABF family bZIP class transcription factors in stress response. Physiol Plant 126:519–527

    CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    CAS  PubMed  Google Scholar 

  • Kjaersgaard T, Jensen MK, Christiansen MW, Gregersen P, Kragelund BB, Skriver K (2011) Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death through a disordered regulatory domain. J Biol Chem 286:35418–35429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    CAS  PubMed  Google Scholar 

  • Lara P, Onate-Sanchez L, Abraham Z, Ferrandiz C, Diaz I (2003) Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J Biol Chem 278:21003–21011

    CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    CAS  PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    CAS  PubMed  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulators of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    CAS  PubMed  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Google Scholar 

  • Liu HC, Charang YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163:276–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower than expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    CAS  PubMed  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    CAS  PubMed  Google Scholar 

  • Lucas S, Durmaz E, Akpınar BA, Budak H (2011) The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem 49:346–351

    CAS  PubMed  Google Scholar 

  • Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136

    CAS  PubMed  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    CAS  PubMed  Google Scholar 

  • Mattoo AK, Fatima T, Upadhyay RK, Handa AK (2014) Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles. In: D’Mello JPF (ed) Polyamine biosynthesis in plants. CAB International, Wallingford

    Google Scholar 

  • Minocha SC, Sun D (1997) Stress tolerance in plants through transgenic manipulation of polyamine biosynthesis. Plant Physiol 114(Suppl):297

    Google Scholar 

  • Mitchell RAC, Mitchell VJ, Driscoll SP (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant Cell Environ 16:521–529

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    CAS  PubMed  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Phil Trans R Soc B 363:639–658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morita S, Yonemaru JI, Takanashi JI (2005) Grain growth and endosperm cell size under high night temperature in rice (Oryza sativa L.). Ann Bot (London) 95:695–701

    Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X (2013) Overexpression of Small Heat Shock Protein LimHSP16.45 in Arabidopsis Enhances Tolerance to Abiotic Stresses. PLoS One 8(12):e82264. doi:10.1371/journal.pone.0082264

    PubMed Central  PubMed  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress responsive gene expression in rice. Plant J 51:617–630

    CAS  PubMed  Google Scholar 

  • Navakouidis E, Lütz C, Langebartels C, Lütz-Meindl U, Kotzabasis K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim Biophys Acta 1621:160–169

    Google Scholar 

  • Ndayiragiji A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regul 48:51–63

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Google Scholar 

  • Nieva C, Busk PK, Dominguez-Puigjaner E, Lumbreras V, Testillano PS (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol 58:899–914

    CAS  PubMed  Google Scholar 

  • Niggeweg R, Thurow C, Weigel R, Pfitzner U, Gat C (2000) Tobacco TGA factors differ with respect to interaction with NPR1, activation potential and DNA-binding properties. Plant Mol Biol 42:775–788

    CAS  PubMed  Google Scholar 

  • Nijhwan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 138:341–351

    Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim MJ, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Over expression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 250:1368–1379

    Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    CAS  PubMed  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park EJ, Jeknic Z, Chen TH, Murata N (2007a) The coda transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J 5:422–430

    CAS  PubMed  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen TH (2007b) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    CAS  PubMed  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) OsMYB4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    CAS  PubMed  Google Scholar 

  • Peters GP, Minx JC, Weber CL, Edenhofer O (2011) Growth in emission transfers via international trade from 1990 to 2008. Proc Natl Acad Sci U S A 108:8903–8908

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Phil Trans R Soc Lond B 360:2021–2035

    Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    CAS  Google Scholar 

  • Puranik S, Sahul PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Xie WB, Cheng HT, Li XH, Wang SP (2009) Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol 9:74

    PubMed Central  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycinebetaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    CAS  PubMed  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8:476–488

    CAS  PubMed  Google Scholar 

  • Richards FJ, Coleman RG (1952) Occurrence of putrescine in potassium-deficient barley. Nature 170:460

    CAS  PubMed  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. J Biol Chem 379:633–646

    CAS  Google Scholar 

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    CAS  PubMed  Google Scholar 

  • Rosenzwig C, Hillel C (1998) Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. Oxford University Press, New York

    Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    CAS  Google Scholar 

  • Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes. Plant Mol Biol 29:691–702

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Alia MN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Alia VR, Chen TH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  • Salvucci ME (2008) Association of Rubisco activase with chaperonin-60 beta: a possible mechanism for protecting photosynthesis during heat stress. J Exp Bot 59:1923–1933

    CAS  PubMed  Google Scholar 

  • Saradhi PP, Suzuki I, Katoh A, Sakamoto A, Sharmilla P, Shi DJ, Murata N (2000) Protection against the photo-induced inactivation of the photosystem II complex by abscisic acid. Plant Cell Environ 23:711–718

    CAS  Google Scholar 

  • Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317

    CAS  PubMed  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    PubMed  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284:455–475

    CAS  PubMed  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I-R, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    CAS  PubMed  Google Scholar 

  • Shen H, Cao K, Wang X (2007) A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem Biophys Res Commun 362:425–430

    CAS  PubMed  Google Scholar 

  • Shukla V, Mattoo AK (2013) Developing robust crop plants for sustaining growth and yield under adverse climatic changes. In: Tuteja N, Gill S (eds) Climate change and plant abiotic stress tolerance. Wiley-VCH Verlag GmbH, Weinheim, pp 27–56. doi:10.1002/9783527675265

    Google Scholar 

  • Su C-F, Wang Y-C, Hsieh T-H, Lu C-H, Tseng T-H, Yu S-M (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153:145–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen TH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J 36:165–176

    CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 84:173–183

    Google Scholar 

  • Tang W, Newton JR (2005) Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine. Plant Cell Rep 24:581–589

    CAS  PubMed  Google Scholar 

  • Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P, Christou P, Capell T (2002) Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol 129:1744–1754

    PubMed Central  PubMed  Google Scholar 

  • Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K (2005) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 44:100–113

    CAS  PubMed  Google Scholar 

  • Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39

    PubMed  Google Scholar 

  • United Nations World Population Prospects (2010) The 2010 Revision.

    Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito Y, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    CAS  PubMed  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice OsMYB4 gene Increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    CAS  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Hunag R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6:e25216. doi:10.1371/journal.pone.0025216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  PubMed  Google Scholar 

  • Wang W, Vincour B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wang HH, Hao JJ, Chen XJ, Hao ZN, Wang X, Lou YG, Peng YL, Guo ZJ (2007a) Over expression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    CAS  PubMed  Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007b) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062–1070

    CAS  PubMed  Google Scholar 

  • Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010a) Over accumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41

    CAS  Google Scholar 

  • Wang GP, Zhang XY, Li F, Luo Y, Wang W (2010b) Over accumulation of glycinebetaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48:117–126

    CAS  Google Scholar 

  • Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53:212–231

    CAS  PubMed  Google Scholar 

  • Wang D, Heckathorn SA, Hamilton EW, Frantz J (2014) Effects of CO2 on the tolerance of photosynthesis to heat stress can be affected by photosynthetic pathway and nitrogen. Am J Bot 101:34–44

    CAS  PubMed  Google Scholar 

  • Watson MB, Emory KK, Piatak RM, Malmberg RL (1998) Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J 13:231–239

    CAS  PubMed  Google Scholar 

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiste C, Iven T, Fischer U, Oñate-Sánchez L, Dröge-Laser W (2007) In planta ORFeome analysis by large-scale over-expression of GATEWAY-compatible cDNA clones: screening of ERF transcription factors involved in abiotic stress defense. Plant J 52:382–390

    CAS  PubMed  Google Scholar 

  • Wellmer F, Kircher S, Rugner A, Frohnmeyer H, Schafer E (1999) Phosphorylation of the parsley bZIP transcription factor CPRF2 is regulated by light. J Biol Chem 274:29476–29482

    CAS  PubMed  Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 25:3133–3143

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue M, Hao YJ, Honda C, Moriguchi T (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    CAS  PubMed  Google Scholar 

  • Weretilnyk EA, Bednarek S, McCue KF, Rhodes D, Hansen AD (1989) Comparative biochemical and immunological studies of the glycinebetaine synthesis pathway in diverse families of dicotyledons. Planta 178:342–352

    CAS  PubMed  Google Scholar 

  • Wheeler TR, Hong TD, Ellis RH, Batts GR, Morison JIL, Hadley P (1996) The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum) in response to temperature and CO2. J Exp Bot 47:623–630

    CAS  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Over expression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    CAS  PubMed  Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    CAS  PubMed  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2008) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong AS, Jiang HH, Zhuang J, Peng RH, Jin XF, Zhu B, Wang F, Zhang J, Yao QH (2013) Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol Biotechnol 53:198–206

    CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canalas P, Maghirang-Rodriguez R, Heuer S, Mackill DJ (2006) Sub1A is an ethylene responsive-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    CAS  PubMed  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    CAS  PubMed  Google Scholar 

  • Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25:4708–4724

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    CAS  PubMed  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-typre MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ (2009) Exogenous putrescine reduces flooding induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci Hortic 120:306–314

    CAS  Google Scholar 

  • Zhang B, Foley RC, Singh KB (1993) Isolation and characterization of two related Arabidopsis ocs-element bZIP binding proteins. Plant J 4:711–716

    PubMed  Google Scholar 

  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating anti-oxidative system. Sci Hortic 122:200–208

    CAS  Google Scholar 

  • Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Jia J, Liu X, Kong X (2012) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    PubMed Central  PubMed  Google Scholar 

  • Zheng XN, Chen B, Lu GJ, Han B (2009) Over expression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    CAS  PubMed  Google Scholar 

  • Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371:468–474

    CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Zhang F, Chen F (2007) Characterization of alternative splicing products of bZIP transcription factors OsABI5. Biochem Biophys Res Commun 360:307–313

    CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5 is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    CAS  PubMed  Google Scholar 

  • Zou CS, Jiang WB, Yu DQ (2010) Male gametophyte-specific WRKY34 transcription factor negatively mediates cold stress tolerance of mature pollen in Arabidopsis. J Exp Bot 14:3901–3914

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autar K. Mattoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mattoo, A.K., Upadhyay, R.K., Rudrabhatla, S. (2015). Abiotic Stress in Crops: Candidate Genes, Osmolytes, Polyamines, and Biotechnological Intervention. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_15

Download citation

Publish with us

Policies and ethics