Advertisement

Fungal Chemotaxonomy

  • Jens C. FrisvadEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

MaSny chemotaxonomical methods have been suggested since the first chemical tests were used on basidiomycetes and lichens. Effective separation techniques, especially ultra-high performance liquid chromatography (UHPLC), and highly sensitive detection methods have been developed, especially mass spectrometric detection and diode array detection. Significant developments in biomolecular methods have made taxonomy and chemotaxonomy a rapidly developing field of science. Apart from DNA nucleotide sequences, the most studied molecules have been secondary metabolites (small molecule extrolites or natural products), and a large number of chemical studies have been made using profiles of extrolites, often in conjunction with fungal morphology, physiology, and molecular sequencing techniques, in a polyphasic approach to classification and identification. Species of filamentous fungi produce highly specific profiles of secondary metabolites, but the choice of growth and production media is very important to get as many extrolites expressed as possible. Many of these extrolites are promising drug lead candidates, or basis for other industrially usable compounds, making genomics and epigenetics important research fields in order to discover new biotechnological products.

Keywords

Chemotaxonomy Secondary metabolites Extrolites Chromatography Spectrometry Growth media Filamentous fungi Penicillium Aspergillus 

References

  1. 1.
    Frisvad JC, Bridge PD, Arora DK (eds) (1998) Chemical fungal taxonomy. Marcel Dekker, New York, p 398Google Scholar
  2. 2.
    Andersen B, Frisvad JC (2002) Characterization of Alternaria and Penicillium species from similar substrata based on growth at different temperatures, pH and water activity. Syst Appl Microbiol 25:162–172PubMedGoogle Scholar
  3. 3.
    Frisvad JC (1985) Profiles of primary and secondary metabolites of value in classification of Penicillium viridicatum and related species. In: Samson RA, Pitt JI (eds) Advances in Penicillium and Aspergillus systematics. Plenum, New York, pp 311–325Google Scholar
  4. 4.
    Hendriksen HV, Mathiasen TE, Adler-Nissen J, Frisvad JC, Emborg C (1988) Production of mannitol by Penicillium strains. J Chem Technol Biotechnol 43:223–228Google Scholar
  5. 5.
    Blomquist GB, Andersson B, Andersson K, Brondz I (1992) Analysis of fatty acids. A new method for characterization of moulds. J Microbiol Meth 16:59–68Google Scholar
  6. 6.
    Stahl PD, Klug MJ (1996) Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62:4136–4146PubMedCentralPubMedGoogle Scholar
  7. 7.
    Pfyffer GE (1998) Carbohydrates and their impact on fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 247–261Google Scholar
  8. 8.
    Kock JLF, Botha A (1998) Fatty acids in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 219–246Google Scholar
  9. 9.
    Croxatto A, Prud’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407PubMedGoogle Scholar
  10. 10.
    Normand A-C, Cassagne C, Ranque S, L’Olliver C, Fourquet P, Roesems S, Hendrickx M, Piarroux R (2013) Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol 13:76PubMedCentralPubMedGoogle Scholar
  11. 11.
    Seifert KA, Samson RA, deWard JR, Houbraken J, Lévesque A, Moncalvo J-M, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906PubMedCentralPubMedGoogle Scholar
  12. 12.
    Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108PubMedGoogle Scholar
  13. 13.
    Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Lévesque A, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bidartondo MI, Bruns TD, Blackwell M, Edwards I, Taylor AFS, Horton T, Zhang N, Kõljalg U, May G, Kuyper TW et al (2008) Preserving accuracy in GenBank. Science 319:1616aGoogle Scholar
  15. 15.
    Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Res 12:377–388Google Scholar
  16. 16.
    Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fung Div 26:1–54Google Scholar
  17. 17.
    Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fung Div 50:121–133Google Scholar
  18. 18.
    Peterson SW (2012) Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Appl Microbiol Biotechnol 95:339–344PubMedGoogle Scholar
  19. 19.
    Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedCentralPubMedGoogle Scholar
  20. 20.
    Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–173Google Scholar
  21. 21.
    Frisvad JC (2011) Rationale for a polyphasic approach in the identification of mycotoxigenic fungi. In: De Saeger S (ed) Determining mycotoxins and mycotoxigenic fungi in food and feed. Woodhead, Oxford, pp 279–297Google Scholar
  22. 22.
    Leal JA, Bernabé M (1998) Taxonomic applications of polysaccharides. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 153–181Google Scholar
  23. 23.
    Paterson RRM (1998) Chemotaxonomy of fungi by unsaponifiable lipids. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 183–217Google Scholar
  24. 24.
    Hennebert GL, Vancanneyt M (1998) Proteins in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 77–106Google Scholar
  25. 25.
    Rosendahl S, Banke S (2008) Use of isozymes in fungal taxonomy and population studies. In: Frisvad JC, Bridge PD, Arora DK (eds) 1998. Chemical fungal taxonomy. Marcel Dekker, New York, pp 107–120Google Scholar
  26. 26.
    Notermans SHW, Cousin MA, De Ruiter GA, Rombouts FM (1998) Fungal immunotaxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 121–152Google Scholar
  27. 27.
    Brun S, Madrid H, van den Ende BG, Andersen B, Marinach_Patrice C, Mazier D, de Hoog GS (2013) Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives. Fung Biol 117:32–40Google Scholar
  28. 28.
    Tyrrell D (1969) Biochemical systematics and fungi. Bot Rev 35:305–316Google Scholar
  29. 29.
    Benedict RG (1970) Chemotaxonomic relationships among basidiomycetes. Adv Appl Microbiol 13:1–23Google Scholar
  30. 30.
    Hawksworth DL (1976) Lichen chemotaxonomy. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: problems and prospects. Academic Press, London, pp 139–184Google Scholar
  31. 31.
    Frisvad JC, Filtenborg O (1983) Classification of terverticillate Penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46:1301–1310PubMedCentralPubMedGoogle Scholar
  32. 32.
    Moser M 1985. The relevance of chemical characters for the taxonomy of the Agaricales. Proc Indian Acad Sci (Plant Sci) 94:381–386.Google Scholar
  33. 33.
    Frisvad JC (1989) The use of high-performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites. Bot J Lin Soc 99:81–95Google Scholar
  34. 34.
    Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:836–861Google Scholar
  35. 35.
    Frisvad JC (1994a) Classification of organisms by secondary metabolites. In: Hawksworth DL (ed) The identification and characterization of pest organisms. CAB International, Wallingford, pp 303–320Google Scholar
  36. 36.
    Whalley AJS, Edwards RL. 1995. Secondary metabolites and systematic arrangement within the Xylariaceae. Can J Bot 73:S802–S810Google Scholar
  37. 37.
    Frisvad JC, Thrane U, Filtenborg O (1998) Role and use of secondary metabolites in fungal taxonomy. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 289–319Google Scholar
  38. 38.
    Frisvad JC, Larsen TO, de Vries R, Meijer M, Houbraken J, Cabañes FJ, Ehrlich K, Samson RA (2007) Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Stud Mycol 59:31–37PubMedCentralPubMedGoogle Scholar
  39. 39.
    Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal taxonomy. Mycol Res 112:231–240PubMedGoogle Scholar
  40. 40.
    Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani and A. tomatophila. Mycol Res 112:241–250PubMedGoogle Scholar
  41. 41.
    Nielsen KF, Smedsgaard J, Larsen TO, Lund F, Thrane U, Frisvad JC. (2004) Chemical identification of fungi—metabolite profiling and metabolomics. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New York, pp. 19–35Google Scholar
  42. 42.
    Stadler M, Hellwig V (2004) PCR-based data and secondary metabolites as chemotaxonomic markers in high-throughput screening for bioactive compounds from fungi. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York, pp 269–307Google Scholar
  43. 43.
    Andersen B, Sørensen JL, Nielsen KF, van den Ende BG, de Hoog S (2009) A polyphasic apporach to the taxonomy of the Alternaria infectoria species-group. Fung Genet Biol 46:642–656Google Scholar
  44. 44.
    Rank C, Larsen TO, Frisvad JC (2010) Functional systems biology of Aspergillus. In: Machida M, Gomi K (eds) Aspergillus. Molecular biology and genomics. Caister Academic Press, Norfolk, pp. 173–198Google Scholar
  45. 45.
    Polizzotto R, Andersen B, Martini M, Grisan S, Assante G, Musetti R (2012) A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J Microbiol Meth 88:162–171Google Scholar
  46. 46.
    Bennett JW, Bentley R (1989) What’s in a name—Microbial secondary metabolism. Adv Appl Microbiol 34:1–28Google Scholar
  47. 47.
    Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot 66:361–364PubMedGoogle Scholar
  48. 48.
    Raistrick H (1940) Biochemistry of the fungi. Annu Rev Biochem 9:571–592Google Scholar
  49. 49.
    Meinwald J (2009) The chemistry of biotic interactions in pespective: small molecules take center stage. J Org Chem 74:1813–1825PubMedGoogle Scholar
  50. 50.
    Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837PubMedGoogle Scholar
  51. 51.
    Walker JB (1974) Biosynthesis of the monoguanidinated inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J Biol Chem 249:2397–2404PubMedGoogle Scholar
  52. 52.
    Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Stud Mycol 49:1–251Google Scholar
  53. 53.
    Davies J, Ryan KS (2012) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252–259PubMedGoogle Scholar
  54. 54.
    Thrane U, Andersen B, Frisvad JC, Smedsgaard J (2007) The exo-metabolome of filamentous fungi. In: Jewitt M, Nielsen J (eds) Metabolomics. A powerful tool in systems biology (Topics in current chemistry 276). Springer, Berlin, pp 235–252Google Scholar
  55. 55.
    Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Ohshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fung Genet Biol 47:953–961Google Scholar
  56. 56.
    Li A, van Luijk N, ter Brek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fung Genet Biol 48:601–611Google Scholar
  57. 57.
    Liu J, Gao Q, Xu N, Liu L (2013) Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism. Mol Biosyst 9:1939–1948PubMedGoogle Scholar
  58. 58.
    Poulsen L, Andersen MR, Lantz AE, Thykaer J (2012) Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger. PLoS ONE 7:e50596PubMedCentralPubMedGoogle Scholar
  59. 59.
    Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897PubMedGoogle Scholar
  60. 60.
    Stone MJ, Williams DH (1992) On the evolution of functional secondary metabolites (natural products). Mol Microbiol 6:29–34PubMedGoogle Scholar
  61. 61.
    Chadwick DJ, Wheelan J (eds) (1992). Secondary metabolites: their function and evolution (Ciba Foundation Symposium 171). Wiley, Chichester, p 318Google Scholar
  62. 62.
    Christophersen C (1996) Theory of the origin, function, and evolution of secondary metabolites. In: Atta-ur-Rahman (ed) Studies in natural products chemistry 18. Stereoselective synthesis (part K). Elseveir, Amsterdam, pp 677–737Google Scholar
  63. 63.
    Firn RD, Jones CG (2000) The evolution of secondary metabolism—a unifying model. Mol Microbiol 37:989–994PubMedGoogle Scholar
  64. 64.
    Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng/Biotechnol 69:1–39Google Scholar
  65. 65.
    Lineares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Nat Acad Sci U S A 103:19484–19489Google Scholar
  66. 66.
    Price-Wheelan A, Dietrich LEP, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78Google Scholar
  67. 67.
    Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Nat Acad Sci U S A 105:4601–4608Google Scholar
  68. 68.
    Clardy J, Fischbach M, Currie C (2009) The natural history of antibiotics. Curr Biol 19:R437–R441PubMedCentralPubMedGoogle Scholar
  69. 69.
    Meinwald J (2011) Natural products as molecular messengers. J Nat Prod 74:305–309PubMedCentralPubMedGoogle Scholar
  70. 70.
    Stevens AM, Schuster M, Rumbaugh KP (2012) Working together for the common good: cell-cell communication in bacteria. J Bacteriol 194:2131–2141PubMedCentralPubMedGoogle Scholar
  71. 71.
    Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (SGM) 151:1325–1340PubMedGoogle Scholar
  72. 72.
    Villa F, Villa S, Gelain A, Cappitelli F (2013) Sub-lethal activity of small molecules from natural sources and their synthetoic derivatives against biofilm forming nosocomial pathogens. Curr Top Med Chem 13:3184–3204PubMedGoogle Scholar
  73. 73.
    Bradley D (1996) Beating superbugs with the Gulliver effect. Drug Discov Today 1:361Google Scholar
  74. 74.
    Dowd P (1988) Synergism of aflatoxin B1 toxicity with the co-occurring fungal metabolite kojic acid to 2 caterpillars. Entomol Exper Appl 47:69–71Google Scholar
  75. 75.
    Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829PubMedCentralPubMedGoogle Scholar
  76. 76.
    Bladt TT, Frisvad JC, Knudsen PB, Larsen TO (2013) Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18:11338–11376PubMedGoogle Scholar
  77. 77.
    De Jesus AE, Steyn PS, van Heerden FR, Vleggaar R, Wessels PL (1983) Tremorgenic mycotoxins from Penicillium crustosum: Isolation of penitrems A-F and the structure elucidation and absolute configuration of penitrem A. J Chem Soc Perkin Trans 1:1847–1856Google Scholar
  78. 78.
    González MC, Lull C, Moya P, Ayala I, Primo J, Yúfera EP (2003) Insecticidal activity of penitrems, including penitrem G, a new member of the family isolated from Penicillium crustosum. J Agric Food Chem 51:2156–2160PubMedGoogle Scholar
  79. 79.
    Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241Google Scholar
  80. 80.
    Sonjak S, Frisvad JC, Gunde-Cimerman N (2005) Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53:51–60PubMedGoogle Scholar
  81. 81.
    Sonjak S, Frisvad JC, Gunde-Cimerman N (2007) Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. Microbial Ecol 54:298–305Google Scholar
  82. 82.
    Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749Google Scholar
  83. 83.
    Da Silva JV, Fill TP, Da Silva BF, Rodrigues-Fo E (2013) Diclavatol and tetronic acids from Penicillium griseoroseum. Nat Prod Res 27:9–16PubMedGoogle Scholar
  84. 84.
    Birkinshaw JH, Raistrick H (1936) Studies in the biochemistry of micro-organisms. LII. Isolation, properties and constitution of terrestric acid (ethylcarolic acid), a metabolic product of Penicillium terrestre. Biochem J 30:2194–2200PubMedCentralPubMedGoogle Scholar
  85. 85.
    Birkinshaw JH, Samant MS (1960) Studies in the biochemistry of micro-organisms. 107. Metabolites of Penicillium viridicatum Westling: viridicatic acid (ethyl carlosic acid). Biochem J 74:369–373PubMedCentralPubMedGoogle Scholar
  86. 86.
    Wang J, Liu P, Wang Y, Wang H, Li J, Zhuang Y, Zhu W (2012) Antimicrobial aromatic polyketides from gorgonean-associated fungus Penicillium commune 518. Chin J Chem 30:1326–1342Google Scholar
  87. 87.
    Yan H-J, Gao S-S, Li C-S, Li X-M, Wanf B-G (2010) Chemical constituents of a marine-derived endophytic fungus Penicillium commune G2M. Molecules 15:3270–3275PubMedGoogle Scholar
  88. 88.
    Roncal T, Cordobës S, Ugalde U, He Y, Sterner O (2002) Novel diterpenes with potent conidiation inducing activity. Tetrahedron Lett 43:6799–6802Google Scholar
  89. 89.
    Dulaney EL, Gray RA (1962) Penicillia that make (N-formyl)-hydroxyaminoacetic acid, a new fungal product. Mycologia 54:476–480Google Scholar
  90. 90.
    Kyriakidis N, Waight ES, Day JB, Mantle PG (1981) Novel metabolites from Penicillium crustosum, including penitrem E, a tremorgenic mycotoxin. Appl Environ Microbiol 42:61–62PubMedCentralPubMedGoogle Scholar
  91. 91.
    Wagener RE, Davis ND, Diener UL (1980) Penitrem A and roquefortine production by Penicillium commune. Appl Environ Microbiol 39:882–887PubMedCentralPubMedGoogle Scholar
  92. 92.
    Wells JM, Payne JA (1976) Toxigenic species of Penicillium, Fusarium and Aspergillus from weevil-damaged pecans. Can J Microbiol 22:281–285PubMedGoogle Scholar
  93. 93.
    Musuku A, Selala MI, de Bruyne T, Clayes M, Schepens PJC (1994) Isolation and structure determination of a new roquefortine-related mycotoxin from Penicillium verrucosum var. cyclopium isolated from cassava. J Nat Prod 57:983–987Google Scholar
  94. 94.
    Trimble LA, Sumarah MW, Blackwell BA, Wrona MD, Miller JD (2012) Characterization of (16R) and (16S)-hydroxyroquefortine C; diastereomeric metabolites from Penicillium crustosum DAOM 215343. Tetrahedron Lett 53:956–958Google Scholar
  95. 95.
    Kozlovskii AG, Reshetilova TA, Sakharovskii VG, Adanin VM, Zyakun AM (1989) Metabolites of the alkaloids roquefortine and 3,12-dihydroroquefortine in the fungus Penicillium farinosum. Appl Biochem Microbiol 24:533–537Google Scholar
  96. 96.
    Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankermeier T, Bovenburg RAL, Vreeken RJ, Driessen AJM (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS ONE 8:e65328PubMedCentralPubMedGoogle Scholar
  97. 97.
    Wells JM, Payne JA (1977) Production of penitrem A and of an unidentified toxin from Penicillium lanosocoeruleum isolated from weevil-damaged pecans. Phytopathology 67:779–782Google Scholar
  98. 98.
    Moldes-Anaya A, Rundberget T, Uhlig S, Rise F, Wilkins AL (2011) Isolation and structure elucidation of secopenitrem D, an indole alkaloid from Penicillium crustosum Thom. Toxicon 57:259–265PubMedGoogle Scholar
  99. 99.
    Rundberget T, Wilkins AL (2002) Thomitrems A and E, two indole-alkaloid isoprenoids from Penicillium crustosum Thom. Phytochemistry 61:979–985PubMedGoogle Scholar
  100. 100.
    Hosoe T, Nozawa K, Udagawa S, Nakajima S, Kawai K (1990) Structures of new indoloterpenes, possible biosynthetic precursors of the tremorgenic mycotoxins, penitrems, from Penicillium crustosum. Chem Pharm Bull 38:3473–3475Google Scholar
  101. 101.
    Sallam AA, Houssen WE, Gissendanner CR, Orabi KY, Foudah AI, El Sayed KA (2013) Bioguided discovery and pharmacophore modeling of the mycotoxic indole diterpene alkaloids penitrems as breast cancer proliferation, migration, and invasion inhibitors. MedChemComm 4:1360–1369Google Scholar
  102. 102.
    Mantle PG, Perrera PWC, Maishman NJ, Mundy GR (1983) Biosynthesis of penitrems and roquefortine by Penicillium crustosum. Appl Environ Micorbiol 45:1486–1490Google Scholar
  103. 103.
    Taneguchi M, Satomura Y (1970) Isolation of viridicatin from Penicillium crustosum, and physiological activity of viridicatin sand its 3-carboxymethylene derivative on microorganisms and plants. Agric Biol Chem 34:506–509Google Scholar
  104. 104.
    Cunningham KG, Freeman GG (1953) The isolation and some chemical properties of viridicatin, a metabolic product of Penicillium viridicatum Westling. Biochem J 53:328–332PubMedCentralPubMedGoogle Scholar
  105. 105.
    Guimarães DO, Borges WS, Vieira NJ, de Oliveira LF, da Silva CHTP, Lopes NP, Dias LG, Durán-Patrón R, Collado IG, Pupo MT (2010) Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 71:1423–1429PubMedGoogle Scholar
  106. 106.
    Larsen TO, Frisvad JC (1995) Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99:1153–1166Google Scholar
  107. 107.
    Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810PubMedGoogle Scholar
  108. 108.
    Riley RF, Miller DK (1948) The isolation and identification of an antibiotic substance present in the mycelium of Penicillium crustosum (Thom). Arch Biochem 18:13–26PubMedGoogle Scholar
  109. 109.
    Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355PubMedGoogle Scholar
  110. 110.
    Houbraken J, Frisvad JC, Samson RA (2011a) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2:87–95PubMedCentralPubMedGoogle Scholar
  111. 111.
    Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DE, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100PubMedCentralPubMedGoogle Scholar
  112. 112.
    Procopio S, Qian F, Becker T (2011) Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 233:721–729Google Scholar
  113. 113.
    Surmacz L, Swiezewska E (2011) Polyisoprenoids—secondary metabolites or physiologically important superlipids? Biochem Biophys Res Commun 407:627–632PubMedGoogle Scholar
  114. 114.
    Ells R, Kock JFL, Albertyn J, Pohl CH (2012) Arachidonic acid metabolites in pathogenic yeasts. Lip Health Dis 11:100Google Scholar
  115. 115.
    Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063PubMedGoogle Scholar
  116. 116.
    Turner WB (1971) Fungal metabolites. Academic Press, London, pp 446Google Scholar
  117. 117.
    Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic, London, pp 631Google Scholar
  118. 118.
    Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888PubMedGoogle Scholar
  119. 119.
    Zac JC, Wildman HG (2004) Fungi in stressful environments. In: Mueller GM, Bills GF, Forster MS (eds) Biodiversity of fungi. Elsevier, Amsterdam, pp 303–315Google Scholar
  120. 120.
    Schiewe HJ, Zeeck A (1999) Cineromycins, gamma-butyrolactones and ansamycins by analysis of the secondary metabolite pattern created by a single strain of Streptomyces. J Antibiot 52:635–642PubMedGoogle Scholar
  121. 121.
    Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627PubMedGoogle Scholar
  122. 122.
    Bills G, Platas G, Fillola A, Jiménez MR, Bur-Zimmerman J, Tormo JR, Peláez F (2008) Enhenacement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Bacteriol 104:1644–1658Google Scholar
  123. 123.
    Scherlach K, Schuemann J, Dahse H-M, Hertweck C (2010) Aspernidine A and B, prenylated isoindolino alkaloids from the model fungus Aspergillus nidulans. J Antibiot 63:375–377PubMedGoogle Scholar
  124. 124.
    Kjer J, Debbab A, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary metabolites. Nat Protoc 5:479–490PubMedGoogle Scholar
  125. 125.
    Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DMK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH (2011a) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 321:157–166PubMedGoogle Scholar
  126. 126.
    Tormo JR, Asensio FJ, Bills GF (2012) Manipulating filamentous fungus chemical phenotypes by growth on nutritional arrays. In: Keller NP, Turner G (eds) Fungal secondary metabolism: methods and protocols (Methods in molecular biology 944). Humana, New York, pp 59–78Google Scholar
  127. 127.
    Frisvad JC (2010) Metabolomics for the discovery of novel compounds. In: Baltz RH, Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 3rd edn. ASM, Washington, DC, pp 73–77Google Scholar
  128. 128.
    Frisvad JC (2012) Media and growth conditions for induction of secondary metabolites. In: Keller NP, Turner G (eds) Fungal secondary metabolism: methods and protocols (Methods in Molecular Biology 944: 47–58). Humana, New YorkGoogle Scholar
  129. 129.
    Malmstrøm J, Christophersen C, Frisvad JC (2000) Secondary metabolites characteristic of marine and terrestrial isolates of Penicillium citrinum, P. steckii and related species. Phytochemistry 54:301–309PubMedGoogle Scholar
  130. 130.
    Houbraken J, Frisvad JC, Samson RA (2011b) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–138PubMedCentralPubMedGoogle Scholar
  131. 131.
    Lai D, Brötz-Oesterhelt H, Müller WEG, Wray V, Proksch P (2013) Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia 91:100–106PubMedGoogle Scholar
  132. 132.
    Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37PubMedGoogle Scholar
  133. 133.
    Schwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664Google Scholar
  134. 134.
    Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of cryptic natural products from Aspergillus niger. Org Biomol Chem 7:435–438PubMedGoogle Scholar
  135. 135.
    Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633PubMedGoogle Scholar
  136. 136.
    Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fung Genet Biol 48:15–22Google Scholar
  137. 137.
    Chiang Y-M, Chang S-L-, Oakley BR, Wang CCC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–143PubMedCentralPubMedGoogle Scholar
  138. 138.
    Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10PubMedGoogle Scholar
  139. 139.
    Umemura M, Koike H, Nagano N, Ishii T, Kawano J, Yamane N, Kozone I, Horimoto JK, Shin-ya K, Asai K, Yu J, Bennett JW, Machida M (2013) MIDDAS: Motif-independent de novo detection of secondary metabolite gene clusters through the integration of genome and transcriptome data. PLoS ONE 8:e84028PubMedCentralPubMedGoogle Scholar
  140. 140.
    Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huss K, Michielse CB, Albermann S, Wagner D, Bergner SV, Conolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfileld BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi revel complex regulation of secondary metabolism and novel metabolites. PLoS Path 9:e1003475Google Scholar
  141. 141.
    Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213PubMedGoogle Scholar
  142. 142.
    Henrikson JC, Ellis TK, King JB, Cichewicz RH (2011) Reappraising the structures and distribution of metabolites from black Aspergilli containing uncommon 2-benzyl-4H-pyran-4-one and 2-benzylpyridin-4(1H)-one systems. J Nat Prod 74:1959–1964PubMedCentralPubMedGoogle Scholar
  143. 143.
    Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1246PubMedGoogle Scholar
  144. 144.
    Wachtmeister C (1956) Identification of lichen acids by paper chromatography. Bot Nor 109:313–324Google Scholar
  145. 145.
    Culberson CF, Kristinsson H-D (1970) A standardized method for the identification of lichen products. J Chromatogr 46:85–93Google Scholar
  146. 146.
    Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113–125PubMedGoogle Scholar
  147. 147.
    Culberson CF, Johnson A (1982) Substitution of methyl tert. butyl ether for diethyl ether in standardized thin-layer chromatographic method for lichen products. J Chromatogr 238:438–487Google Scholar
  148. 148.
    Lumbsch HT (1998) Taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 345–385Google Scholar
  149. 149.
    Filtenborg O, Frisvad JC (1980) A simple screening method for toxigenic fungi in pure cultures. Lebensm Wiss Technol 13:128–130Google Scholar
  150. 150.
    Frisvad JC (1981) Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia. Appl Environ Microbiol 41:568–579PubMedCentralPubMedGoogle Scholar
  151. 151.
    Filtenborg O, Frisvad JC, Svendsen JA (1983) Simple screening method for moulds producing intracellular mycotoxins in pure cultures. Appl Envitron Microbiol 45:581–585Google Scholar
  152. 152.
    Filtenborg O, Frisvad JC, Thrane U (1990) The significance of yeast extract composition on metabolite production in Penicillium. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum, New York, pp 433–441Google Scholar
  153. 153.
    Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode-array detection). J Chromatogr 404:195–214PubMedGoogle Scholar
  154. 154.
    Frisvad JC, Thrane U (1993) Liquid column chromatography of mycotoxins. In: Betina V (ed) Chromatography of mycotoxins: techniques and applications. Journal of Chromatography Library 54. Elsevier, Amsterdam, pp 253–372Google Scholar
  155. 155.
    Frisvad JC (1987) High-performance liquid chromatographic determination of profiles of mycotoxins and other secondary metabolites. J Chromatogr 392:333–347PubMedGoogle Scholar
  156. 156.
    Smedsgaard J, Frisvad JC (1997) Terverticillate penicillia studied by direct electrospray mass spectrometric profiling of crude extracts: I. Chemosystematics. Biochem Syst Ecol 25:51–64Google Scholar
  157. 157.
    Smedsgaard J (1997a) Terverticillate Penicillia studies by direct electrospray mass spectrometric profiling of crude extracts. II. Database and identification. Biochem Syst Ecol 25:65–71Google Scholar
  158. 158.
    Smedsgaard J (1997b) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270PubMedGoogle Scholar
  159. 159.
    Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardized liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136PubMedGoogle Scholar
  160. 160.
    Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011b) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74:2338–2348PubMedGoogle Scholar
  161. 161.
    Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF—screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem. doi: 10.1007/s00216-013-7582-x (Published online Jan 18, 2014)Google Scholar
  162. 162.
    Frisvad JC (1992) Chemometrics and chemotaxonomy: a comparison of multivariate statistical methods for the evaluation of binary fungal secondary metabolite data. Chemom Intel Lab Syst 14:253–269Google Scholar
  163. 163.
    Frisvad JC (1994b) Correspondence, principal coordinate, and redundancy analysis used on mixed chemotaxonomical qualitative and quantitative data. Chemom Intel Lab Syst 23:213–229Google Scholar
  164. 164.
    Nguyen DD, Wu C-H, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG, Aparicio M, Atencio L, Jackson C, Ballesteros J, Sanchez J, Watrous JD, Phelan VV, van de Wiel C, Kersten RD, Mehnaz S, De Mot R, Shank EA, Charusanti P, Nagarajan H, Duggan BM, Moore BS, Bandeira N, Palsson B, Pogliano K, Gutiérrez M, Dorrestein P (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Nat Acad Sci U S A 110:E2611–E2620Google Scholar
  165. 165.
    Hansen ME, Andersen B, Smedgaard J (2005) Automated and unbiased classification of chemical profiles from fungi using high performance liquid chromatography. J Microbiol Meth 61:295–304Google Scholar
  166. 166.
    Richards TA, Leonard G, Soanes DM, Talbott NJ (2011) Gene transfer into the fungi. Fung Biol Rev 25:98–110Google Scholar
  167. 167.
    Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fung Genet Biol 30:167–171Google Scholar
  168. 168.
    Schmitt I, Lumbsch TH (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS ONE 4:e4437PubMedCentralPubMedGoogle Scholar
  169. 169.
    Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fung Biol 115:406–420Google Scholar
  170. 170.
    Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139PubMedGoogle Scholar
  171. 171.
    Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedCentralPubMedGoogle Scholar
  172. 172.
    Thrane U (1990) Grouping Fusarium section Discolor isolates by statistical analysis of quantitative high performance liquid chromatographic data on secondary metabolite production. J Microbiol Meth 12:23–39Google Scholar
  173. 173.
    Thrane U, Hansen U (1995) Chemical and physiological charcacterization of taxa in the Fusarium sambucinum complex. Mycopathologia 129:183–190PubMedGoogle Scholar
  174. 174.
    Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695PubMedGoogle Scholar
  175. 175.
    Korzybski T, Kowszyk-Gindifer Z, Kuryłowicz W (1967) Antibiotics: origin, nature and propereties, vol I, II. Pergamon, Oxford, p 1651Google Scholar
  176. 176.
    Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot 29:988–1000Google Scholar
  177. 177.
    Bills GF, Gloer JB, An Z (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16:549–565PubMedGoogle Scholar
  178. 178.
    Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004Google Scholar
  179. 179.
    Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic organisms. J Nat Prod 67:257–268PubMedGoogle Scholar
  180. 180.
    Wang L-W, Zhang Y-L, Lin, F-C, Hu Y-Z, Zhang C-L (2011) Natural products with antitumor activity from endophytic fungi. Mini Rev Med Chem 11:1056–1074Google Scholar
  181. 181.
    Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798PubMedGoogle Scholar
  182. 182.
    Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:812–887Google Scholar
  183. 183.
    Blunt JC, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268PubMedGoogle Scholar
  184. 184.
    Frisvad JC (2008a) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 137–156Google Scholar
  185. 185.
    Frisvad JC (2008b) Cold-adapted fungi as a source for valuable metabolites. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 381–387Google Scholar
  186. 186.
    Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of taxol biosynthesis in fungi. Fung Div 60:161–170Google Scholar
  187. 187.
    Umezawa H, Tobe H, Shibamoto N, Nakamura F, Nakamura K, Matsuzaki M, Takeuchi T (1975) Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and Streptomyces. J Antibiot 28:947–952PubMedGoogle Scholar
  188. 188.
    Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K (1996) Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol 34:457–461PubMedGoogle Scholar
  189. 189.
    Miake Y, Minato K, Fukumoto S, Yamamoto K, Oya-Ito T, Kawakishi S, Osawa T (2003) New potent antioxidative hydroxyflavones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit. Biosci Biotechnol Biochem 67:1443–1450Google Scholar
  190. 190.
    Esaki H, Watanabe R, Osawa T, Kawasaki S (2004) Transformation of genistein by the spores of Aspergillus spp. Nippon Shokuhin Kagaku Kogaku Kaishi 51:210–213Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Systems BiologyTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations