Advertisement

Metagenomics and Metatranscriptomics for the Exploration of Natural Products from Soil Fungi

  • Irshad Ul Haq
  • Jan Dirk van ElsasEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Soil is an extraordinary environment that hosts remarkably diverse, largely unexplored microbiota. Next to prokaryotes, there are a significant number of eukaryotic microorganisms hosted by soil, which contribute to the microbial biomass. Microorganisms establish rich sources of a wide range of biologically active novel natural products. In this chapter, we review “omics”-based exploration of natural products from soil fungi and how different “omics” techniques might be connected to improve screening for the exploration of natural products in the most efficient way. We specifically stressed studying interactions between microorganisms, especially bacteria and fungi, as they are considered very favorable in the quest for natural products discovery.

Keywords

Natural products Metagenomics Metatranscriptomics Metabolomics Bacterial–fungal interactions 

References

  1. 1.
    Gunatilaka AAL (2006) Natural products from plant-associated micro-organisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  3. 3.
    Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M, Wésolowski-Louvel M, Marmeisse R (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1(7):632–642PubMedCrossRefGoogle Scholar
  4. 4.
    Young P (1997) Major microbial diversity initiative recommended. ASM News 63:417–421Google Scholar
  5. 5.
    Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery, past, present and future. Trends Biotechnol 23(6):321–329PubMedCrossRefGoogle Scholar
  6. 6.
    Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310PubMedCrossRefGoogle Scholar
  7. 7.
    Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3:347–371PubMedCrossRefGoogle Scholar
  8. 8.
    Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Yun J, Kang S, Park S, Yoon H, Kim MJ, Hew S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil derived metagenomic library. Appl Environ Microbiol 70(12):7229–7235PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69(10):6235–6242PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in micro-organisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71(8):4840–4849PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Courtois S, Cappellano CM, Ball M Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR, Nalin R, Guérineau M, Jeannin P, Simonet P, Pernodet JL (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microb 69:49–55CrossRefGoogle Scholar
  13. 13.
    Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S , Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The sorcerer II global sampling expedition: Northwest Atlantic through eastern tropical pacific. PLoS Biol 5(3):e77PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74PubMedCrossRefGoogle Scholar
  16. 16.
    Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415(6874):871–880PubMedCrossRefGoogle Scholar
  18. 18.
    Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Le Mouël A, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Bétermier M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444(7116):171–178PubMedCrossRefGoogle Scholar
  19. 19.
    Alduina R, Gallo G (2012) Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol. doi:10.1155/2012/462049Google Scholar
  20. 20.
    Collins J, Hohn B (1978) Cosmids: a type of plasmid gene-cloning vector that is packagable in vitro in bacteriophage lambda heads. Proc Natl Acad Sci U S A 75(9):4242–4246PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6(1):84–89PubMedCrossRefGoogle Scholar
  22. 22.
    Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res 20(5):1083–1085PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci 89(18):8794–8797PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Schofield MM, David HS (2013) Meta-omic characterization of prokaryotic gene clusters for natural product biosynthesis. Curr Opin Biotechnol 24(6):1151–1158PubMedCrossRefGoogle Scholar
  25. 25.
    Craig JW, Chang FY, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76:1633–1641PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Fujita MJ, Kimura N, Sakai A, Ichikawa Y, Hanyu T, Otsuka M (2011) Cloning and heterologous expression of the vibrioferrin biosynthetic gene cluster from a marine metagenomic library. Biosci Biotechnol Biochem 75:2283–2287PubMedCrossRefGoogle Scholar
  27. 27.
    McMahon MD, Guan C, Handelsman J, Thomas MG (2012) Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol 78(10):3622–3629PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Chai Y, Shan S, Weissman KJ, Hu S, Zhang Y, Muller R (2012) Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chem Biol 19(3):361–371PubMedCrossRefGoogle Scholar
  29. 29.
    Feng Z, Kallifidas D, Brady SF (2011) Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc Natl Acad Sci U S A 108(31):12629–12634PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl HG, Matsunaga S, Piel J (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338(6105):387–390PubMedCrossRefGoogle Scholar
  31. 31.
    Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467PubMedCrossRefGoogle Scholar
  32. 32.
    Allgaier M, Reddy A, Park JI, Ivanova N, D’haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, Vander Gheynst JS, Hugenholtz P (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS ONE 5(1):e8812PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Donia MS, Fricke WF, Partensky F, Cox J, Elshahawi SI, White JR, Phillippy AM, Schatz MC, Piel J, Haygood MG, Ravel J, Schmidt EW (2011a) Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc Natl Acad Sci U S A 108(51):E1423–E1432PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Donia MS, Fricke WF, Ravel J, Schmidt EW (2011b) Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLoS ONE 6(3):e17897PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, Schmidt EW (2012) Genome streamlining and chemical defense in a coral reef symbiosis. Proc Natl Acad Sci U S A 109(50):20655–20660PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Trindade-Silva AE, Rua C, Silva GG, Dutilh BE, Moreira AP, Edwards RA, Hajdu E, Lobo-Hajdu G, Vasconcelos AT, Berlinck RG, Thompson FL (2012) Taxonomic and functional microbial signatures of the endemic marine sponge Arenosclera brasiliensis. PLoS ONE 7(7):e39905PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ, Kweon HK, Christiansen MA, Håkansson K, Williams RM, Ehrlich GD, Sherman DH (2011) Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 6(11):1244–1256PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71(7):4121–4126PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105(10):3805–3810PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3(6):e2527PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Hiltner L (1904) Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Deut Landw Gesell 98:59–78Google Scholar
  42. 42.
    Lynch J (1982) The rhizosphere. In: Burns RG, Slater JH (eds) Experimental microbial ecology. Blackwell Scientific Publications, Oxford, pp 395–411Google Scholar
  43. 43.
    Singh BK, MillardP, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393Google Scholar
  44. 44.
    Lynch JM, Whipps M (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  45. 45.
    Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236PubMedCrossRefGoogle Scholar
  46. 46.
    Morello JE, Pierson EA, Pierson LS III (2004) Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30–84. Appl Environ Microbiol 70(5):3103–3109PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  48. 48.
    He J, Wijeratne EM, Bashyal BP, Zhan J, Seliga CJ, Liu MX, Pierson EE, Pierson LS, Van Etten HD, Gunatilaka AA (2004) Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J Nat Prod 67(12):1985–1991PubMedCrossRefGoogle Scholar
  49. 49.
    Turbyville TJ, Wijeratne EMK, Whitesell L, Gunatilaka AA (2005) The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways. Mol Cancer Ther 4(10):1569–1576PubMedCrossRefGoogle Scholar
  50. 50.
    Wijeratne EMK, Turbyville TJ, Zhang Z, Bigelow D, Pierson LS III, Whitesell L, Canfield LM, Gunatilaka AA (2003) Cytotoxic constituents of Aspergillus terreus from the rhizosphere of Opuntia versicolor of the Sonoran Desert. J Nat Prod 66(12):1567–1573PubMedCrossRefGoogle Scholar
  51. 51.
    Bacon CW, White JF (2000.) Microbial endophytes. Marcel Deker Inc., New YorkGoogle Scholar
  52. 52.
    Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, Rijeka, pp 241–66Google Scholar
  53. 53.
    Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16CrossRefGoogle Scholar
  54. 54.
    Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228PubMedCrossRefGoogle Scholar
  55. 55.
    Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–93CrossRefGoogle Scholar
  56. 56.
    Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268PubMedCrossRefGoogle Scholar
  57. 57.
    Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216PubMedCrossRefGoogle Scholar
  58. 58.
    Kusari S, Lamshoft M, Spiteller M (2009a) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107(3):1019–1030PubMedCrossRefGoogle Scholar
  59. 59.
    Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124PubMedCrossRefGoogle Scholar
  60. 60.
    Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122(4):494–510PubMedCrossRefGoogle Scholar
  61. 61.
    Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162PubMedCrossRefGoogle Scholar
  62. 62.
    Kusari S, Zuhlke S, Kosuth J, Cellarova E, Spiteller M (2009b) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72(10):1825–1835PubMedCrossRefGoogle Scholar
  63. 63.
    Kusari S, Verma VC, Lamshoft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294PubMedCrossRefGoogle Scholar
  64. 64.
    Kusari S, Zuhlke S, Spiteller M (2009c) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72(1):2–7PubMedCrossRefGoogle Scholar
  65. 65.
    Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74(4):764–775PubMedCrossRefGoogle Scholar
  66. 66.
    Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68(12):1717–1719PubMedCrossRefGoogle Scholar
  67. 67.
    Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma Shaanker R (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122PubMedCrossRefGoogle Scholar
  68. 68.
    Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106(34):14558–14563PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Boersma FGH, Otten R, Warmink JA, Nazir R, van Elsas JD (2010) Selection of Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released compounds. Soil Biol Biochem 42(12):2137–2145CrossRefGoogle Scholar
  70. 70.
    Nazir R, Warmink JA, Voordes DC, van de Bovenkamp HH, van Elsas JD (2013) Inhibition of mushroom formation and induction of glycerol release—ecological strategies of Burkholderia terrae BS001 to create a hospitable niche at the fungus Lyophyllum sp. Strain Karsten. Microb Ecol 65(1):245–254PubMedCrossRefGoogle Scholar
  71. 71.
    Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437(7060):884–888PubMedCrossRefGoogle Scholar
  72. 72.
    Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C (2012) Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew Chem Int Ed Engl 51(38):9615–9618PubMedCrossRefGoogle Scholar
  73. 73.
    He H, Bigelis R, Yang HY, Chang LP, Singh MP (2005) Lichenicolins A and B, new bisnaphthopyrones from an unidentified lichenicolous fungus, strain LL-RB0668. J Antibiot 58(11):731–736PubMedCrossRefGoogle Scholar
  74. 74.
    Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13(17):5267–5273PubMedCrossRefGoogle Scholar
  75. 75.
    Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70(4):515–520PubMedCrossRefGoogle Scholar
  76. 76.
    Zuck KM, Shipley S, Newman DJ (2011) Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod 74(7):1653–1657PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Microbial Ecology, Groningen Institute for Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands

Personalised recommendations