Advertisement

Key Players in the Regulation of Fungal Secondary Metabolism

  • Benjamin P. KnoxEmail author
  • Nancy P. Keller
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Secondary metabolites (SMs) produced by filamentous fungi are well known for having a broad range of bioactivities that have detrimental, as well as beneficial, impacts on human affairs. With the grouping of SM biosynthetic genes into clusters it is possible for regulatory elements, such as individual transcription factors or multiprotein complexes, to modulate metabolite expression individually or at a larger, more global scale. In this chapter, we survey some key transcriptional players in the regulation of secondary metabolism including cluster-specific Zn(II)2Cys6, Cys2His2, and winged helix proteins, bZIP factors associated with stress and SM, environmental monitoring Cys2His2 proteins (AreA, CreA, and PacC) and two global regulatory complexes—the velvet complex and the CCAAT-binding complex.

Keywords

Secondary metabolism Mycotoxins Transcriptional regulation Natural products Filamentous fungi 

References

  1. 1.
    Cho Y, Srivastava A, Ohm R, Lawrence CB, Wang K-H, Grigoriev IV et al (2012) Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathog 8:e1002974PubMedCentralPubMedGoogle Scholar
  2. 2.
    Ortiz SC, Trienens M, Rohlfs M (2013) Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLoS ONE 8:e74951Google Scholar
  3. 3.
    Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:1–18Google Scholar
  4. 4.
    Subramani R, Kumar R, Prasad P, Aalbersberg W (2013) Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: citrinin, a secondary metabolite of Penicillium sp. Asian Pac J Trop Biomed 3:291–296PubMedCentralPubMedGoogle Scholar
  5. 5.
    Robens J, Cardwell K (2003) The costs of mycotoxin management to the USA: management of aflatoxins in the United States. Toxin reviews. J Toxicol-Toxin Rev 22:139–152Google Scholar
  6. 6.
    Bryden WL (2012) Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol 173:134–158Google Scholar
  7. 7.
    Gieseker KE and Centers for Disease Control and Prevention (2004) Outbreak of aflatoxin poisoning—eastern and central provinces, Kenya, January-July 2004. Public Health Fac Publ 53:790–792Google Scholar
  8. 8.
    Hoffmeister D, Keller NP (2006) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416PubMedGoogle Scholar
  9. 9.
    Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436PubMedCentralPubMedGoogle Scholar
  10. 10.
    Khaldi N, Collemare J, Lebrun M-H, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9(1):1–10Google Scholar
  11. 11.
    Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS ONE 4:e4437PubMedCentralPubMedGoogle Scholar
  12. 12.
    Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139PubMedGoogle Scholar
  13. 13.
    Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459PubMedCentralPubMedGoogle Scholar
  14. 14.
    Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci USA 110:E99–E107PubMedCentralPubMedGoogle Scholar
  15. 15.
    Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49:329–339PubMedCentralPubMedGoogle Scholar
  16. 16.
    Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422PubMedCentralPubMedGoogle Scholar
  17. 17.
    Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA (1994) Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 60:2408–2414PubMedCentralPubMedGoogle Scholar
  18. 18.
    Chang P-K, Ehrlich KC, Yu J, Bhatnagar D, Cleveland TE (1995) Increased expression of Aspergillus parasiticus aflR, encoding a sequence-specific DNA-binding protein, relieves nitrate inhibition of aflatoxin biosynthesis. Appl Environ Microb 61:2372–2377Google Scholar
  19. 19.
    Chiang Y-M, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CCC (2009) A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J Am Chem Soc 131:2965–2970PubMedCentralPubMedGoogle Scholar
  20. 20.
    Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217PubMedGoogle Scholar
  21. 21.
    Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946PubMedGoogle Scholar
  22. 22.
    Chen H, Lee M-H, Daub ME, Chung K-R (2007) Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol Microbiol 64:755–770PubMedGoogle Scholar
  23. 23.
    Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73(16):5097–5103PubMedCentralPubMedGoogle Scholar
  24. 24.
    Wight WD, Kim K-H, Lawrence CB, Walton JD (2009) Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Mol Plant Microbe Interact 22:1258–1267PubMedGoogle Scholar
  25. 25.
    Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CCC, Keller NP (2013) Prototype of an intertwined secondary metabolite supercluster. Proc Natl Acad Sci USA 110(42):17065–17070PubMedCentralPubMedGoogle Scholar
  26. 26.
    Brown DW, Butchko R, Busman M, Proctor R (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218PubMedCentralPubMedGoogle Scholar
  27. 27.
    Kim J-E, Jin J, Kim H, Kim J-C, Yun S-H, Lee Y-W (2006) GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae. Appl Environ Microbiol 72:1645–1652PubMedCentralPubMedGoogle Scholar
  28. 28.
    Bok JW, Chung D, Balajee SA, Marr K, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP (2006b) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 74:6761–6768PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372PubMedGoogle Scholar
  30. 30.
    Chiang Y-M, Szewczyk E, Davidson AD, Entwistle R, Keller NP, Wang CCC, Oakley BR (2010) Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol 76:2067–2074PubMedCentralPubMedGoogle Scholar
  31. 31.
    Abe Y, Ono C, Hosobuchi M, Yoshikawa H (2002b) Functional analysis of mlcR, a regulatory gene for ML-236B (compactin) biosynthesis in Penicillium citrinum. Mol Genet Genomics 268:352–361PubMedGoogle Scholar
  32. 32.
    Chen Y-P, Yuan G-F, Hsieh S-Y, Lin Y-S, Wang W-Y, Liaw L-L et al (2010) Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J Agric Food Chem 58:287–293PubMedGoogle Scholar
  33. 33.
    Tanaka A, Tsuge T (2000) Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 13:975–986PubMedGoogle Scholar
  34. 34.
    Fox EM, Gardiner DM, Keller NP, Howlett BJ (2008) A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genet Biol 45:671–682PubMedCentralPubMedGoogle Scholar
  35. 35.
    Flaherty JE, Woloshuk CP (2004) Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFRI. Appl Environ Microbiol 70:2653–2659PubMedCentralPubMedGoogle Scholar
  36. 36.
    MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604PubMedCentralPubMedGoogle Scholar
  37. 37.
    Yu J-H, Butchko RAE, Fernandes M, Keller NP, Leonard TJ, Adams TH (1996) Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr Genet 29:549–555PubMedGoogle Scholar
  38. 38.
    Ahuja M, Chiang Y-M, Chang S-L, Praseuth MB, Entwistle R, Sanchez JF, Lo H-C, Yeh H-H, Oakley BR, Wang CCC (2012) Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc 134:8212–8221PubMedCentralPubMedGoogle Scholar
  39. 39.
    Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H (2002a) Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics 267:636–646PubMedGoogle Scholar
  40. 40.
    Chang P-K, Yu J, Bhatnagar D, Cleveland TE (2000) Characterization of the Aspergillus parasiticus major nitrogen regulatory gene, areA. Biochim Biophys Acta 1491:263–266PubMedGoogle Scholar
  41. 41.
    Mihlan M, Homann V, Liu T-WD, Tudzynski B (2003) AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 47:975–991PubMedGoogle Scholar
  42. 42.
    Kim H, Woloshuk CP (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 45:947–953PubMedGoogle Scholar
  43. 43.
    Kihara J, Moriwaki A, Tanaka N, Tanaka C, Ueno M, Arase S (2008) Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 281:221–227PubMedGoogle Scholar
  44. 44.
    Simon A, Dalmais B, Morgant G, Viaud M (2013) Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 52:9–19PubMedGoogle Scholar
  45. 45.
    Eliahu N, Igbaria A, Rose MS, Horwitz BA, Lev S (2007) Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, Chk1 and Mps1, and the transcription factor Cmr1. Eukaryot Cell 6:421–429PubMedCentralPubMedGoogle Scholar
  46. 46.
    Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y (2000) Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38:940–954PubMedGoogle Scholar
  47. 47.
    Gressler M, Zaehle C, Scherlach K, Hertweck C, Brock M (2011) Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. Chem 18:198–209Google Scholar
  48. 48.
    Jekosch K, Kück U (2000a) Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395PubMedGoogle Scholar
  49. 49.
    Jekosch K, Kück U (2000b) Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol 54:556–563PubMedGoogle Scholar
  50. 50.
    Trapp SC, Hohn TM, McCormick S, Jarvis BB (1998) Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol Gen Genet 257:421–432PubMedGoogle Scholar
  51. 51.
    Bergh KT, Brakhage AA (1998) Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol 64:843–849PubMedCentralGoogle Scholar
  52. 52.
    Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87:643–648PubMedGoogle Scholar
  53. 53.
    Schmitt EK, Kempken R, Kuck U (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics 265:508–518PubMedGoogle Scholar
  54. 54.
    Flaherty JE, Pirttilä AM, Bluhm BH, Woloshuk CP (2003) PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microbiol 69:5222–5227PubMedCentralPubMedGoogle Scholar
  55. 55.
    Barad S, Horowitz S, Kobiler I, Sherman A, Prusky DB (2013) Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum. Mol Plant-Microbe Interact 27:66–77Google Scholar
  56. 56.
    Malapi-Wight M, Smith J, Campbell J, Bluhm BH, Shim W-B (2013) Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides. PLoS ONE 8:e67656PubMedCentralPubMedGoogle Scholar
  57. 57.
    Bergmann S, Funk AN, Scherlach K, Schroeckh V, Shelest E, Horn U, Hertweck C, Brakhage AA (2010) Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl Environ Microbiol 76(24):8143–8149PubMedCentralPubMedGoogle Scholar
  58. 58.
    Hohn TM, Krishna R, Proctor RH (1999) Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol 26:224–235PubMedGoogle Scholar
  59. 59.
    Reverberi M, Gazzetti K, Punelli F, Scarpari M, Zjalic S, Ricelli A, Fabbri AA, Fanelli C (2012) Aoyap1 regulates OTA synthesis by controlling cell redox balance in Aspergillus ochraceus. Appl Microbiol Biotechnol 95:1293–1304PubMedGoogle Scholar
  60. 60.
    Roze LV, Chanda A, Wee J, Awad D, Linz JE (2011) Stress-related transcription factor AtfB integrates secondary metabolism with oxidative stress response in aspergilli. J Biol Chem 286:35137–35148PubMedCentralPubMedGoogle Scholar
  61. 61.
    Eisendle M, Schrettl M, Kragl C, Müller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–1603PubMedCentralPubMedGoogle Scholar
  62. 62.
    Wagner D, Schmeinck A, Mos M, Morozov IY, Caddick MX, Tudzynski B (2010) The bZIP transcription factor MeaB mediates nitrogen metabolite repression at specific loci. Eukaryot Cell 9:1588–1601PubMedCentralPubMedGoogle Scholar
  63. 63.
    Amaike S, Affeldt KJ, Yin W-B, Franke S, Choithani A, Keller NP (2013) The bZIP protein MeaB mediates virulence attributes in Aspergillus flavus. PLoS ONE 8:e74030PubMedCentralPubMedGoogle Scholar
  64. 64.
    Yin W-B, Amaike S, Wohlbach DJ, Gasch AP, Chiang Y-M, Wang CCC, Bok JW, Rohlfs M, Keller NP (2012) An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol 83:1024–1034PubMedCentralPubMedGoogle Scholar
  65. 65.
    Sekonyela R, Palmer JM, Bok J-W, Jain S, Berthier E, Forseth R, Schroeder F, Keller NP (2013) RsmA regulates Aspergillus fumigatus gliotoxin cluster metabolites including cyclo(L-Phe-L-Ser), a potential new diagnostic marker for invasive aspergillosis. PLoS ONE 8:e62591PubMedCentralPubMedGoogle Scholar
  66. 66.
    Bussink HJ, Clark A, Oliver R (2001) The Cladosporium fulvum Bap1 gene: evidence for a novel class of Yap-related transcription factors with ankyrin repeats in phytopathogenic fungi. Eur J plant Pathol 107:655–659Google Scholar
  67. 67.
    Pedley KF, Walton JD (2001) Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci USA 98:14174–14179PubMedCentralPubMedGoogle Scholar
  68. 68.
    Schmitt EK, Hoff B, Kück U (2004) AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Gene 342:269–281PubMedGoogle Scholar
  69. 69.
    Schmitt EK, Kuck U (2000) The fungal CPCR1 protein, which binds specifically to β-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem 275:9348–9357PubMedGoogle Scholar
  70. 70.
    Atanasova L, Knox BP, Kubicek CP, Druzhinina IS, Baker SE (2013) The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot Cell 12:1499–1508PubMedCentralPubMedGoogle Scholar
  71. 71.
    Hong S-Y, Roze LV, Linz JE (2013) Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins 5:683–702PubMedCentralPubMedGoogle Scholar
  72. 72.
    Temme N, Oeser B, Massaroli M, Heller J, Simon A, Collado IG, Viaud M, Tudzynski P (2012) BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea. Mol Plant Pathol 13:704–718PubMedGoogle Scholar
  73. 73.
    Ahn JH, Walton JD (1998) Regulation of cyclic peptide biosynthesis and pathogenicity in Cochliobolus carbonum by TOXEp, a novel protein with a bZIP basic DNA-binding motif and four ankyrin repeats. Mol Gen Genet 260:462–469PubMedGoogle Scholar
  74. 74.
    Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116PubMedGoogle Scholar
  75. 75.
    Hoff B, Schmitt EK, Kück U (2005) CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Mol Microbiol 56:1220–1233PubMedGoogle Scholar
  76. 76.
    Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36(1):1–24PubMedGoogle Scholar
  77. 77.
    Feng GH, Leonard TJ (1998) Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl Environ Microbiol 64:2275–2277PubMedCentralPubMedGoogle Scholar
  78. 78.
    Wilson R, Arst H (1998) Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family. Microbiol Mol Biol Rev 62:586–596PubMedCentralPubMedGoogle Scholar
  79. 79.
    Tilburn J, Sarkar S, Widdick D, Espeso E, Orejas M, Mungroo J, Peñalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790PubMedCentralPubMedGoogle Scholar
  80. 80.
    Trushina N, Levin M, Mukherjee PK, Horwitz BA (2013 Jan) PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 14(138):1–21Google Scholar
  81. 81.
    Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32PubMedGoogle Scholar
  82. 82.
    Espeso EA, Tilburn J, Arst HN, Peñalva MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956PubMedCentralPubMedGoogle Scholar
  83. 83.
    Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17PubMedGoogle Scholar
  84. 84.
    Dowzer CEA, Kelly JM (1991) Analysis fo the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709PubMedCentralPubMedGoogle Scholar
  85. 85.
    Brakhage AA, Browne P, Turner G (1992) Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol 174:3789–3799PubMedCentralPubMedGoogle Scholar
  86. 86.
    Ni M, Yu J-H (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE 2:e970PubMedCentralPubMedGoogle Scholar
  87. 87.
    Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stronmeyer S, Kwon N-J, Keller NP, Yu J-H, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506PubMedGoogle Scholar
  88. 88.
    Stinnett SM, Espeso E, Cobeño L, Araújo-Bazán L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63:242–255PubMedGoogle Scholar
  89. 89.
    Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535PubMedCentralPubMedGoogle Scholar
  90. 90.
    Chettri P, Calvo AM, Cary JW, Dhingra S, Guo Y, McDougal RL, Bradshaw RE (2012) The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism. Fungal Genet Biol 49:141–151PubMedGoogle Scholar
  91. 91.
    Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U (2010) Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell 9:1236–1250PubMedCentralPubMedGoogle Scholar
  92. 92.
    Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U (2013) Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell 12:299–310PubMedCentralPubMedGoogle Scholar
  93. 93.
    López-Berges MS, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65PubMedGoogle Scholar
  94. 94.
    Veiga T, Nijland JG, Driessen AJM, Bovenberg RAL, Touw H, van den Berg MA, Pronk JT, Daran J-M (2012) Impact of velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a β-lactam high-producing Penicillium chrysogenum strain. OMICS 16:320–333PubMedCentralPubMedGoogle Scholar
  95. 95.
    Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski B (2011) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994Google Scholar
  96. 96.
    Wu D, Oide S, Zhang N, Choi MY, Turgeon BG (2012) ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog 8(2):e1002542PubMedCentralPubMedGoogle Scholar
  97. 97.
    Yang Q, Chen Y, Ma Z (2013) Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Fungal Genet Biol 50:63–71PubMedGoogle Scholar
  98. 98.
    Palmer JM, Theisen JM, Duran RM, Grayburn WS, Calvo AM, Keller NP (2013) Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans. PLoS Genet 9:e1003193PubMedCentralPubMedGoogle Scholar
  99. 99.
    Bi Q, Wu D, Zhu X, Gillian Turgeon B (2013) Cochliobolus heterostrophus Llm1– a Lae1-like methyltransferase regulates T-toxin production, virulence, and development. Fungal Genet Biol 51:21–33PubMedGoogle Scholar
  100. 100.
    Bok JW, Noordermeer D, Kale SP, Keller NP (2006a) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61:1636–1645PubMedGoogle Scholar
  101. 101.
    Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ (1999) HAP-like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27:243–252PubMedGoogle Scholar
  102. 102.
    Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811PubMedGoogle Scholar
  103. 103.
    Steidl S, Hynes MJ, Brakhage AA (2001) The Aspergillus nidulans multimeric CCAAT binding complex AnCF is negatively autoregulated via its hapB subunit gene. J Mol Biol 306:643–653PubMedGoogle Scholar
  104. 104.
    Thön M, Abdallah Q A, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA (2010) The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 38:1098–1113PubMedCentralPubMedGoogle Scholar
  105. 105.
    Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thön M, Kniemeyer O, Abt B, Seeber B, Werner ER, Kato M, Brakhage AA, Haas H (2007) Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J 26:3157–3168PubMedCentralPubMedGoogle Scholar
  106. 106.
    Price MS, Yu J, Nierman WC, Kim HS, Pritchard B, Jacobus CA, Bhatnagar D, Cleveland TE, Payne GA (2006) The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255:275–279PubMedGoogle Scholar
  107. 107.
    Nasmith CG, Walkowiak S, Wang L, Leung WWY, Gong Y, Johnston A, Harris LJ, Guttman DS, Subramaniam R (2011) Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog 7:e1002266PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Medical Microbiology and Immunology, Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations