Skip to main content

Novel Targets for Drug Treatment in Psychiatry

  • Chapter
Book cover The Medical Basis of Psychiatry

Abstract

Epidemiological studies of mental disorders show that roughly half of the population in the USA meets criteria for one or more of such disorders in their lifetimes, and nearly a quarter in a given year has a psychiatric disorder. Most of the first psychiatric medications, including antidepressant and antipsychotic drugs, were serendipitously discovered, and their molecular and cellular mechanisms of action are just starting to be explored. At present, only a handful of neurotransmitter systems are actually targeted by therapeutic drugs, which represents a major bottleneck that hampers the development of new central nervous system-active drugs. In this chapter, we review some of the recent advances in understanding the neurobiology of psychiatric disorders, current work on the basic and clinical aspects of drugs used for their treatment, and major concepts related to new targets in molecular psychiatry research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis KL, Charney DS, Coyle J, Nemeroff CB. Neuropsychopharmacology: the fifth generation of progress. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  2. Tasman A, Kay J, Lieberman JA, First MB, Maj M. Psychiatry. 3rd ed. West Sussex, England: Wiley; 2008.

    Book  Google Scholar 

  3. Charney DS, Nestler EJ. Neurobiology of mental illness. 3rd ed. New York: Oxford University Press; 2009.

    Google Scholar 

  4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Arlington, VA: American Psychiatric Association Publishing; 2013.

    Google Scholar 

  5. Murray CJ, Lopez AD. Evidence-based health policy–lessons from the global burden of disease study. Science 1996;274:740–743.

    Article  CAS  PubMed  Google Scholar 

  6. Druss BG, Marcus SC, Olfson M, Pincus HA. The most expensive medical conditions in America. Health Aff (Millwood) 2002;21:105–111.

    Article  Google Scholar 

  7. Hasin DS, O'Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, Compton WM, Crowley T, Ling W, Petry NM, Schuckit M, Grant BF. DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry 2013;170:834–851.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kupfer DJ, Kuhl EA, Wulsin L. Psychiatry’s integration with medicine: the role of DSM-5. Annu Rev Med 2013;64:385–392.

    Article  CAS  PubMed  Google Scholar 

  9. Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 2001;36:129–138.

    Article  CAS  PubMed  Google Scholar 

  10. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 2011;108:15037–15042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nutt D, Lingford-Hughes A. Addiction: the clinical interface. Br J Pharmacol 2008;154:397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffman EJ, Warren EW. Flumazenil: a benzodiazepine antagonist. Clin Pharm 1993;12:641–656. Quiz 699–701.

    CAS  PubMed  Google Scholar 

  13. Hughes JR, Stead LF, Lancaster T. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2007;CD000031.

    Google Scholar 

  14. Fatemi SH, Yousefi MK, Kneeland RE, Liesch SB, Folsom TD, Thuras PD. Antismoking and potential antipsychotic effects of varenicline in subjects with schizophrenia or schizoaffective disorder: a double-blind placebo and bupropion-controlled study. Schizophr Res 2013;146:376–378.

    Article  PubMed  Google Scholar 

  15. Yousefi MK, Folsom TD, Fatemi SH. A review of varenicline’s efficacy and tolerability in smoking cessation studies in subjects with schizophrenia. J Addict Res Ther 2011;S4:001.

    Google Scholar 

  16. Cerimele JM, Durango A. Does varenicline worsen psychiatric symptoms in patients with schizophrenia or schizoaffective disorder? A review of published studies. J Clin Psychiatry 2012;73:e1039–e1047.

    Article  CAS  PubMed  Google Scholar 

  17. Yahn SL, Watterson LR, Olive MF. Safety and efficacy of acamprosate for the treatment of alcohol dependence. Subst Abuse 2013;6:1–12.

    PubMed  Google Scholar 

  18. Saitz R, Larson MJ, Labelle C, Richardson J, Samet JH. The case for chronic disease management for addiction. J Addict Med 2008;2:55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sofuoglu M, Kosten TR. Emerging pharmacological strategies in the fight against cocaine addiction. Expert Opin Emerg Drugs 2006;11:91–98.

    Article  CAS  PubMed  Google Scholar 

  20. Edens E, Massa A, Petrakis I. Novel pharmacological approaches to drug abuse treatment. Curr Top Behav Neurosci 2010;3:343–386.

    Article  PubMed  Google Scholar 

  21. Addolorato G, Leggio L, Hopf FW, Diana M, Bonci A. Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology 2012;37:163–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014;77:382–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 2007;62:1310–1316.

    Article  CAS  PubMed  Google Scholar 

  24. Sawa A, Snyder SH. Schizophrenia: diverse approaches to a complex disease. Science 2002;296:692–695.

    Article  CAS  PubMed  Google Scholar 

  25. Dobbs D. Schizophrenia: the making of a troubled mind. Nature 2010;468:154–156.

    Article  CAS  PubMed  Google Scholar 

  26. Murray CJL, Lopez AD. The global burden of disease. Cambridge, MA: Harvard University Press; 1996.

    Google Scholar 

  27. Lewis DA, Lieberman JA. Catching up on schizophrenia: natural history and neurobiology. Neuron 2000;28:325–334.

    Article  CAS  PubMed  Google Scholar 

  28. Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 2009;35:528–548.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meltzer HY, Matsubara S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989;251:238–246.

    CAS  PubMed  Google Scholar 

  30. Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989;25:390–392.

    CAS  PubMed  Google Scholar 

  31. Lieberman JA, Tollefson G, Tohen M, Green AI, Gur RE, Kahn R, McEvoy J, Perkins D, Sharma T, Zipursky R, Wei H, Hamer RM. Comparative efficacy and safety of atypical and conventional antipsychotic drugs in first-episode psychosis: a randomized, double-blind trial of olanzapine versus haloperidol. Am J Psychiatry 2003;160:1396–1404.

    Article  PubMed  Google Scholar 

  32. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353:1209–1223.

    Article  CAS  PubMed  Google Scholar 

  33. Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005;10:79–104.

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez-Maeso J, Sealfon SC. Psychedelics and schizophrenia. Trends Neurosci 2009;32:225–232.

    Article  CAS  PubMed  Google Scholar 

  35. Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008;60:358–403.

    Article  CAS  PubMed  Google Scholar 

  36. Ibrahim HM, Tamminga CA. Schizophrenia: treatment targets beyond monoamine systems. Annu Rev Pharmacol Toxicol 2011;51:189–209.

    Article  CAS  PubMed  Google Scholar 

  37. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002;34:13–25.

    Article  CAS  PubMed  Google Scholar 

  38. Rakofsky JJ, Holtzheimer PE, Nemeroff CB. Emerging targets for antidepressant therapies. Curr Opin Chem Biol 2009;13:291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holtzheimer PE, Nemeroff CB. Novel targets for antidepressant therapies. Curr Psychiatry Rep 2008;10:465–473.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 2005;62:617–627.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kessler RC, Ruscio AM, Shear K, Wittchen HU. Epidemiology of anxiety disorders. Curr Top Behav Neurosci 2010;2:21–35.

    Article  PubMed  Google Scholar 

  42. Wu LJ, Kim SS, Zhuo M. Molecular targets of anxiety: from membrane to nucleus. Neurochem Res 2008;33:1925–1932.

    Article  CAS  PubMed  Google Scholar 

  43. Faludi G, Gonda X, Bagdy G, Dome P. Pharmaco- and therapygenetic aspects in the treatment of anxiety disorders beyond the serotonergic system: a brief review. Neuropsychopharmacol Hung 2012;14:221–229.

    PubMed  Google Scholar 

  44. Bennett MR. The concept of transmitter receptors: 100 years on. Neuropharmacology 2000;39:523–546.

    Article  CAS  PubMed  Google Scholar 

  45. Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 2004;25:413–422.

    Article  CAS  PubMed  Google Scholar 

  46. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002;3:639–650.

    Article  CAS  PubMed  Google Scholar 

  47. Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009;459:356–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perez DM. The evolutionarily triumphant G-protein-coupled receptor. Mol Pharmacol 2003;63:1202–1205.

    Article  CAS  PubMed  Google Scholar 

  49. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739–745.

    Article  CAS  PubMed  Google Scholar 

  50. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007;318:1258–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007;450:383–387.

    Article  CAS  PubMed  Google Scholar 

  52. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 2007;318:1266–1273.

    Article  CAS  PubMed  Google Scholar 

  53. Audet M, Bouvier M. Insights into signaling from the beta2-adrenergic receptor structure. Nat Chem Biol 2008;4:397–403.

    Article  CAS  PubMed  Google Scholar 

  54. Audet M, Bouvier M. Restructuring G-protein- coupled receptor activation. Cell 2012;151:14–23.

    Article  CAS  PubMed  Google Scholar 

  55. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 2011;477:549–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987;56:615–649.

    Article  CAS  PubMed  Google Scholar 

  57. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 1987;325:321–326.

    Article  CAS  PubMed  Google Scholar 

  58. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008;9:60–71.

    Article  CAS  PubMed  Google Scholar 

  59. Becamel C, Alonso G, Galeotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, Marin P. Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. Embo J 2002;21:2332–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 2004;279:20257–20266.

    Article  CAS  PubMed  Google Scholar 

  61. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling. Annu Rev Physiol 2007;69:483–510.

    Article  CAS  PubMed  Google Scholar 

  62. Pierce KL, Lefkowitz RJ. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2001;2:727–733.

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez-Maeso J, Sealfon SC. Hormone signaling via G protein-coupled receptors. In: Jameson JL, de Groot IW, editors. Endocrinology. 6th ed. Philadelphia: Sauders Elsevier; 2010.

    Google Scholar 

  64. Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 2004;103:21–80.

    Article  CAS  PubMed  Google Scholar 

  65. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957;180:1200.

    Article  CAS  PubMed  Google Scholar 

  66. Sealfon SC, Olanow CW. Dopamine receptors: from structure to behavior. Trends Neurosci 2000;23:S34–S40.

    Article  CAS  PubMed  Google Scholar 

  67. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63:182–217.

    Article  CAS  PubMed  Google Scholar 

  68. Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S. Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 2001;24:330–334.

    Article  CAS  PubMed  Google Scholar 

  69. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem 2007;20:687–702.

    Article  CAS  PubMed  Google Scholar 

  70. Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia–therapeutic implications. Biol Psychiatry 1999;46:1388–1395.

    Article  CAS  PubMed  Google Scholar 

  71. Salimi K, Jarskog LF, Lieberman JA. Antipsychotic drugs for first-episode schizophrenia: a comparative review. CNS Drugs 2009;23:837–855.

    Article  CAS  PubMed  Google Scholar 

  72. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 2012;17:1206–1227.

    Article  CAS  PubMed  Google Scholar 

  73. Laruelle M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 1998;42:211–221.

    CAS  PubMed  Google Scholar 

  74. Remington G, Kapur S. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry 1999;60 Suppl 10:15–19.

    CAS  PubMed  Google Scholar 

  75. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 1992;49:538–544.

    Article  CAS  PubMed  Google Scholar 

  76. Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, Zipursky R. High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry 1996;153:948–950.

    Article  CAS  PubMed  Google Scholar 

  77. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993;33:227–235.

    Article  CAS  PubMed  Google Scholar 

  78. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000;157:514–520.

    Article  CAS  PubMed  Google Scholar 

  79. Lefkowitz RJ. The superfamily of heptahelical receptors. Nat Cell Biol 2000;2:E133–E136.

    Article  CAS  PubMed  Google Scholar 

  80. Lefkowitz RJ. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 1998;273:18677–18680.

    Article  CAS  PubMed  Google Scholar 

  81. Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem 1998;67:653–692.

    Article  CAS  PubMed  Google Scholar 

  82. Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 1998;38:289–319.

    Article  CAS  PubMed  Google Scholar 

  83. Miller WE, Lefkowitz RJ. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 2001;13:139–145.

    Article  CAS  PubMed  Google Scholar 

  84. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115:455–465.

    CAS  PubMed  Google Scholar 

  85. Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 2008;48:537–568.

    Article  CAS  PubMed  Google Scholar 

  86. von Zastrow M, Williams JT. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron 2012;76:22–32.

    Article  CAS  Google Scholar 

  87. Tsao P, Cao T, von Zastrow M. Role of endocytosis in mediating downregulation of G-protein-coupled receptors. Trends Pharmacol Sci 2001;22:91–96.

    Article  CAS  PubMed  Google Scholar 

  88. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009;10:609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012;165:1717–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ. Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 2013;497:137–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME. Crystal structure of pre-activated arrestin p44. Nature 2013;497:142–146.

    Article  CAS  PubMed  Google Scholar 

  92. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 2012;52:179–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Masri B, Salahpour A, Didriksen M, Ghisi V, Beaulieu JM, Gainetdinov RR, Caron MG. Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci USA 2008;105:13656–13661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cade JF. Lithium salts in the treatment of psychotic excitement. Med J Aust 1949;2:349–352.

    CAS  PubMed  Google Scholar 

  95. Cox C, Harrison-Read PE, Steinberg H, Tomkiewicz M. Lithium attenuates drug-induced hyperactivity in rats. Nature 1971;232:336–338.

    Article  CAS  PubMed  Google Scholar 

  96. Flemenbaum A. Lithium inhibition of norepinephrine and dopamine receptors. Biol Psychiatry 1977;12:563–572.

    CAS  PubMed  Google Scholar 

  97. Aylmer CG, Steinberg H, Webster RA. Hyperactivity induced by dexamphetamine/chlordiazepoxide mixtures in rats and its attenuation by lithium pretreatment: a role for dopamine? Psychopharmacology (Berl) 1987;91:198–206.

    Article  CAS  Google Scholar 

  98. Barnes JC, Costall B, Domeney AM, Naylor RJ. Lithium and bupropion antagonise the phasic changes in locomotor activity caused by dopamine infused into the rat nucleus accumbens. Psychopharmacology (Berl) 1986;89:311–316.

    Article  CAS  Google Scholar 

  99. Beaulieu JM, Sotnikova TD, Yao W-D, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004;101:5099–5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 2008;132:125–136.

    Article  CAS  PubMed  Google Scholar 

  101. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011;34:389–412.

    Article  CAS  PubMed  Google Scholar 

  102. Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 2012;13:251–266.

    Article  CAS  PubMed  Google Scholar 

  103. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008;455:894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 2013;493:537–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai HC, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han MH. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2013;493:532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K. Structural and molecular interrogation of intact biological systems. Nature 2013;497:332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nat Methods 2013;10:508–513.

    Article  CAS  PubMed  Google Scholar 

  108. Gerfen CR, Keefe KA. Neostriatal dopamine receptors. Trends Neurosci 1994;17:2–3. Author reply 4–5.

    Article  CAS  PubMed  Google Scholar 

  109. Surmeier DJ, Reiner A, Levine MS, Ariano MA. Are neostriatal dopamine receptors co-localized? Trends Neurosci 1993;16:299–305.

    Article  CAS  PubMed  Google Scholar 

  110. Bloch B, Le Moine C. Neostriatal dopamine receptors. Trends Neurosci 1994;17:3–4. Author reply 4–5.

    Article  CAS  PubMed  Google Scholar 

  111. Aizman O, Brismar H, Uhlen P, Zettergren E, Levey AI, Forssberg H, Greengard P, Aperia A. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 2000;3:226–230.

    Article  CAS  PubMed  Google Scholar 

  112. Karlsson P, Smith L, Farde L, Harnryd C, Sedvall G, Wiesel FA. Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl) 1995;121:309–316.

    Article  CAS  Google Scholar 

  113. Den Boer JA, van Megen HJ, Fleischhacker WW, Louwerens JW, Slaap BR, Westenberg HG, Burrows GD, Srivastava ON. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berl) 1995;121:317–322.

    Article  Google Scholar 

  114. Karle J, Clemmesen L, Hansen L, Andersen M, Andersen J, Fensbo C, Sloth-Nielsen M, Skrumsager BK, Lublin H, Gerlach J. NNC 01-0687, a selective dopamine D1 receptor antagonist, in the treatment of schizophrenia. Psychopharmacology (Berl) 1995;121:328–329.

    Article  CAS  Google Scholar 

  115. Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994;116:143–151.

    Article  CAS  Google Scholar 

  116. Schneider JS, Sun ZQ, Roeltgen DP. Effects of dihydrexidine, a full dopamine D-1 receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Res 1994;663:140–144.

    Article  CAS  PubMed  Google Scholar 

  117. Cai JX, Arnsten AF. Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 1997;283:183–189.

    CAS  PubMed  Google Scholar 

  118. Mansbach RS, Brooks EW, Sanner MA, Zorn SH. Selective dopamine D4 receptor antagonists reverse apomorphine-induced blockade of prepulse inhibition. Psychopharmacology (Berl) 1998;135:194–200.

    Article  CAS  Google Scholar 

  119. Feldpausch DL, Needham LM, Stone MP, Althaus JS, Yamamoto BK, Svensson KA, Merchant KM. The role of dopamine D4 receptor in the induction of behavioral sensitization to amphetamine and accompanying biochemical and molecular adaptations. J Pharmacol Exp Ther 1998;286:497–508.

    CAS  PubMed  Google Scholar 

  120. Merchant KM, Gill GS, Harris DW, Huff RM, Eaton MJ, Lookingland K, Lutzke BS, McCall RB, Piercey MF, Schreur PJ, Sethy VH, Smith MW, Svensson KA, Tang AH, Vonvoigtlander PF, Tenbrink RE. Pharmacological characterization of U-101387, a dopamine D4 receptor selective antagonist. J Pharmacol Exp Ther 1996;279:1392–1403.

    CAS  PubMed  Google Scholar 

  121. Corrigan MH, Gallen CC, Bonura ML, Merchant KM. Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol Psychiatry 2004;55:445–451.

    Article  CAS  PubMed  Google Scholar 

  122. Lahti AC, Weiler M, Carlsson A, Tamminga CA. Effects of the D3 and autoreceptor-preferring dopamine antagonist (+)-UH232 in schizophrenia. J Neural Transm 1998;105:719–734.

    Article  CAS  PubMed  Google Scholar 

  123. Williams NM, Cardno AG, Murphy KC, Jones LA, Asherson P, McGuffin P, Owen MJ. Association between schizophrenia and a microsatellite polymorphism at the dopamine D5 receptor gene. Psychiatr Genet 1997;7:83–85.

    Article  CAS  PubMed  Google Scholar 

  124. Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999;20:612–627.

    Article  CAS  PubMed  Google Scholar 

  125. Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S. 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolione (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 1995;274:329–336.

    CAS  PubMed  Google Scholar 

  126. Semba J, Watanabe A, Kito S, Toru M. Behavioural and neurochemical effects of OPC-14597, a novel antipsychotic drug, on dopaminergic mechanisms in rat brain. Neuropharmacology 1995;34:785–791.

    Article  CAS  PubMed  Google Scholar 

  127. Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 2002;441:137–140.

    Article  CAS  PubMed  Google Scholar 

  128. Connolly KR, Thase ME. Emerging drugs for major depressive disorder. Expert Opin Emerg Drugs 2012;17:105–126.

    Article  CAS  PubMed  Google Scholar 

  129. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature 2002;415:206–212.

    Article  CAS  PubMed  Google Scholar 

  130. Triggle DJ. Adrenergic receptors. Annu Rev Pharmacol 1972;12:185–196.

    Article  CAS  PubMed  Google Scholar 

  131. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol. J Biol Chem 1975;250:4869–4876.

    CAS  PubMed  Google Scholar 

  132. Rodbell M, Birnbaumer L, Pohl SL, Krans HM. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem 1971;246:1877–1882.

    CAS  PubMed  Google Scholar 

  133. Yamamura HI, Snyder SH. Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sci USA 1974;71:1725–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science 1973;179:1011–1014.

    Article  CAS  PubMed  Google Scholar 

  135. Elliott TR. The action of adrenalin. J Physiol 1905;32:401–467.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 1948;153:586–600.

    CAS  PubMed  Google Scholar 

  137. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 1986;321:75–79.

    Article  CAS  PubMed  Google Scholar 

  138. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science 1987;238:650–656.

    Article  CAS  PubMed  Google Scholar 

  139. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 1991;60:653–688.

    Article  CAS  PubMed  Google Scholar 

  140. Dickinson SL, Gadie B, Tulloch IF. Specific alpha2-adrenoreceptor antagonists induce behavioural activation in the rat. J Psychopharmacol 1990;4:90–99.

    Article  CAS  PubMed  Google Scholar 

  141. Plotsky PM, Cunningham Jr ET, Widmaier EP. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 1989;10:437–458.

    Article  CAS  PubMed  Google Scholar 

  142. Danzebrink RM, Gebhart GF. Antinociceptive effects of intrathecal adrenoceptor agonists in a rat model of visceral nociception. J Pharmacol Exp Ther 1990;253:698–705.

    CAS  PubMed  Google Scholar 

  143. Vincent PA, Thornton JE, Peterson CS, Feder HH. Different roles of alpha-noradrenergic receptor subtypes in regulating lordosis. Pharmacol Biochem Behav 1989;34:89–93.

    Article  CAS  PubMed  Google Scholar 

  144. Arnsten AF, Cai JX, Goldman-Rakic PS. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 1988;8:4287–4298.

    CAS  PubMed  Google Scholar 

  145. Callado LF, Stamford JA. Alpha2A- but not alpha2B/C-adrenoceptors modulate noradrenaline release in rat locus coeruleus: voltammetric data. Eur J Pharmacol 1999;366:35–39.

    Article  CAS  PubMed  Google Scholar 

  146. Mateo Y, Ruiz-Ortega JA, Pineda J, Ugedo L, Meana JJ. Inhibition of 5-hydroxytryptamine reuptake by the antidepressant citalopram in the locus coeruleus modulates the rat brain noradrenergic transmission in vivo. Neuropharmacology 2000;39:2036–2043.

    Article  CAS  PubMed  Google Scholar 

  147. Meana JJ, Barturen F, Garcia-Sevilla JA. Alpha 2-adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression. Biol Psychiatry 1992;31:471–490.

    Article  CAS  PubMed  Google Scholar 

  148. Meana JJ, Garcia-Sevilla JA. Increased alpha 2-adrenoceptor density in the frontal cortex of depressed suicide victims. J Neural Transm 1987;70:377–381.

    Article  CAS  PubMed  Google Scholar 

  149. Callado LF, Meana JJ, Grijalba B, Pazos A, Sastre M, Garcia-Sevilla JA. Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims. J Neurochem 1998;70:1114–1123.

    Article  CAS  PubMed  Google Scholar 

  150. Miralles A, Olmos G, Sastre M, Barturen F, Martin I, Garcia-Sevilla JA. Discrimination and pharmacological characterization of I2-imidazoline sites with [3H]idazoxan and alpha-2 adrenoceptors with [3H]RX821002 (2-methoxy idazoxan) in the human and rat brains. J Pharmacol Exp Ther 1993;264:1187–1197.

    CAS  PubMed  Google Scholar 

  151. Sastre M, Garcia-Sevilla JA. Alpha 2-adrenoceptor subtypes identified by [3H]RX821002 binding in the human brain: the agonist guanoxabenz does not discriminate different forms of the predominant alpha 2A subtype. J Neurochem 1994;63:1077–1085.

    Article  CAS  PubMed  Google Scholar 

  152. Ordway GA, Widdowson PS, Smith KS, Halaris A. Agonist binding to alpha 2-adrenoceptors is elevated in the locus coeruleus from victims of suicide. J Neurochem 1994;63:617–624.

    Article  CAS  PubMed  Google Scholar 

  153. Marwaha J, Aghajanian GK. Relative potencies of alpha-1 and alpha-2 antagonists in the locus ceruleus, dorsal raphe and dorsal lateral geniculate nuclei: an electrophysiological study. J Pharmacol Exp Ther 1982;222:287–293.

    CAS  PubMed  Google Scholar 

  154. Mateo Y, Meana JJ. Determination of the somatodendritic alpha2-adrenoceptor subtype located in rat locus coeruleus that modulates cortical noradrenaline release in vivo. Eur J Pharmacol 1999;379:53–57.

    Article  CAS  PubMed  Google Scholar 

  155. Arima J, Kubo C, Ishibashi H, Akaike N. alpha2-Adrenoceptor-mediated potassium currents in acutely dissociated rat locus coeruleus neurones. J Physiol 1998;508:57–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee A, Rosin DL, Van Bockstaele EJ. alpha2A-adrenergic receptors in the rat nucleus locus coeruleus: subcellular localization in catecholaminergic dendrites, astrocytes, and presynaptic axon terminals. Brain Res 1998;795:157–169.

    Article  CAS  PubMed  Google Scholar 

  157. Milner TA, Lee A, Aicher SA, Rosin DL. Hippocampal alpha2a-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J Comp Neurol 1998;395:310–327.

    Article  CAS  PubMed  Google Scholar 

  158. Lee A, Rosin DL, Van Bockstaele EJ. Ultrastructural evidence for prominent postsynaptic localization of alpha2C-adrenergic receptors in catecholaminergic dendrites in the rat nucleus locus coeruleus. J Comp Neurol 1998;394:218–229.

    Article  CAS  PubMed  Google Scholar 

  159. Aoki C, Venkatesan C, Go CG, Forman R, Kurose H. Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex 1998;8:269–277.

    Article  CAS  PubMed  Google Scholar 

  160. Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 1985;230:1273–1276.

    Article  CAS  PubMed  Google Scholar 

  161. Kenakin T. Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2002;42:349–379.

    Article  CAS  PubMed  Google Scholar 

  162. Strange PG. Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br J Pharmacol 2008;153:1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gonzalez-Maeso J, Rodriguez-Puertas R, Gabilondo AM, Meana JJ. Characterization of receptor-mediated [35S]GTPγS binding to cortical membranes from postmortem human brain. Eur J Pharmacol 2000;390:25–36.

    Google Scholar 

  164. Gonzalez-Maeso J, Rodriguez-Puertas R, Meana JJ, Garcia-Sevilla JA, Guimon J. Neurotransmitter receptor-mediated activation of G-proteins in brains of suicide victims with mood disorders: selective supersensitivity of alpha(2A)-adrenoceptors. Mol Psychiatry 2002;7:755–767.

    Article  CAS  PubMed  Google Scholar 

  165. Valdizan EM, Diez-Alarcia R, Gonzalez-Maeso J, Pilar-Cuellar F, Garcia-Sevilla JA, Meana JJ, Pazos A. alpha-Adrenoceptor functionality in postmortem frontal cortex of depressed suicide victims. Biol Psychiatry 2010;68:869–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Muguruza C, Rodriguez F, Rozas I, Meana JJ, Uriguen L, Callado LF. Antidepressant-like properties of three new alpha2-adrenoceptor antagonists. Neuropharmacology 2013;65:13–19.

    Article  CAS  PubMed  Google Scholar 

  167. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999;38:1083–1152.

    Article  CAS  PubMed  Google Scholar 

  168. Jones BJ, Blackburn TP. The medical benefit of 5-HT research. Pharmacol Biochem Behav 2002;71:555–568.

    Article  CAS  PubMed  Google Scholar 

  169. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med 2009;60:355–366.

    Article  CAS  PubMed  Google Scholar 

  170. Rapport MM, Green AA, Page IH. Purification of the substance which is responsible for the vasoconstrictor activity of serum. Fed Proc 1947;6:184.

    CAS  PubMed  Google Scholar 

  171. Rapport MM, Green AA, Page IH. Serum vasoconstrictor, serotonin; isolation and characterization. J Biol Chem 1948;176:1243–1251.

    CAS  PubMed  Google Scholar 

  172. Rapport MM, Green AA, Page IH. Serum vasoconstrictor, serotonin; chemical inactivation. J Biol Chem 1948;176:1237–1241.

    CAS  PubMed  Google Scholar 

  173. Rapport MM, Green AA, Page IH. Crystalline serotonin. Science 1948;108:329–330.

    Article  CAS  PubMed  Google Scholar 

  174. Bennett Jr JP, Snyder SH. Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol 1976;12:373–389.

    CAS  PubMed  Google Scholar 

  175. Peroutka SJ, Snyder SH. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 1979;16:687–699.

    CAS  PubMed  Google Scholar 

  176. Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001;92:179–212.

    Article  CAS  PubMed  Google Scholar 

  177. Nichols DE, Nichols CD. Serotonin receptors. Chem Rev 2008;108:1614–1641.

    Article  CAS  PubMed  Google Scholar 

  178. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP. International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 1994;46:157–203.

    CAS  PubMed  Google Scholar 

  179. Gordon JA, Hen R. Genetic approaches to the study of anxiety. Annu Rev Neurosci 2004;27:193–222.

    Article  CAS  PubMed  Google Scholar 

  180. Gordon JA, Hen R. The serotonergic system and anxiety. Neuromolecular Med 2004;5:27–40.

    Article  CAS  PubMed  Google Scholar 

  181. Artigas F, Nutt DJ, Shelton R. Mechanism of action of antidepressants. Psychopharmacol Bull 2002;36 Suppl 2:123–132.

    PubMed  Google Scholar 

  182. Jasinska AJ, Lowry CA, Burmeister M. Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 2012;35:395–402.

    Article  CAS  PubMed  Google Scholar 

  183. Cowen PJ. Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci 2008;29:433–436.

    Article  CAS  PubMed  Google Scholar 

  184. Gardier AM, Malagie I, Trillat AC, Jacquot C, Artigas F. Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol 1996;10:16–27.

    Article  CAS  PubMed  Google Scholar 

  185. Feighner JP, Boyer WF. Serotonin-1A anxiolytics: an overview. Psychopathology 1989;22 Suppl 1:21–26.

    Article  PubMed  Google Scholar 

  186. Menard J, Treit D. Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 1999;23:591–613.

    Article  CAS  PubMed  Google Scholar 

  187. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 1998;95:10734–10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ramboz S, Oosting R, Amara D, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 1998;95:14476–14481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA 1998;95:15049–15054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. File SE, Gonzalez LE, Andrews N. Comparative study of pre- and postsynaptic 5-HT1A receptor modulation of anxiety in two ethological animal tests. J Neurosci 1996;16:4810–4815.

    CAS  PubMed  Google Scholar 

  191. De Vry J. 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology (Berl) 1995;121:1–26.

    Article  Google Scholar 

  192. File SE, Gonzalez LE. Anxiolytic effects in the plus-maze of 5-HT1A-receptor ligands in dorsal raphe and ventral hippocampus. Pharmacol Biochem Behav 1996;54:123–128.

    Article  CAS  PubMed  Google Scholar 

  193. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 2002;416:396–400.

    Article  CAS  PubMed  Google Scholar 

  194. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010;65:40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805–809.

    Article  CAS  PubMed  Google Scholar 

  196. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 2012;15:1613–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci 2007;10:1110–1115.

    Article  CAS  PubMed  Google Scholar 

  198. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 1994;265:1875–1878.

    Article  CAS  PubMed  Google Scholar 

  199. Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1999;1450:191–231.

    Article  CAS  PubMed  Google Scholar 

  200. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, Vaugeois JM, Nomikos GG, Greengard P. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006;311:77–80.

    Article  CAS  PubMed  Google Scholar 

  201. Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N. Identification of the cortical neurons that mediate antidepressant responses. Cell 2012;149:1152–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, Ahn JH, Chait BT, Patel DJ, Kim Y, Greengard P. SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 2013;152:831–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gonzalez-Maeso J, Sealfon SC. Agonist-trafficking and hallucinogens. Curr Med Chem 2009;16:1017–1027.

    Article  CAS  PubMed  Google Scholar 

  204. Hofmann A. Psychotomimetic drugs, chemical and pharmacological aspects. Acta Physiol Pharmacol Neerl 1959;8:240–258.

    CAS  PubMed  Google Scholar 

  205. Hofmann A. How LSD, originated. J Psychedelic Drugs 1979;11:53–60.

    Article  CAS  PubMed  Google Scholar 

  206. Hofmann A. LSD: my problem child. New York: McGraw-Hill; 1980.

    Google Scholar 

  207. Wooley DW, Shaw E. A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA 1954;40:228–231.

    Article  Google Scholar 

  208. Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia 1964;20:398–399.

    Article  CAS  PubMed  Google Scholar 

  209. Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 1984;35:2505–2511.

    Article  CAS  PubMed  Google Scholar 

  210. Shannon M, Battaglia G, Glennon RA, Titeler M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur J Pharmacol 1984;102:23–29.

    Article  CAS  PubMed  Google Scholar 

  211. Young BG. A phenomenological comparison of LSD and schizophrenic states. Br J Psychiatry 1974;124:64–74.

    Article  CAS  PubMed  Google Scholar 

  212. Hermle L, Funfgeld M, Oepen G, Botsch H, Borchardt D, Gouzoulis E, Fehrenbach RA, Spitzer M. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biol Psychiatry 1992;32:976–991.

    Article  CAS  PubMed  Google Scholar 

  213. Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 2011;37:630–640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, Kovar KA. Psychological effects of (S)-ketamine and N, N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 2005;38:301–311.

    Article  CAS  PubMed  Google Scholar 

  215. Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC. Structural features for functional selectivity at serotonin receptors. Science 2013;340:615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE. Structural basis for molecular recognition at serotonin receptors. Science 2013;340:610–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, Weisstaub N, Hen R, Gingrich JA, Sealfon SC. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 2003;23:8836–8843.

    CAS  PubMed  Google Scholar 

  218. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 1998;9:3897–3902.

    Article  CAS  PubMed  Google Scholar 

  219. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 2007;53:439–452.

    Article  CAS  PubMed  Google Scholar 

  220. Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 2007;104:9870–9875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Celada P, Puig MV, Diaz-Mataix L, Artigas F. The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry 2008;64:392–400.

    Article  CAS  PubMed  Google Scholar 

  222. Lehmann HE, Hanrahan GE. Chlorpromazine; new inhibiting agent for psychomotor excitement and manic states. AMA Arch Neurol Psychiatry 1954;71:227–237.

    Article  CAS  PubMed  Google Scholar 

  223. Granger B, Albu S. The haloperidol story. Ann Clin Psychiatry 2005;17:137–140.

    Article  PubMed  Google Scholar 

  224. Crilly J. The history of clozapine and its emergence in the US market: a review and analysis. Hist Psychiatry 2007;18:30–60.

    Article  Google Scholar 

  225. Hippius H. A historical perspective of clozapine. J Clin Psychiatry 1999;60 Suppl 12:22–23.

    PubMed  Google Scholar 

  226. Silberstein SD. Methysergide. Cephalalgia 1998;18:421–435.

    Article  CAS  PubMed  Google Scholar 

  227. Miller CH, Fleischhacker WW. Managing antipsychotic-induced acute and chronic akathisia. Drug Saf 2000;22:73–81.

    Article  CAS  PubMed  Google Scholar 

  228. Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008;452:93–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, Mackerell Jr AD, Brezina V, Sealfon SC, Filizola M, Gonzalez-Maeso J, Logothetis DE. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 2011;147:1011–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuellar F, Mocci G, Seto J, Callado LF, Neve RL, Milligan G, Sealfon SC, Lopez-Gimenez JF, Meana JJ, Benson DL, Gonzalez-Maeso J. Identification of three residues essential for 5-HT2A-mGlu2 receptor heteromerization and its psychoactive behavioral function. J Biol Chem 2012;287:44301–44319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA 2007;104:7682–7687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, Sunahara RK. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 2008;283:4387–4394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2001;2:274–286.

    Article  CAS  PubMed  Google Scholar 

  234. Gonzalez-Maeso J. GPCR oligomers in pharmacology and signaling. Mol Brain 2011;4:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Milligan G. The prevalence, maintenance and relevance of GPCR oligomerization. Mol Pharmacol 2013;84:158–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010;330:1066–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 2012;485:321–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 2012;485:327–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Huang J, Chen S, Zhang JJ, Huang XY. Crystal structure of oligomeric beta1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 2013;20:419–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Moreno JL, Holloway T, Albizu L, Sealfon SC, Gonzalez-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 2011;493:76–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N, Huang XP, Kroeze WK, Crawford LK, Piel DA, Keiser MJ, Irwin JJ, Shoichet BK, Deneris ES, Gingrich J, Beck SG, Roth BL. The presynaptic component of the serotonergic system is required for clozapine’s efficacy. Neuropsychopharmacology 2011;36:638–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT. Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedebergs Arch Pharmacol 1997;356:446–454.

    Article  CAS  PubMed  Google Scholar 

  243. Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 1998;95:735–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Weisstaub NV, Zhou M, Lira A, Lambe E, González-Maeso J, Hornung J-P, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon SC, Hen R, Gingrich JA. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 2006;313:536–540.

    Article  CAS  PubMed  Google Scholar 

  245. Magalhaes AC, Holmes KD, Dale LB, Comps-Agrar L, Lee D, Yadav PN, Drysdale L, Poulter MO, Roth BL, Pin J-P, Anisman H, Ferguson SSG. CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat Neurosci 2010;13:622–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sanders-Bush E, Fentress H, Hazelwood L. Serotonin 5-ht2 receptors: molecular and genomic diversity. Mol Interv 2003;3:319–330.

    Article  CAS  PubMed  Google Scholar 

  247. Pazos A, Hoyer D, Palacios JM. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 1984;106:539–546.

    Article  CAS  PubMed  Google Scholar 

  248. Palacios JM, Markstein R, Pazos A. Serotonin-1C sites in the choroid plexus are not linked in a stimulatory or inhibitory way to adenylate cyclase. Brain Res 1986;380:151–154.

    Article  CAS  PubMed  Google Scholar 

  249. Conn PJ, Sanders-Bush E. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J Pharmacol Exp Ther 1985;234:195–203.

    CAS  PubMed  Google Scholar 

  250. Humphrey PP, Hartig P, Hoyer D. A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 1993;14:233–236.

    Article  CAS  PubMed  Google Scholar 

  251. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995;374:542–546.

    Article  CAS  PubMed  Google Scholar 

  252. Chou-Green JM, Holscher TD, Dallman MF, Akana SF. Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 2003;78:641–649.

    Article  CAS  PubMed  Google Scholar 

  253. Chou-Green JM, Holscher TD, Dallman MF, Akana SF. Repeated stress in young and old 5-HT(2C) receptor knockout mice. Physiol Behav 2003;79:217–226.

    Article  CAS  PubMed  Google Scholar 

  254. Calkins AW, Berman NC, Wilhelm S. Recent advances in research on cognition and emotion in OCD: a review. Curr Psychiatry Rep 2013;15:357.

    Article  PubMed  Google Scholar 

  255. Macy AS, Theo JN, Kaufmann SC, Ghazzaoui RB, Pawlowski PA, Fakhry HI, Cassmassi BJ, IsHak WW. Quality of life in obsessive compulsive disorder. CNS Spectr 2013;18:21–33.

    Article  PubMed  Google Scholar 

  256. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 1997;387:303–308.

    Article  CAS  PubMed  Google Scholar 

  257. Berg KA, Clarke WP, Cunningham KA, Spampinato U. Fine-tuning serotonin2c receptor function in the brain: molecular and functional implications. Neuropharmacology 2008;55:969–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Tohda M, Nomura M, Nomura Y. Molecular pathopharmacology of 5-HT2C receptors and the RNA editing in the brain. J Pharmacol Sci 2006;100:427–432.

    Article  CAS  PubMed  Google Scholar 

  259. Sodhi MS, Burnet PW, Makoff AJ, Kerwin RW, Harrison PJ. RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Mol Psychiatry 2001;6:373–379.

    Article  CAS  PubMed  Google Scholar 

  260. Dracheva S, Patel N, Woo DA, Marcus SM, Siever LJ, Haroutunian V. Increased serotonin 2C receptor mRNA editing: a possible risk factor for suicide. Mol Psychiatry 2008;13:1001–1010.

    Article  CAS  PubMed  Google Scholar 

  261. Grailhe R, Waeber C, Dulawa SC, Hornung JP, Zhuang X, Brunner D, Geyer MA, Hen R. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron 1999;22:581–591.

    Article  CAS  PubMed  Google Scholar 

  262. Goodfellow NM, Bailey CD, Lambe EK. The native serotonin 5-HT(5A) receptor: electrophysiological characterization in rodent cortex and 5-HT(1A)-mediated compensatory plasticity in the knock-out mouse. J Neurosci 2012;32:5804–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Svenningsson P, Tzavara ET, Qi H, Carruthers R, Witkin JM, Nomikos GG, Greengard P. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci 2007;27:4201–4209.

    Article  CAS  PubMed  Google Scholar 

  264. Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 2003;100:1375–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 2005;58:831–837.

    Article  CAS  PubMed  Google Scholar 

  266. Anderson G, Maes M. Melatonin: an overlooked factor in schizophrenia and in the inhibition of anti-psychotic side effects. Metab Brain Dis 2012;27:113–119.

    Article  CAS  PubMed  Google Scholar 

  267. Srinivasan V, De Berardis D, Shillcutt SD, Brzezinski A. Role of melatonin in mood disorders and the antidepressant effects of agomelatine. Expert Opin Investig Drugs 2012;21:1503–1522.

    Article  CAS  PubMed  Google Scholar 

  268. Stein DJ, Picarel-Blanchot F, Kennedy SH. Efficacy of the novel antidepressant agomelatine for anxiety symptoms in major depression. Hum Psychopharmacol 2013;28:151–159.

    Article  CAS  PubMed  Google Scholar 

  269. Monti JM, Monti D. Sleep disturbance in schizophrenia. Int Rev Psychiatry 2005;17:247–253.

    Article  PubMed  Google Scholar 

  270. Monteleone P, Maj M, Fusco M, Kemali D, Reiter RJ. Depressed nocturnal plasma melatonin levels in drug-free paranoid schizophrenics. Schizophr Res 1992;7:77–84.

    Article  CAS  PubMed  Google Scholar 

  271. Monteleone P, Natale M, La Rocca A, Maj M. Decreased nocturnal secretion of melatonin in drug-free schizophrenics: no change after subchronic treatment with antipsychotics. Neuropsychobiology 1997;36:159–163.

    Article  CAS  PubMed  Google Scholar 

  272. Bersani G, Mameli M, Garavini A, Pancheri P, Nordio M. Reduction of night/day difference in melatonin blood levels as a possible disease-related index in schizophrenia. Neuro Endocrinol Lett 2003;24:181–184.

    CAS  PubMed  Google Scholar 

  273. Afonso P, Brissos S, Figueira ML, Paiva T. Discrepant nocturnal melatonin levels in monozygotic twins discordant for schizophrenia and its impact on sleep. Schizophr Res 2010;120:227–228.

    Article  CAS  PubMed  Google Scholar 

  274. Park HJ, Park JK, Kim SK, Cho AR, Kim JW, Yim SV, Chung JH. Association of polymorphism in the promoter of the melatonin receptor 1A gene with schizophrenia and with insomnia symptoms in schizophrenia patients. J Mol Neurosci 2011;45:304–308.

    Article  CAS  PubMed  Google Scholar 

  275. Suresh Kumar PN, Andrade C, Bhakta SG, Singh NM. Melatonin in schizophrenic outpatients with insomnia: a double-blind, placebo-controlled study. J Clin Psychiatry 2007;68:237–241.

    Article  CAS  PubMed  Google Scholar 

  276. Wetterberg L. Clinical importance of melatonin. Prog Brain Res 1979;52:539–547.

    Article  CAS  PubMed  Google Scholar 

  277. Mendlewicz J, Linkowski P, Branchey L, Weinberg U, Weitzman ED, Branchey M. Abnormal 24 hour pattern of melatonin secretion in depression. Lancet 1979;2:1362.

    Article  CAS  PubMed  Google Scholar 

  278. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 2003;306:954–964.

    Article  CAS  PubMed  Google Scholar 

  279. Bourin M, Mocaer E, Porsolt R. Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors. J Psychiatry Neurosci 2004;29:126–133.

    PubMed  PubMed Central  Google Scholar 

  280. Barden N, Shink E, Labbe M, Vacher R, Rochford J, Mocaer E. Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:908–916.

    Article  CAS  PubMed  Google Scholar 

  281. Papp M, Gruca P, Boyer PA, Mocaer E. Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology 2003;28:694–703.

    Article  CAS  PubMed  Google Scholar 

  282. Smeraldi E, Delmonte D. Agomelatine in depression. Expert Opin Drug Saf 2013;12:873–880.

    Article  CAS  PubMed  Google Scholar 

  283. Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL. International union of pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 1997;49:253–278.

    CAS  PubMed  Google Scholar 

  284. Tiligada E, Kyriakidis K, Chazot PL, Passani MB. Histamine pharmacology and new CNS drug targets. CNS Neurosci Ther 2011;17:620–628.

    Article  CAS  PubMed  Google Scholar 

  285. Ogawa S, Yanai K, Watanabe T, Wang ZM, Akaike H, Ito Y, Akaike N. Histamine responses of large neostriatal interneurons in histamine H1 and H2 receptor knock-out mice. Brain Res Bull 2009;78:189–194.

    Article  CAS  PubMed  Google Scholar 

  286. Pollard H, Moreau J, Arrang JM, Schwartz JC. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 1993;52:169–189.

    Article  CAS  PubMed  Google Scholar 

  287. Chazot PL, Hann V, Wilson C, Lees G, Thompson CL. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport 2001;12:259–262.

    Article  CAS  PubMed  Google Scholar 

  288. Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 1983;302:832–837.

    Article  CAS  PubMed  Google Scholar 

  289. Ibrahim HM, Tamminga CA. Treating impaired cognition in schizophrenia. Curr Pharm Biotechnol 2012;13:1587–1594.

    Article  CAS  PubMed  Google Scholar 

  290. Browman KE, Komater VA, Curzon P, Rueter LE, Hancock AA, Decker MW, Fox GB. Enhancement of prepulse inhibition of startle in mice by the H3 receptor antagonists thioperamide and ciproxifan. Behav Brain Res 2004;153:69–76.

    Article  CAS  PubMed  Google Scholar 

  291. Flood DG, Zuvich E, Marino MJ, Gasior M. Prepulse inhibition of the startle reflex and response to antipsychotic treatments in two outbred mouse strains in comparison to the inbred DBA/2 mouse. Psychopharmacology (Berl) 2011;215:441–454.

    Article  CAS  Google Scholar 

  292. Meguro K, Yanai K, Sakai N, Sakurai E, Maeyama K, Sasaki H, Watanabe T. Effects of thioperamide, a histamine H3 antagonist, on the step-through passive avoidance response and histidine decarboxylase activity in senescence-accelerated mice. Pharmacol Biochem Behav 1995;50:321–325.

    Article  CAS  PubMed  Google Scholar 

  293. Prast H, Argyriou A, Philippu A. Histaminergic neurons facilitate social memory in rats. Brain Res 1996;734:316–318.

    Article  CAS  PubMed  Google Scholar 

  294. Miyazaki S, Imaizumi M, Onodera K. Ameliorating effects of histidine on learning deficits in an elevated plus-maze test in mice and the contribution of cholinergic neuronal systems. Methods Find Exp Clin Pharmacol 1995;17 Suppl C:57–63.

    Google Scholar 

  295. Chen Z, Kamei C. Facilitating effects of histamine on spatial memory deficit induced by scopolamine in rats. Acta Pharmacol Sin 2000;21:814–818.

    CAS  PubMed  Google Scholar 

  296. Orsetti M, Ferretti C, Gamalero R, Ghi P. Histamine H3-receptor blockade in the rat nucleus basalis magnocellularis improves place recognition memory. Psychopharmacology (Berl) 2002;159:133–137.

    Article  CAS  Google Scholar 

  297. Fox GB, Pan JB, Esbenshade TA, Bennani YL, Black LA, Faghih R, Hancock AA, Decker MW. Effects of histamine H(3) receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup. Behav Brain Res 2002;131:151–161.

    Article  CAS  PubMed  Google Scholar 

  298. Komater VA, Browman KE, Curzon P, Hancock AA, Decker MW, Fox GB. H3 receptor blockade by thioperamide enhances cognition in rats without inducing locomotor sensitization. Psychopharmacology (Berl) 2003;167:363–372.

    CAS  Google Scholar 

  299. Komater VA, Buckley MJ, Browman KE, Pan JB, Hancock AA, Decker MW, Fox GB. Effects of histamine H3 receptor antagonists in two models of spatial learning. Behav Brain Res 2005;159:295–300.

    Article  CAS  PubMed  Google Scholar 

  300. Day M, Pan JB, Buckley MJ, Cronin E, Hollingsworth PR, Hirst WD, Navarra R, Sullivan JP, Decker MW, Fox GB. Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem Pharmacol 2007;73:1123–1134.

    Article  CAS  PubMed  Google Scholar 

  301. Zampeli E, Tiligada E. The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 2009;157:24–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Strakhova MI, Nikkel AL, Manelli AM, Hsieh GC, Esbenshade TA, Brioni JD, Bitner RS. Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res 2009;1250:41–48.

    Article  CAS  PubMed  Google Scholar 

  303. Hsieh GC, Chandran P, Salyers AK, Pai M, Zhu CZ, Wensink EJ, Witte DG, Miller TR, Mikusa JP, Baker SJ, Wetter JM, Marsh KC, Hancock AA, Cowart MD, Esbenshade TA, Brioni JD, Honore P. H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav 2010;95:41–50.

    Article  CAS  PubMed  Google Scholar 

  304. Casey DE. The relationship of pharmacology to side effects. J Clin Psychiatry 1997;58 Suppl 10:55–62.

    CAS  PubMed  Google Scholar 

  305. McOmish CE, Lira A, Hanks JB, Gingrich JA. Clozapine-induced locomotor suppression is mediated by 5-HT(2A) receptors in the forebrain. Neuropsychopharmacology 2012;37:2747–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Williams AA, Ingram WM, Levine S, Resnik J, Kamel CM, Lish JR, Elizalde DI, Janowski SA, Shoker J, Kozlenkov A, Gonzalez-Maeso J, Gallitano AL. Reduced levels of serotonin 2A receptors underlie resistance of Egr3-deficient mice to locomotor suppression by clozapine. Neuropsychopharmacology 2012;37:2285–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Bloch RG, Dooneief AS, Buchberg AS, Spellman S. The clinical effect of isoniazid and iproniazid in the treatment of pulmonary tuberculosis. Ann Intern Med 1954;40:881–900.

    Article  CAS  PubMed  Google Scholar 

  308. Loomer HP, Saunders JC, Kline NS. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep Am Psychiatr Assoc 1957;8:129–141.

    CAS  PubMed  Google Scholar 

  309. Al-Nuaimi SK, Mackenzie EM, Baker GB. Monoamine oxidase inhibitors and neuroprotection: a review. Am J Ther 2012;19:436–448.

    Article  PubMed  Google Scholar 

  310. Pae CU, Tharwani H, Marks DM, Masand PS, Patkar AA. Atypical depression: a comprehensive review. CNS Drugs 2009;23:1023–1037.

    Article  CAS  PubMed  Google Scholar 

  311. Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013;70:599–630.

    Article  CAS  PubMed  Google Scholar 

  312. Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004;3:136–151.

    Article  CAS  PubMed  Google Scholar 

  313. Zeisel SH. A brief history of choline. Ann Nutr Metab 2012;61:254–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Olincy A, Freedman R. Nicotinic mechanisms in the treatment of psychotic disorders: a focus on the alpha7 nicotinic receptor. Handb Exp Pharmacol. 2012;211–32

    Google Scholar 

  315. Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA. Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 1986;143:993–997.

    Article  CAS  PubMed  Google Scholar 

  316. Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA 2000;284:2606–2610.

    Article  CAS  PubMed  Google Scholar 

  317. Diwan A, Castine M, Pomerleau CS, Meador-Woodruff JH, Dalack GW. Differential prevalence of cigarette smoking in patients with schizophrenic vs mood disorders. Schizophr Res 1998;33:113–118.

    Article  CAS  PubMed  Google Scholar 

  318. de Leon J, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM. Schizophrenia and smoking: an epidemiological survey in a state hospital. Am J Psychiatry 1995;152:453–455.

    Article  PubMed  Google Scholar 

  319. Tung CS, Grenhoff J, Svensson TH. Nicotine counteracts midbrain dopamine cell dysfunction induced by prefrontal cortex inactivation. Acta Physiol Scand 1990;138:427–428.

    Article  CAS  PubMed  Google Scholar 

  320. Svensson TH, Grenhoff J, Engberg G. Effect of nicotine on dynamic function of brain catecholamine neurons. Ciba Found Symp 1990;152:169–180. Discussion 180–165.

    CAS  PubMed  Google Scholar 

  321. Glassman AH. Cigarette smoking: implications for psychiatric illness. Am J Psychiatry 1993;150:546–553.

    Article  CAS  PubMed  Google Scholar 

  322. Nisell M, Nomikos GG, Svensson TH. Nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol 1995;76:157–162.

    Article  CAS  PubMed  Google Scholar 

  323. Dalack GW, Meador-Woodruff JH. Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr Res 1996;22:133–141.

    Article  CAS  PubMed  Google Scholar 

  324. Dalack GW, Becks L, Hill E, Pomerleau OF, Meador-Woodruff JH. Nicotine withdrawal and psychiatric symptoms in cigarette smokers with schizophrenia. Neuropsychopharmacology 1999;21:195–202.

    Article  CAS  PubMed  Google Scholar 

  325. Decina P, Caracci G, Sandik R, Berman W, Mukherjee S, Scapicchio P. Cigarette smoking and neuroleptic-induced parkinsonism. Biol Psychiatry 1990;28:502–508.

    Article  CAS  PubMed  Google Scholar 

  326. Goff DC, Henderson DC, Amico E. Cigarette smoking in schizophrenia: relationship to psychopathology and medication side effects. Am J Psychiatry 1992;149:1189–1194.

    Article  CAS  PubMed  Google Scholar 

  327. Adler LE, Hoffer LD, Wiser A, Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 1993;150:1856–1861.

    Article  CAS  PubMed  Google Scholar 

  328. Venables PH. Input dysfunction in schizophrenia. Prog Exp Pers Res 1964;72:1–47.

    CAS  PubMed  Google Scholar 

  329. Martin LF, Kem WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 2004;174:54–64.

    Article  CAS  Google Scholar 

  330. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997;94:587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Liu CM, Hwu HG, Lin MW, Ou-Yang WC, Lee SF, Fann CS, Wong SH, Hsieh SH. Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13-14 in Taiwanese families. Am J Med Genet 2001;105:658–661.

    Article  CAS  PubMed  Google Scholar 

  332. Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D, Murray R. Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet 2000;96:196–201.

    Article  CAS  PubMed  Google Scholar 

  333. Tsuang DW, Skol AD, Faraone SV, Bingham S, Young KA, Prabhudesai S, Haverstock SL, Mena F, Menon AS, Bisset D, Pepple J, Sauter F, Baldwin C, Weiss D, Collins J, Boehnke M, Schellenberg GD, Tsuang MT. Examination of genetic linkage of chromosome 15 to schizophrenia in a large veterans affairs cooperative study sample. Am J Med Genet 2001;105:662–668.

    Article  CAS  PubMed  Google Scholar 

  334. Xu J, Pato MT, Torre CD, Medeiros H, Carvalho C, Basile VS, Bauer A, Dourado A, Valente J, Soares MJ, Macedo AA, Coelho I, Ferreira CP, Azevedo MH, Macciardi F, Kennedy JL, Pato CN. Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am J Med Genet 2001;105:669–674.

    Article  CAS  PubMed  Google Scholar 

  335. Petrovsky N, Quednow BB, Ettinger U, Schmechtig A, Mossner R, Collier DA, Kuhn KU, Maier W, Wagner M, Kumari V. Sensorimotor gating is associated with CHRNA3 polymorphisms in schizophrenia and healthy volunteers. Neuropsychopharmacology 2010;35:1429–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM. Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 1996;15:152–162.

    Article  CAS  PubMed  Google Scholar 

  337. Lieberman JA, Dunbar G, Segreti AC, Girgis RR, Seoane F, Beaver JS, Duan N, Hosford DA. A randomized exploratory trial of an alpha-7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology 2013;38:968–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 1986;323:411–416.

    Article  CAS  PubMed  Google Scholar 

  339. Bonner TI, Young AC, Brann MR, Buckley NJ. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1988;1:403–410.

    Article  CAS  PubMed  Google Scholar 

  340. Kubo T, Maeda A, Sugimoto K, Akiba I, Mikami A, Takahashi H, Haga T, Haga K, Ichiyama A, Kangawa K, Matsuo H, Hirose T, Numa S. Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett 1986;209:367–372.

    Article  CAS  PubMed  Google Scholar 

  341. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J 1987;6:3923–3929.

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Caulfield MP. Muscarinic receptors–characterization, coupling and function. Pharmacol Ther 1993;58:319–379.

    Article  CAS  PubMed  Google Scholar 

  343. Caulfield MP, Birdsall NJ. International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998;50:279–290.

    CAS  PubMed  Google Scholar 

  344. McKinzie DL, Bymaster FP. Muscarinic mechanisms in psychotic disorders. Handb Exp Pharmacol. 2012;233–65

    Google Scholar 

  345. Scarr E, Um JY, Cowie TF, Dean B. Cholinergic muscarinic M4 receptor gene polymorphisms: a potential risk factor and pharmacogenomic marker for schizophrenia. Schizophr Res 2013;146:279–284.

    Article  PubMed  Google Scholar 

  346. Scarr E, Craig JM, Cairns MJ, Seo MS, Galati JC, Beveridge NJ, Gibbons A, Juzva S, Weinrich B, Parkinson-Bates M, Carroll AP, Saffery R, Dean B. Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl Psychiatry 2013;3:e230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Gibbons AS, Scarr E, Boer S, Money T, Jeon WJ, Felder C, Dean B. Widespread decreases in cortical muscarinic receptors in a subset of people with schizophrenia. Int J Neuropsychopharmacol 2013;16:37–46.

    Article  CAS  PubMed  Google Scholar 

  348. Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 2004;44:423–450.

    Article  CAS  PubMed  Google Scholar 

  349. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 2007;6:721–733.

    Article  CAS  Google Scholar 

  350. Krystal JH. N-methyl-D-aspartate glutamate receptor antagonists and the promise of rapid-acting antidepressants. Arch Gen Psychiatry 2010;67:1110–1111.

    Article  PubMed  Google Scholar 

  351. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010;50:295–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Yasuhara A, Chaki S. Metabotropic glutamate receptors: potential drug targets for psychiatric disorders. Open Med Chem J 2010;4:20–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012;100:775–800.

    Article  CAS  PubMed  Google Scholar 

  354. Hovelso N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mork A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012;10:12–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 2012;100:665–677.

    Article  CAS  PubMed  Google Scholar 

  356. Hashimoto K, Malchow B, Falkai P, Schmitt A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013;263:367–377.

    Article  PubMed  Google Scholar 

  357. Rojas A, Dingledine R. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors. Mol Pharmacol 2013;83:746–752.

    Article  CAS  PubMed  Google Scholar 

  358. Kim JS, Kornhuber HH, Holzmuller B, Schmid-Burgk W, Mergner T, Krzepinski G. Reduction of cerebrospinal fluid glutamic acid in Huntington’s chorea and in schizophrenic patients. Arch Psychiatr Nervenkr 1980;228:7–10.

    Article  CAS  PubMed  Google Scholar 

  359. Altamura C, Maes M, Dai J, Meltzer HY. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol 1995;5 Suppl:71–75.

    Article  CAS  PubMed  Google Scholar 

  360. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, Krystal JH, Mason GF. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004;61:705–713.

    Article  CAS  PubMed  Google Scholar 

  361. Grimm S, Luborzewski A, Schubert F, Merkl A, Kronenberg G, Colla M, Heuser I, Bajbouj M. Region-specific glutamate changes in patients with unipolar depression. J Psychiatr Res 2012;46:1059–1065.

    Article  PubMed  Google Scholar 

  362. Hermann D, Weber-Fahr W, Sartorius A, Hoerst M, Frischknecht U, Tunc-Skarka N, Perreau-Lenz S, Hansson AC, Krumm B, Kiefer F, Spanagel R, Mann K, Ende G, Sommer WH. Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry 2012;71:1015–1021.

    Article  CAS  PubMed  Google Scholar 

  363. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010;62:405–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 2011;33:1351–1365.

    Article  PubMed  Google Scholar 

  365. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  366. Seeburg PH, Single F, Kuner T, Higuchi M, Sprengel R. Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse. Brain Res 2001;907:233–243.

    Article  CAS  PubMed  Google Scholar 

  367. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002;415:793–798.

    Article  CAS  PubMed  Google Scholar 

  368. Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci 2012;35:240–249.

    Article  CAS  PubMed  Google Scholar 

  369. Vance KM, Hansen KB, Traynelis SF. Modal gating of GluN1/GluN2D NMDA receptors. Neuropharmacology 2013;71:184–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnar E, Lodge D, Jane DE. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2013;64:13–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995;52:998–1007.

    Article  CAS  PubMed  Google Scholar 

  372. Bachus SE, Kleinman JE. The neuropathology of schizophrenia. J Clin Psychiatry 1996;57 Suppl 11:72–83.

    PubMed  Google Scholar 

  373. Coyle JT. The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996;3:241–253.

    Article  CAS  PubMed  Google Scholar 

  374. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004;9:984–997, 979.

    Article  CAS  PubMed  Google Scholar 

  375. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001;25:455–467.

    Article  CAS  PubMed  Google Scholar 

  376. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH. NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007;7:48–55.

    Article  CAS  PubMed  Google Scholar 

  377. Morris BJ, Cochran SM, Pratt JA. PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 2005;5:101–106.

    Article  CAS  PubMed  Google Scholar 

  378. Aghajanian GK. Modeling “psychosis” in vitro by inducing disordered neuronal network activity in cortical brain slices. Psychopharmacology (Berl) 2009;206:575–585.

    Article  CAS  Google Scholar 

  379. Reimherr FW, Wood DR, Wender PH. The use of MK-801, a novel sympathomimetic, in adults with attention deficit disorder, residual type. Psychopharmacol Bull 1986;22:237–242.

    CAS  PubMed  Google Scholar 

  380. Tsai GE, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 2010;16:522–537.

    Article  CAS  PubMed  Google Scholar 

  381. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47:351–354.

    Article  CAS  PubMed  Google Scholar 

  382. Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 2012;71:939–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, Jolkovsky L, Brutsche NE, Smith MA, Luckenbaugh DA. A randomized trial of a low-trapping nonselective N-Methyl-D-aspartate channel blocker in major depression. Biol Psychiatry 2012;74:257–264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  384. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63:856–864.

    Article  CAS  PubMed  Google Scholar 

  385. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 2009;66:522–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. ann het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 2010;67:139–145.

    Article  CAS  Google Scholar 

  387. ann het Rot M, Zarate CA Jr, Charney DS, Mathew SJ. Ketamine for depression: where do we go from here? Biol Psychiatry 2012;72:537–547.

    Article  CAS  Google Scholar 

  388. Hashimoto K. The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1558–1568.

    Article  CAS  PubMed  Google Scholar 

  389. Mathews DC, Henter ID, Zarate CA Jr. Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 2012;72:1313–1333.

    Google Scholar 

  390. Murck H. Ketamine, magnesium and major depression - From pharmacology to pathophysiology and back. J Psychiatr Res 2013;47:955–965.

    Article  PubMed  Google Scholar 

  391. Zarate CA Jr, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G. Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 2010;18:293–303.

    Article  PubMed  PubMed Central  Google Scholar 

  392. Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990;185:1–10.

    Article  CAS  PubMed  Google Scholar 

  393. Meloni D, Gambarana C, De Montis MG, Dal Pra P, Taddei I, Tagliamonte A. Dizocilpine antagonizes the effect of chronic imipramine on learned helplessness in rats. Pharmacol Biochem Behav 1993;46:423–426.

    Article  CAS  PubMed  Google Scholar 

  394. Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 1994;263:1–7.

    Article  CAS  PubMed  Google Scholar 

  395. Layer RT, Popik P, Olds T, Skolnick P. Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol Biochem Behav 1995;52:621–627.

    Article  CAS  PubMed  Google Scholar 

  396. Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E. Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 1997;36:31–37.

    Article  CAS  PubMed  Google Scholar 

  397. Engin E, Treit D, Dickson CT. Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience 2009;161:359–369.

    Article  CAS  PubMed  Google Scholar 

  398. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers Jr MB, Charney DS. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994;51:199–214.

    Article  CAS  PubMed  Google Scholar 

  399. Liebrenz M, Stohler R, Borgeat A. Repeated intravenous ketamine therapy in a patient with treatment-resistant major depression. World J Biol Psychiatry 2009;10:640–643.

    Article  PubMed  Google Scholar 

  400. Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol. 2008;313–33.

    Google Scholar 

  401. Paul R, Schaaff N, Padberg F, Moller HJ, Frodl T. Comparison of racemic ketamine and S-ketamine in treatment-resistant major depression: report of two cases. World J Biol Psychiatry 2009;10:241–244.

    Article  PubMed  Google Scholar 

  402. Paslakis G, Gilles M, Meyer-Lindenberg A, Deuschle M. Oral administration of the NMDA receptor antagonist S-ketamine as add-on therapy of depression: a case series. Pharmacopsychiatry 2010;43:33–35.

    Article  CAS  PubMed  Google Scholar 

  403. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011;475:91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist: a review of preclinical data. Neuropharmacology 1999;38:735–767.

    Article  CAS  PubMed  Google Scholar 

  406. Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 2009;61:105–123.

    Article  CAS  PubMed  Google Scholar 

  407. Holter SM, Danysz W, Spanagel R. Evidence for alcohol anti-craving properties of memantine. Eur J Pharmacol 1996;314:R1–R2.

    Article  CAS  PubMed  Google Scholar 

  408. Piasecki J, Koros E, Dyr W, Kostowski W, Danysz W, Bienkowski P. Ethanol-reinforced behaviour in the rat: effects of uncompetitive NMDA receptor antagonist, memantine. Eur J Pharmacol 1998;354:135–143.

    Article  CAS  PubMed  Google Scholar 

  409. Escher T, Call SB, Blaha CD, Mittleman G. Behavioral effects of aminoadamantane class NMDA receptor antagonists on schedule-induced alcohol and self-administration of water in mice. Psychopharmacology (Berl) 2006;187:424–434.

    Article  CAS  Google Scholar 

  410. Krupitsky EM, Rudenko AA, Burakov AM, Slavina TY, Grinenko AA, Pittman B, Gueorguieva R, Petrakis IL, Zvartau EE, Krystal JH. Antiglutamatergic strategies for ethanol detoxification: comparison with placebo and diazepam. Alcohol Clin Exp Res 2007;31:604–611.

    CAS  PubMed  Google Scholar 

  411. Maeng S, Zarate C, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008;63:349–352.

    Article  CAS  PubMed  Google Scholar 

  412. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011;69:754–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Ibrahim L, Diaz Granados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, Potter WZ, Zarate CA Jr. A Randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol 2012;32:551–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28:631–637.

    Article  CAS  PubMed  Google Scholar 

  415. Boyce-Rustay JM, Holmes A. Genetic inactivation of the NMDA receptor NR2A subunit has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 2006;31:2405–2414.

    Article  CAS  PubMed  Google Scholar 

  416. Inta D, Vogt MA, Pfeiffer N, Kohr G, Gass P. Dichotomy in the anxiolytic versus antidepressant effect of C-terminal truncation of the GluN2A subunit of NMDA receptors. Behav Brain Res 2013;247:227–231.

    Article  CAS  PubMed  Google Scholar 

  417. Burgdorf J, Zhang XL, Nicholson KL, Balster RL, Leander JD, Stanton PK, Gross AL, Kroes RA, Moskal JR. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 2013;38:729–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Wang G, Gilbert J, Man HY. AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades. Neural Plast 2012;2012:825364.

    PubMed  PubMed Central  Google Scholar 

  419. Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 2012;22:496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, A Gray N, Zarate Jr CA, Charney DS. . Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003;53:707–742.

    Article  CAS  PubMed  Google Scholar 

  421. Alt A, Nisenbaum ES, Bleakman D, Witkin JM. A role for AMPA receptors in mood disorders. Biochem Pharmacol 2006;71:1273–1288.

    Article  CAS  PubMed  Google Scholar 

  422. Bleakman D, Alt A, Witkin JM. AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 2007;6:117–126.

    Article  CAS  PubMed  Google Scholar 

  423. Mathew SJ, Manji HK, Charney DS. Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 2008;33:2080–2092.

    Article  CAS  PubMed  Google Scholar 

  424. Sen S, Sanacora G. Major depression: emerging therapeutics. Mt Sinai J Med 2008;75:204–225.

    Article  PubMed  Google Scholar 

  425. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 2001;40:1028–1033.

    Article  CAS  PubMed  Google Scholar 

  426. Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 2002;440:27–35.

    Article  CAS  PubMed  Google Scholar 

  427. Zarate CA Jr, Singh J, Manji HK. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006;59:1006–1020.

    Article  CAS  PubMed  Google Scholar 

  428. O’Neill MJ, Witkin JM. AMPA receptor potentiators: application for depression and Parkinson’s disease. Curr Drug Targets 2007;8:603–620.

    Article  PubMed  Google Scholar 

  429. Sanacora G, Zarate CA Jr, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 2008;7:426–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Lindholm JS, Autio H, Vesa L, Antila H, Lindemann L, Hoener MC, Skolnick P, Rantamaki T, Castren E. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf(+)/(-) heterozygous null mice. Neuropharmacology 2012;62:391–397.

    Article  CAS  PubMed  Google Scholar 

  431. Barbon A, Caracciolo L, Orlandi C, Musazzi L, Mallei A, La Via L, Bonini D, Mora C, Tardito D, Gennarelli M, Racagni G, Popoli M, Barlati S. Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels. Neurochem Int 2011;59:896–905.

    Article  CAS  PubMed  Google Scholar 

  432. Du J, Machado-Vieira R, Maeng S, Martinowich K, Manji HK, Zarate CA Jr. Enhancing AMPA to NMDA throughput as a convergent mechanism for antidepressant action. Drug Discov Today Ther Strateg 2006;3:519–526.

    Article  PubMed  PubMed Central  Google Scholar 

  433. Gibbons AS, Brooks L, Scarr E, Dean B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J Affect Disord 2012;136:1232–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Lynch G. Glutamate-based therapeutic approaches: ampakines. Curr Opin Pharmacol 2006;6:82–88.

    Article  CAS  PubMed  Google Scholar 

  435. O'Neill MJ, Dix S. AMPA receptor potentiators as cognitive enhancers. IDrugs 2007;10:185–192.

    PubMed  Google Scholar 

  436. Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J, Manschreck T, Freudenreich O, Johnson SA. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2008;33:465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Swanson GT. Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon? Neuropsychopharmacology 2009;34:249–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Kotlinska J, Liljequist S. The putative AMPA receptor antagonist, LY326325, produces anxiolytic-like effects without altering locomotor activity in rats. Pharmacol Biochem Behav 1998;60:119–124.

    Article  CAS  PubMed  Google Scholar 

  439. Fendt M. Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABA(A) receptors in the dorsal periaqueductal gray. Brain Res 2000;880:1–10.

    Article  CAS  PubMed  Google Scholar 

  440. Khan S, Liberzon I. Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology (Berl) 2004;172:225–229.

    Article  CAS  Google Scholar 

  441. Contractor A, Mulle C, Swanson GT. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 2011;34:154–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Matute C. Therapeutic potential of kainate receptors. CNS Neurosci Ther 2011;17:661–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Larsen AM, Bunch L. Medicinal chemistry of competitive kainate receptor antagonists. ACS Chem Neurosci 2011;2:60–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Pin JP, Galvez T, Prezeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003;98:325–354.

    Article  CAS  PubMed  Google Scholar 

  445. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37:205–237.

    Article  CAS  PubMed  Google Scholar 

  446. Krystal JH, Abi-Saab W, Perry E, D'Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 2005;179:303–309.

    Article  CAS  Google Scholar 

  447. Conn PJ, Lindsley CW, Jones CK. Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 2009;30:25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998;281:1349–1352.

    Article  CAS  PubMed  Google Scholar 

  449. Gewirtz JC, Marek GJ. Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 2000;23:569–576.

    Article  CAS  PubMed  Google Scholar 

  450. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005;4:131–144.

    Article  CAS  PubMed  Google Scholar 

  451. Linden AM, Shannon H, Baez M, Yu JL, Koester A, Schoepp DD. Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psychopharmacology (Berl) 2005;179:284–291.

    Article  CAS  Google Scholar 

  452. Klodzinska A, Chojnacka-Wojcik E, Palucha A, Branski P, Popik P, Pilc A. Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 1999;38:1831–1839.

    Article  CAS  PubMed  Google Scholar 

  453. Chaki S, Ago Y, Palucha-Paniewiera A, Matrisciano F, Pilc A. mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology 2013;66:40–52.

    Article  CAS  PubMed  Google Scholar 

  454. Moreno JL, Sealfon SC, Gonzalez-Maeso J. Group II metabotropic glutamate receptors and schizophrenia. Cell Mol Life Sci 2009;66:3777–3785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012;37:4–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. Chaki S, Hikichi H. Targeting of metabotropic glutamate receptors for the treatment of schizophrenia. Curr Pharm Des 2011;17:94–102.

    Article  CAS  PubMed  Google Scholar 

  457. Spooren WP, Gasparini F, van der Putten H, Koller M, Nakanishi S, Kuhn R. Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. Eur J Pharmacol 2000;397:R1–R2.

    Article  CAS  PubMed  Google Scholar 

  458. Fell MJ, Svensson KA, Johnson BG, Schoepp DD. Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 2008;326:209–217.

    Article  CAS  PubMed  Google Scholar 

  459. Woolley ML, Pemberton DJ, Bate S, Corti C, Jones DN. The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology (Berl) 2008;196:431–440.

    Article  CAS  Google Scholar 

  460. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 2007;13:1102–1107.

    Article  CAS  PubMed  Google Scholar 

  461. Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S, Jackson K, Kryzhanovskaya L, Jarkova N. A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 2011;31:349–355.

    Article  CAS  PubMed  Google Scholar 

  462. http://www.newsroom.lilly.com/releasedetail.cfm?releaseid=690836.

    Google Scholar 

  463. Adams DH, Kinon BJ, Baygani S, Millen BA, Velona I, Kollack-Walker S, Walling DP. A long-term, phase 2, multicenter, randomized, open-label, comparative safety study of pomaglumetad methionil (LY2140023 monohydrate) versus atypical antipsychotic standard of care in patients with schizophrenia. BMC Psychiatry 2013;13:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  464. https://www.investor.lilly.com/releaseDetail.cfm?ReleaseID=703018.

    Google Scholar 

  465. http://www.addextherapeutics.com/investors/press-releases/news-details/article/addex-reports-top-line-data-from-a-successful-phase-2a-clinical-study-with-adx71149-in-schizophrenia/.

    Google Scholar 

  466. Matosin N, Newell KA. Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 2013;37:256–268.

    Article  CAS  PubMed  Google Scholar 

  467. Hughes ZA, Neal SJ, Smith DL, Sukoff Rizzo SJ, Pulicicchio CM, Lotarski S, Lu S, Dwyer JM, Brennan J, Olsen M, Bender CN, Kouranova E, Andree TH, Harrison JE, Whiteside GT, Springer D, O'Neil SV, Leonard SK, Schechter LE, Dunlop J, Rosenzweig-Lipson S, Ring RH. Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression. Neuropharmacology 2013;66:202–214.

    Article  CAS  PubMed  Google Scholar 

  468. Kinney GG, O'Brien JA, Lemaire W, Burno M, Bickel DJ, Clements MK, Chen TB, Wisnoski DD, Lindsley CW, Tiller PR, Smith S, Jacobson MA, Sur C, Duggan ME, Pettibone DJ, Conn PJ, Williams Jr DL. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther 2005;313:199–206.

    Article  CAS  PubMed  Google Scholar 

  469. Horio M, Fujita Y, Hashimoto K. Therapeutic effects of metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on phencyclidine-induced cognitive deficits in mice. Fundam Clin Pharmacol 2012;27:483–488.

    Article  PubMed  CAS  Google Scholar 

  470. Gastambide F, Cotel MC, Gilmour G, O'Neill MJ, Robbins TW, Tricklebank MD. Selective remediation of reversal learning deficits in the neurodevelopmental MAM model of schizophrenia by a novel mGlu5 positive allosteric modulator. Neuropsychopharmacology 2012;37:1057–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Liu F, Grauer S, Kelley C, Navarra R, Graf R, Zhang G, Atkinson PJ, Popiolek M, Wantuch C, Khawaja X, Smith D, Olsen M, Kouranova E, Lai M, Pruthi F, Pulicicchio C, Day M, Gilbert A, Pausch MH, Brandon NJ, Beyer CE, Comery TA, Logue S, Rosenzweig-Lipson S, Marquis KL. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone]: a novel metabotropic glutamate receptor 5-selective positive allosteric modulator with preclinical antipsychotic-like and procognitive activities. J Pharmacol Exp Ther 2008;327:827–839.

    Article  CAS  PubMed  Google Scholar 

  472. Rodriguez AL, Grier MD, Jones CK, Herman EJ, Kane AS, Smith RL, Williams R, Zhou Y, Marlo JE, Days EL, Blatt TN, Jadhav S, Menon UN, Vinson PN, Rook JM, Stauffer SR, Niswender CM, Lindsley CW, Weaver CD, Conn PJ. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 2010;78:1105–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Spear N, Gadient RA, Wilkins DE, Do M, Smith JS, Zeller KL, Schroeder P, Zhang M, Arora J, Chhajlani V. Preclinical profile of a novel metabotropic glutamate receptor 5 positive allosteric modulator. Eur J Pharmacol 2011;659:146–154.

    Article  CAS  PubMed  Google Scholar 

  474. Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B. Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004;29:1259–1269.

    Article  CAS  PubMed  Google Scholar 

  475. Attucci S, Carla V, Mannaioni G, Moroni F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001;132:799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Alagarsamy S, Marino MJ, Rouse ST, Gereau RW, Heinemann SF, Conn PJ. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 1999;2:234–240.

    Article  CAS  PubMed  Google Scholar 

  477. Field JR, Walker AG, Conn PJ. Targeting glutamate synapses in schizophrenia. Trends Mol Med 2011;17:689–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  478. Darrah JM, Stefani MR, Moghaddam B. Interaction of N-methyl-D-aspartate and group 5 metabotropic glutamate receptors on behavioral flexibility using a novel operant set-shift paradigm. Behav Pharmacol 2008;19:225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  479. Palucha A, Branski P, Szewczyk B, Wieronska JM, Klak K, Pilc A. Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav 2005;81:901–906.

    Article  CAS  PubMed  Google Scholar 

  480. Belozertseva IV, Kos T, Popik P, Danysz W, Bespalov AY. Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol 2007;17:172–179.

    Article  CAS  PubMed  Google Scholar 

  481. Tokita K, Yamaji T, Hashimoto K. Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 2012;100:688–704.

    Article  CAS  PubMed  Google Scholar 

  482. Li X, Need AB, Baez M, Witkin JM. Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice. J Pharmacol Exp Ther 2006;319:254–259.

    Article  CAS  PubMed  Google Scholar 

  483. Brown RM, Mustafa S, Ayoub MA, Dodd PR, Pfleger KD, Lawrence AJ. mGlu5 receptor functional interactions and addiction. Front Pharmacol 2012;3:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  484. Fatemi SH, Folsom TD, Kneeland RE, Liesch SB. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken) 2011;294:1635–1645.

    Article  CAS  Google Scholar 

  485. Fatemi SH, Folsom TD, Kneeland RE, Yousefi MK, Liesch SB, Thuras PD. Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex. Mol Autism 2013;4:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  486. Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. mRNA and protein expression for novel GABAA receptors theta and rho2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl Psychiatry 2013;3:e271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  487. Hines RM, Davies PA, Moss SJ, Maguire J. Functional regulation of GABAA receptors in nervous system pathologies. Curr Opin Neurobiol 2012;22:552–558.

    Article  CAS  PubMed  Google Scholar 

  488. Engin E, Liu J, Rudolph U. alpha2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol Ther 2012;136:142–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Jones KA, Tamm JA, Craig DA, Ph D, Yao W, Panico R. Signal transduction by GABA(B) receptor heterodimers. Neuropsychopharmacology 2000;23:S41–S49.

    Article  CAS  PubMed  Google Scholar 

  490. Couve A, Moss SJ, Pangalos MN. GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci 2000;16:296–312.

    Article  CAS  PubMed  Google Scholar 

  491. Billinton A, Ige AO, Bolam JP, White JH, Marshall FH, Emson PC. Advances in the molecular understanding of GABA(B) receptors. Trends Neurosci 2001;24:277–282.

    Article  CAS  PubMed  Google Scholar 

  492. Olsen RW, Hanchar HJ, Meera P, Wallner M. GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 2007;41:201–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD. GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2009;39:223–230.

    Article  PubMed  PubMed Central  Google Scholar 

  494. Stan AD, Lewis DA. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies. Curr Pharm Biotechnol 2012;13:1557–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  495. Avila A, Nguyen L, Rigo JM. Glycine receptors and brain development. Front Cell Neurosci 2013;7:184.

    Article  PubMed  PubMed Central  Google Scholar 

  496. Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K, Waldvogel HJ, Gibbon F, Smart TG, Owen MJ, Harvey RJ, Snell RG. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 2003;278:24688–24696.

    Article  CAS  PubMed  Google Scholar 

  497. Lynch JW, Callister RJ. Glycine receptors: a new therapeutic target in pain pathways. Curr Opin Investig Drugs 2006;7:48–53.

    CAS  PubMed  Google Scholar 

  498. Burnstock G. Purinergic nerves. Pharmacol Rev 1972;24:509–581.

    CAS  PubMed  Google Scholar 

  499. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci 2009;32:19–29.

    Article  CAS  PubMed  Google Scholar 

  500. Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008;7:575–590.

    Article  CAS  PubMed  Google Scholar 

  501. Lucae S, Salyakina D, Barden N, Harvey M, Gagne B, Labbe M, Binder EB, Uhr M, Paez-Pereda M, Sillaber I, Ising M, Bruckl T, Lieb R, Holsboer F, Muller-Myhsok B. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 2006;15:2438–2445.

    Article  CAS  PubMed  Google Scholar 

  502. Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C, Labbe M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Muller-Myhsok B. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006;141B:374–382.

    Article  CAS  PubMed  Google Scholar 

  503. Ushijima I, Mizuki Y, Hara T, Kaneyuki H, Mashimoto S, Kajimura N, Yamada M. Effects of dilazep (Comelian) on the central purinergic system: inhibitory effects on clonidine-induced aggressive behavior. Eur J Pharmacol 1989;161:245–248.

    Article  CAS  PubMed  Google Scholar 

  504. Inoue K, Koizumi S, Ueno S. Implication of ATP receptors in brain functions. Prog Neurobiol 1996;50:483–492.

    Article  CAS  PubMed  Google Scholar 

  505. Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev 2011;63:461–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  506. Gambi F, De Berardis D, Sepede G, Quartesan R, Calcagni E, Salerno RM, Conti CM, Ferro FM. Cannabinoid receptors and their relationships with neuropsychiatric disorders. Int J Immunopathol Pharmacol 2005;18:15–19.

    CAS  PubMed  Google Scholar 

  507. Murray RM, Morrison PD, Henquet C, Di Forti M. Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 2007;8:885–895.

    Article  CAS  PubMed  Google Scholar 

  508. Dean B, Sundram S, Bradbury R, Scarr E, Copolov D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 2001;103:9–15.

    Article  CAS  PubMed  Google Scholar 

  509. Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB, Mann JJ, Arango V. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 2004;9:184–190.

    Google Scholar 

  510. Vinod KY, Arango V, Xie S, Kassir SA, Mann JJ, Cooper TB, Hungund BL. Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims. Biol Psychiatry 2005;57:480–486.

    Article  CAS  PubMed  Google Scholar 

  511. Mato S, Chevaleyre V, Robbe D, Pazos A, Castillo PE, Manzoni OJ. A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci 2004;7:585–586.

    Article  CAS  PubMed  Google Scholar 

  512. Kieffer BL. Opioids: first lessons from knockout mice. Trends Pharmacol Sci 1999;20:19–26.

    Article  CAS  PubMed  Google Scholar 

  513. Jordan B, Devi LA. Molecular mechanisms of opioid receptor signal transduction. Br J Anaesth 1998;81:12–19.

    Article  CAS  PubMed  Google Scholar 

  514. Jutkiewicz EM, Rice KC, Woods JH, Winsauer PJ. Effects of the delta-opioid receptor agonist SNC80 on learning relative to its antidepressant-like effects in rats. Behav Pharmacol 2003;14:509–516.

    Article  CAS  PubMed  Google Scholar 

  515. Broom DC, Jutkiewicz EM, Rice KC, Traynor JR, Woods JH. Behavioral effects of delta-opioid receptor agonists: potential antidepressants? Jpn J Pharmacol 2002;90:1–6.

    Article  CAS  PubMed  Google Scholar 

  516. Perrine SA, Hoshaw BA, Unterwald EM. Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol 2006;147:864–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Saitoh A, Kimura Y, Suzuki T, Kawai K, Nagase H, Kamei J. Potential anxiolytic and antidepressant-like activities of SNC80, a selective delta-opioid agonist, in behavioral models in rodents. J Pharmacol Sci 2004;95:374–380.

    Article  CAS  PubMed  Google Scholar 

  518. Nicoletti M, Neri G, Maccauro G, Tripodi D, Varvara G, Saggini A, Potalivo G, Castellani ML, Fulcheri M, Rosati M, Toniato E, Caraffa A, Antinolfi P, Cerulli G, Pandolfi F, Galzio R, Conti P, Theoharides TC. Impact of neuropeptide substance P an inflammatory compound on arachidonic acid compound generation. Int J Immunopathol Pharmacol 2012;25:849–857.

    CAS  PubMed  Google Scholar 

  519. Rameshwar P. The tachykinergic system as avenues for drug intervention. Recent Pat CNS Drug Discov 2012;7:173–180.

    Article  CAS  PubMed  Google Scholar 

  520. Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 2012;11:462–478.

    Article  CAS  PubMed  Google Scholar 

  521. Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: an update. Peptides 2011;32:1972–1978.

    Article  CAS  PubMed  Google Scholar 

  522. Ku YH, Tan L, Li LS, Ding X. Role of corticotropin-releasing factor and substance P in pressor responses of nuclei controlling emotion and stress. Peptides 1998;19:677–682.

    Article  CAS  PubMed  Google Scholar 

  523. Helke CJ, Krause JE, Mantyh PW, Couture R, Bannon MJ. Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms. Faseb J 1990;4:1606–1615.

    CAS  PubMed  Google Scholar 

  524. Culman J, Unger T. Central tachykinins: mediators of defence reaction and stress reactions. Can J Physiol Pharmacol 1995;73:885–891.

    Article  CAS  PubMed  Google Scholar 

  525. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998;281:1640–1645.

    Article  CAS  PubMed  Google Scholar 

  526. Culman J, Klee S, Ohlendorf C, Unger T. Effect of tachykinin receptor inhibition in the brain on cardiovascular and behavioral responses to stress. J Pharmacol Exp Ther 1997;280:238–246.

    CAS  PubMed  Google Scholar 

  527. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, Hargreaves R, Hietala J, Lines C, Beebe K, Reines S. Lack of efficacy of the substance P (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006;59:216–223.

    Article  CAS  PubMed  Google Scholar 

  528. McCann CS, Brobeck JR. Evidence for a role of the supraopticohypophyseal system in regulation of adrenocorticotrophin secretion. Proc Soc Exp Biol Med 1954;87:318–324.

    Article  CAS  PubMed  Google Scholar 

  529. Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 1993;14:76–122.

    Article  CAS  PubMed  Google Scholar 

  530. Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 1994;15:321–350.

    Article  CAS  PubMed  Google Scholar 

  531. Young LJ, Toloczko D, Insel TR. Localization of vasopressin (V1a) receptor binding and mRNA in the rhesus monkey brain. J Neuroendocrinol 1999;11:291–297.

    Article  CAS  PubMed  Google Scholar 

  532. Lolait SJ, O'Carroll AM, Mahan LC, Felder CC, Button DC, Young WS 3rd, Mezey E, Brownstein MJ. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci USA 1995;92:6783–6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  533. Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 1998;139:5015–5033.

    CAS  PubMed  Google Scholar 

  534. Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996;53:137–143.

    Article  CAS  PubMed  Google Scholar 

  535. Gjerris A, Hammer M, Vendsborg P, Christensen NJ, Rafaelsen OJ. Cerebrospinal fluid vasopressin–changes in depression. Br J Psychiatry 1985;147:696–701.

    Article  CAS  PubMed  Google Scholar 

  536. van Londen L, Goekoop JG, van Kempen GM, Frankhuijzen-Sierevogel AC, Wiegant VM, van der Velde EA, De Wied D. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 1997;17:284–292.

    Article  PubMed  Google Scholar 

  537. Zhou JN, Riemersma RF, Unmehopa UA, Hoogendijk WJ, van Heerikhuize JJ, Hofman MA, Swaab DF. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 2001;58:655–662.

    Article  CAS  PubMed  Google Scholar 

  538. Altemus M, Pigott T, Kalogeras KT, Demitrack M, Dubbert B, Murphy DL, Gold PW. Abnormalities in the regulation of vasopressin and corticotropin releasing factor secretion in obsessive-compulsive disorder. Arch Gen Psychiatry 1992;49:9–20.

    Article  CAS  PubMed  Google Scholar 

  539. Dinan TG, Lavelle E, Scott LV, Newell-Price J, Medbak S, Grossman AB. Desmopressin normalizes the blunted adrenocorticotropin response to corticotropin-releasing hormone in melancholic depression: evidence of enhanced vasopressinergic responsivity. J Clin Endocrinol Metab 1999;84:2238–2240.

    Article  CAS  PubMed  Google Scholar 

  540. Holsboer F, Barden N. Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 1996;17:187–205.

    Article  CAS  PubMed  Google Scholar 

  541. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 2002;99:6370–6375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  542. Roper J, O'Carroll AM, Young W 3rd, Lolait S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress 2011;14:98–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  543. Griebel G, Stemmelin J, Gal CS, Soubrie P. Non-peptide vasopressin V1b receptor antagonists as potential drugs for the treatment of stress-related disorders. Curr Pharm Des 2005;11:1549–1559.

    Article  CAS  PubMed  Google Scholar 

  544. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981;213:1394–1397.

    Article  CAS  PubMed  Google Scholar 

  545. Arzt E, Holsboer F. CRF signaling: molecular specificity for drug targeting in the CNS. Trends Pharmacol Sci 2006;27:531–538.

    Article  CAS  PubMed  Google Scholar 

  546. Valdez GR. Development of CRF1 receptor antagonists as antidepressants and anxiolytics: progress to date. CNS Drugs 2006;20:887–896.

    Article  CAS  PubMed  Google Scholar 

  547. Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM. International union of pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 2003;55:21–26.

    Article  CAS  PubMed  Google Scholar 

  548. Keller PA, McCluskey A, Morgan J, O'Connor SM. The role of the HPA axis in psychiatric disorders and CRF antagonists as potential treatments. Arch Pharm (Weinheim) 2006;339:346–355.

    Article  CAS  Google Scholar 

  549. Welberg LA, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001;13:113–128.

    Article  CAS  PubMed  Google Scholar 

  550. Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000;34:171–181.

    Article  CAS  PubMed  Google Scholar 

  551. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci 2011;34:411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  552. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 2013;14:7–23.

    Article  CAS  PubMed  Google Scholar 

  553. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;361:1545–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  554. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003;4:299–309.

    Article  CAS  PubMed  Google Scholar 

  555. Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 2006;30:215–238.

    Article  CAS  PubMed  Google Scholar 

  556. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 2009;199:89–102.

    Article  PubMed  Google Scholar 

  557. Feltenstein MW, See RE. The neurocircuitry of addiction: an overview. Br J Pharmacol 2008;154:261–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  558. Vialou V, Feng J, Robison AJ, Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 2013;53:59–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  559. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010;13:1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  560. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006;311:864–868.

    Article  CAS  PubMed  Google Scholar 

  561. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519–525.

    Article  CAS  PubMed  Google Scholar 

  562. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ. Neurobiology of resilience. Nat Neurosci 2012;15:1475–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  563. Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green T, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007;131:391–404.

    Article  CAS  PubMed  Google Scholar 

  564. McGinty JF, Whitfield TW Jr, Berglind WJ. Brain-derived neurotrophic factor and cocaine addiction. Brain Res 2010;1314:183–193.

    Article  CAS  PubMed  Google Scholar 

  565. McCarthy DM, Brown AN, Bhide PG. Regulation of BDNF expression by cocaine. Yale J Biol Med 2012;85:437–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  566. Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han M-H, Nestler EJ. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010;330:385–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  567. Koo JW, Mazei-Robison MS, Chaudhury D, Juarez B, LaPlant Q, Ferguson D, Feng J, Sun H, Scobie KN, Damez-Werno D, Crumiller M, Ohnishi YN, Ohnishi YH, Mouzon E, Dietz DM, Lobo MK, Neve RL, Russo SJ, Han MH, Nestler EJ. BDNF is a negative modulator of morphine action. Science 2012;338:124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  568. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci 2005;28:436–445.

    Article  CAS  PubMed  Google Scholar 

  569. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 2009;56 Suppl 1:73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  570. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010;33:267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  571. Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, Malenka RC. CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 2006;9:475–477.

    Article  CAS  PubMed  Google Scholar 

  572. Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iniguez SD, Cao JL, Kirk A, Chakravarty S, Kumar A, Krishnan V, Neve RL, Cooper DC, Bolanos CA, Barrot M, McClung CA, Nestler EJ. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 2009;12:200–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  573. Covington HE 3rd, Maze I, Sun H, Bomze HM, Demaio KD, Wu EY, Dietz DM, Lobo MK, Ghose S, Mouzon E, Neve RL, Tamminga CA, Nestler EJ. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 2011;71:656–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  574. Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell 2002;14 Suppl:S375–S388.

    PubMed  Google Scholar 

  575. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001;81:153–208.

    CAS  PubMed  Google Scholar 

  576. Zheng ZL, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 2000;44:1–9.

    Article  CAS  PubMed  Google Scholar 

  577. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002;420:788–794.

    Article  CAS  PubMed  Google Scholar 

  578. Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol 2002;64:313–353.

    Article  CAS  PubMed  Google Scholar 

  579. Penzes P, Jones KA. Dendritic spine dynamics—a key role for kalirin-7. Trends Neurosci 2008;31:419–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  580. Dietz DM, Sun H, Lobo MK, Cahill ME, Chadwick B, Gao V, Koo JW, Mazei-Robison MS, Dias C, Maze I, Damez-Werno D, Dietz KC, Scobie KN, Ferguson D, Christoffel D, Ohnishi Y, Hodes GE, Zheng Y, Neve RL, Hahn KM, Russo SJ, Nestler EJ. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci 2012;15:891–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  581. Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K, Cahill ME, Dias C, Ribeiro E, Ables JL, Kennedy PJ, Robison AJ, Gonzalez-Maeso J, Neve RL, Turecki G, Ghose S, Tamminga CA, Russo SJ. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 2013;19:337–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  582. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  583. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. Biochim Biophys Acta 2009;1790:1067–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  584. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature 2013;493:338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  585. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009;63:761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  586. Meffre J, Chaumont-Dubel S, Mannoury la Cour C, Loiseau F, Watson DJ, Dekeyne A, Seveno M, Rivet JM, Gaven F, Deleris P, Herve D, Fone KC, Bockaert J, Millan MJ, Marin P. 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol Med 2012;4:1043–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  587. Mazei-Robison MS, Koo JW, Friedman AK, Lansink CS, Robison AJ, Vinish M, Krishnan V, Kim S, Siuta MA, Galli A, Niswender KD, Appasani R, Horvath MC, Neve RL, Worley PF, Snyder SH, Hurd YL, Cheer JF, Han MH, Russo SJ, Nestler EJ. Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 2011;72:977–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  588. Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR signaling in Parkinson's disease prevents L-DOPA-induced dyskinesia. Sci Signal 2009;2:ra36.

    Article  PubMed  Google Scholar 

  589. Subramaniam S, Napolitano F, Mealer RG, Kim S, Errico F, Barrow R, Shahani N, Tyagi R, Snyder SH, Usiello A. Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia. Nat Neurosci 2012;15:191–193.

    Article  CAS  PubMed Central  Google Scholar 

  590. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, Krnjevic K, Roman G, Costa-Mattioli M. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 2013;16:441–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  591. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature 2013;497:217–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  592. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998;19:269–301.

    PubMed  Google Scholar 

  593. Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003;463:235–272.

    Article  CAS  PubMed  Google Scholar 

  594. Webster Marketon JI, Glaser R. Stress hormones and immune function. Cell Immunol 2008;252:16–26.

    Article  CAS  PubMed  Google Scholar 

  595. van Praag HM. Depression. Lancet 1982;2:1259–1264.

    PubMed  Google Scholar 

  596. Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984;226:1342–1344.

    Article  CAS  PubMed  Google Scholar 

  597. Maes M, Meltzer HY, D'Hondt P, Cosyns P, Blockx P. Effects of serotonin precursors on the negative feedback effects of glucocorticoids on hypothalamic-pituitary-adrenal axis function in depression. Psychoneuroendocrinology 1995;20:149–167.

    Article  CAS  PubMed  Google Scholar 

  598. Meador-Woodruff JH, Greden JF, Grunhaus L, Haskett RF. Severity of depression and hypothalamic-pituitary-adrenal axis dysregulation: identification of contributing factors. Acta Psychiatr Scand 1990;81:364–371.

    Article  CAS  PubMed  Google Scholar 

  599. Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S. Abnormalities in metabolism and hypothalamic-pituitary-adrenal axis function in schizophrenia. Int Rev Neurobiol 2011;101:145–168.

    Article  CAS  PubMed  Google Scholar 

  600. Wingenfeld K, Wolf OT. HPA axis alterations in mental disorders: impact on memory and its relevance for therapeutic interventions. CNS Neurosci Ther 2011;17:714–722.

    Article  CAS  PubMed  Google Scholar 

  601. Holloway T, Moreno JL, Umali A, Rayannavar V, Hodes GE, Russo SJ, Gonzalez-Maeso J. Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci 2013;33:1088–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  602. Phillips DI. Programming of the stress response: a fundamental mechanism underlying the long-term effects of the fetal environment? J Intern Med 2007;261:453–460.

    Article  CAS  PubMed  Google Scholar 

  603. Talge NM, Neal C, Glover V. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 2007;48:245–261.

    Article  PubMed  Google Scholar 

  604. Wilson CA, Vazdarjanova A, Terry Jr AV. Exposure to variable prenatal stress in rats: effects on anxiety-related behaviors, innate and contextual fear, and fear extinction. Behav Brain Res 2013;238:279–288.

    Article  PubMed  PubMed Central  Google Scholar 

  605. Vazdarjanova A, McGaugh JL. Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proc Natl Acad Sci USA 1998;95:15003–15007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  606. Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL. Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 2005;156:251–261.

    Article  PubMed  Google Scholar 

  607. Markham JA, Taylor AR, Taylor SB, Bell DB, Koenig JI. Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat. Front Behav Neurosci 2010;4:173.

    Article  PubMed  PubMed Central  Google Scholar 

  608. Vanbesien-Mailliot CC, Wolowczuk I, Mairesse J, Viltart O, Delacre M, Khalife J, Chartier-Harlin MC, Maccari S. Prenatal stress has pro-inflammatory consequences on the immune system in adult rats. Psychoneuroendocrinology 2007;32:114–124.

    Article  CAS  PubMed  Google Scholar 

  609. Koenig JI, Kirkpatrick B, Lee P. Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 2002;27:309–318.

    Article  CAS  PubMed  Google Scholar 

  610. Brunton PJ, Russell JA. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 2010;22:258–271.

    Article  CAS  PubMed  Google Scholar 

  611. Welberg LA, Thrivikraman KV, Plotsky PM. Chronic maternal stress inhibits the capacity to up-regulate placental 11beta-hydroxysteroid dehydrogenase type 2 activity. J Endocrinol 2005;186:R7–R12.

    Article  CAS  PubMed  Google Scholar 

  612. Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf) 1997;46:161–166.

    Article  CAS  Google Scholar 

  613. Waddell BJ, Benediktsson R, Brown RW, Seckl JR. Tissue-specific messenger ribonucleic acid expression of 11beta-hydroxysteroid dehydrogenase types 1 and 2 and the glucocorticoid receptor within rat placenta suggests exquisite local control of glucocorticoid action. Endocrinology 1998;139:1517–1523.

    CAS  PubMed  Google Scholar 

  614. Sun K, Adamson SL, Yang K, Challis JR. Interconversion of cortisol and cortisone by 11β-hydroxysteroid dehydrogenases type 1 and 2 in the perfused human placenta. Placenta 1999;20:13–19.

    Article  PubMed  Google Scholar 

  615. Frim DM, Emanuel RL, Robinson BG, Smas CM, Adler GK, Majzoub JA. Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J Clin Invest 1988;82:287–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  616. Wolkowitz OM, Burke H, Epel ES, Reus VI. Glucocorticoids. Mood, memory, and mechanisms. Ann N Y Acad Sci 2009;1179:19–40.

    Article  CAS  PubMed  Google Scholar 

  617. Levitt NS, Lindsay RS, Holmes MC, Seckl JR. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 1996;64:412–418.

    Article  CAS  PubMed  Google Scholar 

  618. Shoener JA, Baig R, Page KC. Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol Regul Integr Comp Physiol 2006;290:R1366–R1373.

    Article  CAS  PubMed  Google Scholar 

  619. Barbazanges A, Piazza PV, Le Moal M, Maccari S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 1996;16:3943–3949.

    CAS  PubMed  Google Scholar 

  620. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006;7:137–151.

    Article  CAS  PubMed  Google Scholar 

  621. Gallagher P, Reid KS, Ferrier IN. Neuropsychological functioning in health and mood disorder: modulation by glucocorticoids and their receptors. Psychoneuroendocrinology 2009;34 Suppl 1:S196–S207.

    Article  CAS  PubMed  Google Scholar 

  622. Nikisch G. Involvement and role of antidepressant drugs of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor function. Neuro Endocrinol Lett 2009;30:11–16.

    CAS  PubMed  Google Scholar 

  623. Schule C, Baghai TC, Eser D, Rupprecht R. Hypothalamic-pituitary-adrenocortical system dysregulation and new treatment strategies in depression. Expert Rev Neurother 2009;9:1005–1019.

    Article  PubMed  Google Scholar 

  624. Wulsin AC, Herman JP, Solomon MB. Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology 2010;35:1100–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  625. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005;6:463–475.

    Article  PubMed  CAS  Google Scholar 

  626. Levine S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 2005;30:939–946.

    Article  PubMed  Google Scholar 

  627. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009;12:1559–1566.

    Article  CAS  PubMed  Google Scholar 

  628. Buss C, Lord C, Wadiwalla M, Hellhammer DH, Lupien SJ, Meaney MJ, Pruessner JC. Maternal care modulates the relationship between prenatal risk and hippocampal volume in women but not in men. J Neurosci 2007;27:2592–2595.

    Article  CAS  PubMed  Google Scholar 

  629. Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338:436–445.

    Article  CAS  PubMed  Google Scholar 

  630. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron 2009;64:61–78.

    Article  CAS  PubMed  Google Scholar 

  631. Tran PB, Miller RJ. Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 2003;4:444–455.

    Article  CAS  PubMed  Google Scholar 

  632. Rostene W, Kitabgi P, Parsadaniantz SM. Chemokines: a new class of neuromodulator? Nat Rev Neurosci 2007;8:895–903.

    Article  CAS  PubMed  Google Scholar 

  633. Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 2009;35:959–972.

    Article  PubMed  PubMed Central  Google Scholar 

  634. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol 2006;147 Suppl 1:S232–S240.

    CAS  PubMed  PubMed Central  Google Scholar 

  635. Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 2000;157:683–694.

    Article  CAS  PubMed  Google Scholar 

  636. Stone JL, O'Donovan MC, Gurling H, Kirov GK, Blackwood DH, Corvin A, Craddock NJ, Gill M, Hultman CM, Lichtenstein P, McQuillin A, Pato CN, Ruderfer DM, Owen MJ, St Clair D, Sullivan PF, Sklar P, Purcell Leader SM, Stone JL, Ruderfer DM, Korn J, Kirov GK, Macgregor S, McQuillin A, Morris DW, O'Dushlaine CT, Daly MJ, Visscher PM, Holmans PA, O'Donovan MC, Sullivan PF, Sklar P, Purcell Leader SM, Gurling H, Corvin A, Blackwood DH, Craddock NJ, Gill M, Hultman CM, Kirov GK, Lichtenstein P, McQuillin A, O'Donovan MC, Owen MJ, Pato CN, Purcell SM, Scolnick EM, St Clair D, Stone JL, Sullivan PF, Sklar Leader P, O'Donovan MC, Kirov GK, Craddock NJ, Holmans PA, Williams NM, Georgieva L, Nikolov I, Norton N, Williams H, Toncheva D, Milanova V, Owen MJ, Hultman CM, Lichtenstein P, Thelander EF, Sullivan P, Morris DW, O'Dushlaine CT, Kenny E, Waddington JL, Gill M, Corvin A, McQuillin A, Choudhury K, Datta S, Pimm J, Thirumalai S, Puri V, Krasucki R, Lawrence J, Quested D, Bass N, Curtis D, Gurling H, Crombie C, Fraser G, Leh Kwan S, Walker N, St Clair D, Blackwood DH, Muir WJ, McGhee KA, Pickard B, Malloy P, Maclean AW, Van Beck M, Visscher PM, Macgregor S, Pato MT, Medeiros H, Middleton F, Carvalho C, Morley C, Fanous A, Conti D, Knowles JA, Paz Ferreira C, Macedo A, Helena Azevedo M, Pato CN, Stone JL, Ruderfer DM, Korn J, McCarroll SA, Daly M, Purcell SM, Sklar P, Purcell SM, Stone JL, Chambert K, Ruderfer DM, Korn J, McCarroll SA, Gates C, Gabriel SB, Mahon S, Ardlie K, Daly MJ, Scolnick EM, Sklar P. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237–241.

    Article  CAS  Google Scholar 

  637. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008;320:539–543.

    Article  CAS  PubMed  Google Scholar 

  638. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA. Common variants conferring risk of schizophrenia. Nature 2009;460:744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  639. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, Fossdal R, Sigurdsson E, Sigmundsson T, Buizer-Voskamp JE, Hansen T, Jakobsen KD, Muglia P, Francks C, Matthews PM, Gylfason A, Halldorsson BV, Gudbjartsson D, Thorgeirsson TE, Sigurdsson A, Jonasdottir A, Jonasdottir A, Bjornsson A, Mattiasdottir S, Blondal T, Haraldsson M, Magnusdottir BB, Giegling I, Moller HJ, Hartmann A, Shianna KV, Ge D, Need AC, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Paunio T, Toulopoulou T, Bramon E, Di Forti M, Murray R, Ruggeri M, Vassos E, Tosato S, Walshe M, Li T, Vasilescu C, Muhleisen TW, Wang AG, Ullum H, Djurovic S, Melle I, Olesen J, Kiemeney LA, Franke B, Sabatti C, Freimer NB, Gulcher JR, Thorsteinsdottir U, Kong A, Andreassen OA, Ophoff RA, Georgi A, Rietschel M, Werge T, Petursson H, Goldstein DB, Nothen MM, Peltonen L, Collier DA, St Clair D, Stefansson K, Kahn RS, Linszen DH, van Os J, Wiersma D, Bruggeman R, Cahn W, de Haan L, Krabbendam L, Myin-Germeys I. Large recurrent microdeletions associated with schizophrenia. Nature 2008;455:232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  640. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748–752.

    CAS  PubMed  Google Scholar 

  641. McGuffin P, Asherson P, Owen M, Farmer A. The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 1994;164:593–599.

    Article  CAS  PubMed  Google Scholar 

  642. Gottesman II, Erlenmeyer-Kimling L. Family and twin strategies as a head start in defining prodromes and endophenotypes for hypothetical early-interventions in schizophrenia. Schizophr Res 2001;51:93–102.

    Article  CAS  PubMed  Google Scholar 

  643. Cardno AG, Gottesman II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000;97:12–17.

    Article  CAS  PubMed  Google Scholar 

  644. Gottesman II. Schizophrenia and genesis: the origin of madness. New York: W.H. Freeman; 1991.

    Google Scholar 

  645. Brown AS, Schaefer CA, Quesenberry Jr CP, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 2005;162:767–773.

    Article  PubMed  Google Scholar 

  646. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004;61:774–780.

    Article  PubMed  Google Scholar 

  647. Brown AS, Cohen P, Harkavy-Friedman J, Babulas V, Malaspina D, Gorman JM, Susser ES. A.E. Bennett Research Award. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry 2001;49:473–486.

    Article  CAS  PubMed  Google Scholar 

  648. Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 2006;163:927–929.

    Article  PubMed  Google Scholar 

  649. Sorensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull 2009;35:631–637.

    Article  PubMed  PubMed Central  Google Scholar 

  650. Menninger KA. Psychoses associated with influenza. J Am Med Assoc 1919;72:235–241.

    Article  Google Scholar 

  651. Yudofsky SC. Contracting schizophrenia: lessons from the influenza epidemic of 1918–1919. JAMA 2009;301:324–326.

    Article  CAS  PubMed  Google Scholar 

  652. Kneeland RE, Fatemi SH. Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013;42:35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  653. Susser E, St Clair D, He L. Latent effects of prenatal malnutrition on adult health: the example of schizophrenia. Ann N Y Acad Sci 2008;1136:185–192.

    Article  PubMed  Google Scholar 

  654. van Os J, Selten JP. Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry 1998;172:324–326.

    Article  PubMed  Google Scholar 

  655. Malaspina D, Corcoran C, Kleinhaus KR, Perrin MC, Fennig S, Nahon D, Friedlander Y, Harlap S. Acute maternal stress in pregnancy and schizophrenia in offspring: a cohort prospective study. BMC Psychiatry 2008;8:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  656. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 2008;65:146–152.

    Article  PubMed  Google Scholar 

  657. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 2006;11:47–55.

    Article  CAS  PubMed  Google Scholar 

  658. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 2008;13:208–221.

    Article  CAS  PubMed  Google Scholar 

  659. Gilmore JH, Fredrik Jarskog L, Vadlamudi S, Lauder JM. Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNFα inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004;29:1221–1229.

    Article  CAS  PubMed  Google Scholar 

  660. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007;27:10695–10702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  661. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, Perrin M, Gorman JM, Susser ES. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 2004;161:889–895.

    Article  PubMed  Google Scholar 

  662. Moreno JL, Kurita M, Holloway T, Lopez J, Cadagan R, Martinez-Sobrido L, Garcia-Sastre A, Gonzalez-Maeso J. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT2A and mGlu2 receptors in the adult offspring. J Neurosci 2011;31:1863–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  663. Fatemi SH, Folsom TD, Rooney RJ, Mori S, Kornfield TE, Reutiman TJ, Kneeland RE, Liesch SB, Hua K, Hsu J, Patel DH. The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology 2012;62:1290–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  664. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999;4:145–154.

    Article  CAS  PubMed  Google Scholar 

  665. Fatemi SH, Emamian ES, Sidwell RW, Kist DA, Stary JM, Earle JA, Thuras P. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice. Mol Psychiatry 2002;7:633–640.

    Article  CAS  PubMed  Google Scholar 

  666. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003;23:297–302.

    PubMed  Google Scholar 

  667. Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S, Smee DF, Pearce DA, Winter C, Sohr R, Juckel G. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 2008;99:56–70.

    Article  PubMed  PubMed Central  Google Scholar 

  668. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, Szustakowki J, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ. Initial sequencing and analysis of the human genome. Nature 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  669. McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, Sekhon M, Wylie K, Mardis ER, Wilson RK, Fulton R, Kucaba TA, Wagner-McPherson C, Barbazuk WB, Gregory SG, Humphray SJ, French L, Evans RS, Bethel G, Whittaker A, Holden JL, McCann OT, Dunham A, Soderlund C, Scott CE, Bentley DR, Schuler G, Chen HC, Jang W, Green ED, Idol JR, Maduro VV, Montgomery KT, Lee E, Miller A, Emerling S, Kucherlapati R, Gibbs R, Scherer S, Gorrell JH, Sodergren E, Clerc-Blankenburg K, Tabor P, Naylor S, Garcia D, de Jong PJ, Catanese JJ, Nowak N, Osoegawa K, Qin S, Rowen L, Madan A, Dors M, Hood L, Trask B, Friedman C, Massa H, Cheung VG, Kirsch IR, Reid T, Yonescu R, Weissenbach J, Bruls T, Heilig R, Branscomb E, Olsen A, Doggett N, Cheng JF, Hawkins T, Myers RM, Shang J, Ramirez L, Schmutz J, Velasquez O, Dixon K, Stone NE, Cox DR, Haussler D, Kent WJ, Furey T, Rogic S, Kennedy S, Jones S, Rosenthal A, Wen G, Schilhabel M, Gloeckner G, Nyakatura G, Siebert R, Schlegelberger B, Korenberg J, Chen XN, Fujiyama A, Hattori M, Toyoda A, Yada T, Park HS, Sakaki Y, Shimizu N, Asakawa S, Kawasaki K, Sasaki T, Shintani A, Shimizu A, Shibuya K, Kudoh J, Minoshima S, Ramser J, Seranski P, Hoff C, Poustka A, Reinhardt R, Lehrach H. A physical map of the human genome. Nature 2001;409:934–941.

    Google Scholar 

  670. Dulac C. Brain function and chromatin plasticity. Nature 2010;465:728–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  671. Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60:961–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  673. Day JJ, Sweatt JD. Epigenetic mechanisms in cognition. Neuron 2011;70:813–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  674. Bhaumik SR, Smith E, Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 2007;14:1008–1016.

    Article  CAS  PubMed  Google Scholar 

  675. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669–681.

    Article  CAS  PubMed  Google Scholar 

  676. Berger SL. The complex language of chromatin regulation during transcription. Nature 2007;447:407–412.

    Article  CAS  PubMed  Google Scholar 

  677. Ptak C, Petronis A. Epigenetics and complex disease: from etiology to new therapeutics. Annu Rev Pharmacol Toxicol 2008;48:257–276.

    Article  CAS  PubMed  Google Scholar 

  678. Orkin SH, Hochedlinger K. Chromatin connections to pluripotency and cellular reprogramming. Cell 2011;145:835–850.

    Article  CAS  PubMed  Google Scholar 

  679. Antequera F. Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 2003;60:1647–1658.

    Article  CAS  PubMed  Google Scholar 

  680. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 2004;279:27816–27823.

    Article  CAS  PubMed  Google Scholar 

  681. Watanabe D, Uchiyama K, Hanaoka K. Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 2006;142:727–737.

    Article  CAS  PubMed  Google Scholar 

  682. Kadriu B, Guidotti A, Chen Y, Grayson DR. DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol 2012;520:1951–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  683. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010;13:423–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  684. Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 2007;53:857–869.

    Article  CAS  PubMed  Google Scholar 

  685. Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013;38:138–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  686. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995;52:258–266.

    Article  CAS  PubMed  Google Scholar 

  687. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000;57:1061–1069.

    Article  CAS  PubMed  Google Scholar 

  688. Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2004;61:649–657.

    Article  CAS  PubMed  Google Scholar 

  689. Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, Costa E. Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res 2007;91:51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  690. Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 2007;12:385–397.

    Article  CAS  PubMed  Google Scholar 

  691. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 2005;102:9341–9346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  692. Dong E, Nelson M, Grayson DR, Costa E, Guidotti A. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc Natl Acad Sci USA 2008;105:13614–13619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  693. Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci USA 2004;101:348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  694. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA 2005;102:2152–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  695. Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I, Sershen H, Lajtha A, Smith RC, Guidotti A, Davis JM, Costa E. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res 2009;111:115–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  696. McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009;12:342–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  697. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci 2004;7:847–854.

    Article  CAS  PubMed  Google Scholar 

  698. Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T, Sawa A. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 2013;339:335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  699. LaPlant Q, Vialou V, Covington HE 3rd, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM, Watts EL, Iniguez SD, Koo JW, Mouzon E, Renthal W, Hollis F, Wang H, Noonan MA, Ren Y, Eisch AJ, Bolanos CA, Kabbaj M, Xiao G, Neve RL, Hurd YL, Oosting RS, Fan G, Morrison JH, Nestler EJ. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 2010;13:1137–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  700. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009;324:929–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  701. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  702. Song CX, Yi C, He C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol 2012;30:1107–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  703. Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 2012;13:7–13.

    CAS  Google Scholar 

  704. Graff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 2013;14:97–111.

    Article  PubMed  CAS  Google Scholar 

  705. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci 2007;31:47–58.

    Article  CAS  PubMed  Google Scholar 

  706. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010;328:753–756.

    Article  CAS  PubMed  Google Scholar 

  707. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003;100:2041–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  708. Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012;483:222–226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  709. Dong E, Guidotti A, Grayson DR, Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 2007;104:4676–4681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  710. Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 2006;103:1587–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  711. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  712. Wassef AA, Dott SG, Harris A, Brown A, O'Boyle M, Meyer WJ 3rd, Rose RM. Randomized, placebo-controlled pilot study of divalproex sodium in the treatment of acute exacerbations of chronic schizophrenia. J Clin Psychopharmacol 2000;20:357–361.

    Article  CAS  PubMed  Google Scholar 

  713. Suzuki T, Uchida H, Takeuchi H, Nakajima S, Nomura K, Tanabe A, Yagi G, Watanabe K, Kashima H. Augmentation of atypical antipsychotics with valproic acid. An open-label study for most difficult patients with schizophrenia. Hum Psychopharmacol 2009;24:628–638.

    Article  CAS  PubMed  Google Scholar 

  714. Kelly DL, Conley RR, Feldman S, Yu Y, McMahon RP, Richardson CM. Adjunct divalproex or lithium to clozapine in treatment-resistant schizophrenia. Psychiatr Q 2006;77:81–95.

    Article  PubMed  Google Scholar 

  715. Larrison AL, Babin SL, Xing Y, Patel SS, Wassef AA, Sereno AB. Effects of adjunct valproic acid on clinical symptoms and saccadic eye movements in schizophrenia. Hum Psychopharmacol 2011;26:517–525.

    Article  CAS  PubMed  Google Scholar 

  716. Citrome L, Casey DE, Daniel DG, Wozniak P, Kochan LD, Tracy KA. Adjunctive divalproex and hostility among patients with schizophrenia receiving olanzapine or risperidone. Psychiatr Serv 2004;55:290–294.

    Article  PubMed  Google Scholar 

  717. Casey DE, Daniel DG, Wassef AA, Tracy KA, Wozniak P, Sommerville KW. Effect of divalproex combined with olanzapine or risperidone in patients with an acute exacerbation of schizophrenia. Neuropsychopharmacology 2003;28:182–192.

    Article  CAS  PubMed  Google Scholar 

  718. Casey DE, Daniel DG, Tamminga C, Kane JM, Tran-Johnson T, Wozniak P, Abi-Saab W, Baker J, Redden L, Greco N, Saltarelli M. Divalproex ER combined with olanzapine or risperidone for treatment of acute exacerbations of schizophrenia. Neuropsychopharmacology 2009;34:1330–1338.

    Article  CAS  PubMed  Google Scholar 

  719. Meltzer HY, Bonaccorso S, Bobo WV, Chen Y, Jayathilake K. A 12-month randomized, open-label study of the metabolic effects of olanzapine and risperidone in psychotic patients: influence of valproic acid augmentation. J Clin Psychiatry 2011;72:1602–1610.

    Article  CAS  PubMed  Google Scholar 

  720. Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL, Heshmati M, Golden SA, Kennedy PJ, Takahashi N, Dietz DM, Mocci G, Gabilondo AM, Hanks J, Umali A, Callado LF, Gallitano AL, Neve RL, Shen L, Buxbaum JD, Han MH, Nestler EJ, Meana JJ, Russo SJ, Gonzalez-Maeso J. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 2012;15:1245–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  721. Kurita M, Moreno JL, Holloway T, Kozlenkov A, Mocci G, Garcia-Bea A, Hanks JB, Neve R, Nestler EJ, Russo SJ, Gonzalez-Maeso J. Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice. Mol Pharmacol 2013;83:1166–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  722. Hasan A, Mitchell A, Schneider A, Halene T, Akbarian S. Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. Eur Arch Psychiatry Clin Neurosci 2013;263:273–284.

    Article  PubMed  Google Scholar 

  723. Kurita M, Holloway T, Gonzalez-Maeso J. HDAC2 as a new target to improve schizophrenia treatment. Expert Rev Neurother 2013;13:1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  724. Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E, Chaudhury D, Damez-Werno DM, Haggarty SJ, Han MH, Bassel-Duby R, Olson EN, Nestler EJ. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 2013;16:434–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  725. Maze I, Covington 3rd HE, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y, Sampath SC, Hurd YL, Greengard P, Tarakhovsky A, Schaefer A, Nestler EJ. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 2010;327:213–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  726. Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 2003;85:151–159.

    Article  CAS  PubMed  Google Scholar 

  727. Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J 3rd, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 2012;151:821–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  728. Kim MS, Akhtar MW, Adachi M, Mahgoub M, Bassel-Duby R, Kavalali ET, Olson EN, Monteggia LM. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 2012;32:10879–10886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  729. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.

    Article  CAS  PubMed  Google Scholar 

  730. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 2003;22:1168–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  731. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007;447:859–863.

    Article  CAS  PubMed  Google Scholar 

  732. Fukada M, Hanai A, Nakayama A, Suzuki T, Miyata N, Rodriguiz RM, Wetsel WC, Yao TP, Kawaguchi Y. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PLoS One 2012;7:e30924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  733. Espallergues J, Teegarden SL, Veerakumar A, Boulden J, Challis C, Jochems J, Chan M, Petersen T, Deneris E, Matthias P, Hahn CG, Lucki I, Beck SG, Berton O. HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci 2012;32:4400–4416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  734. Andersen JL, Kornbluth S. The tangled circuitry of metabolism and apoptosis. Mol Cell 2013;49:399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  735. Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry of apoptosis. Historical perspective and new advances. Exp Oncol 2012;34:255–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  736. Kumar S. Caspase function in programmed cell death. Cell Death Differ 2007;14:32–43.

    Article  CAS  PubMed  Google Scholar 

  737. Krantic S, Mechawar N, Reix S, Quirion R. Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 2007;81:179–196.

    Article  CAS  PubMed  Google Scholar 

  738. Sastry PS, Rao KS. Apoptosis and the nervous system. J Neurochem 2000;74:1–20.

    Article  CAS  PubMed  Google Scholar 

  739. Salvesen GS, Riedl SJ. Structure of the Fas/FADD complex: a conditional death domain complex mediating signaling by receptor clustering. Cell Cycle 2009;8:2723–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  740. Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 2002;22:207–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  741. Peter ME. Programmed cell death: apoptosis meets necrosis. Nature 2011;471:310–312.

    Article  CAS  PubMed  Google Scholar 

  742. Hymowitz SG, Dixit VM. Unleashing cell death: the Fas-FADD complex. Nat Struct Mol Biol 2010;17:1289–1290.

    Article  CAS  PubMed  Google Scholar 

  743. Garcia-Fuster MJ, Ramos-Miguel A, Rivero G, La Harpe R, Meana JJ, Garcia-Sevilla JA. Regulation of the extrinsic and intrinsic apoptotic pathways in the prefrontal cortex of short- and long-term human opiate abusers. Neuroscience 2008;157:105–119.

    Article  CAS  PubMed  Google Scholar 

  744. Alvaro-Bartolome M, La Harpe R, Callado LF, Meana JJ, Garcia-Sevilla JA. Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience 2011;196:1–15.

    Article  CAS  PubMed  Google Scholar 

  745. Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R, Kang E, Lee HS, Ramsey C, Masterson K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer R, Mitalipov S. Towards germline gene therapy of inherited mitochondrial diseases. Nature 2013;493:627–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  746. Jonas EA. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Exp Neurol 2009;218:203–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  747. Jonas E. BCL-xL regulates synaptic plasticity. Mol Interv 2006;6:208–222.

    Article  CAS  PubMed  Google Scholar 

  748. MacAskill AF, Atkin TA, Kittler JT. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci 2010;32:231–240.

    Article  PubMed  Google Scholar 

  749. Gleichmann M, Mattson MP. Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 2011;14:1261–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  750. Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008;60:748–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  751. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012;13:293–307.

    CAS  PubMed  Google Scholar 

  752. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 2010;141:859–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  753. Jiao S, Li Z. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 2011;70:758–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  754. Sun X, Wang JF, Tseng M, Young LT. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 2006;31:189–196.

    PubMed  PubMed Central  Google Scholar 

  755. Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005;14:241–253.

    Article  CAS  PubMed  Google Scholar 

  756. Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S, Choudary P, Atz M, Shao L, Neal C, Walsh DM, Burmeister M, Speed T, Myers R, Jones EG, Watson SJ, Akil H, Bunney WE. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006;11:615, 663–679.

    Article  CAS  Google Scholar 

  757. Martorell L, Segues T, Folch G, Valero J, Joven J, Labad A, Vilella E. New variants in the mitochondrial genomes of schizophrenic patients. Eur J Hum Genet 2006;14:520–528.

    Article  CAS  PubMed  Google Scholar 

  758. Lindholm E, Cavelier L, Howell WM, Eriksson I, Jalonen P, Adolfsson R, Blackwood DH, Muir WJ, Brookes AJ, Gyllensten U, Jazin EE. Mitochondrial sequence variants in patients with schizophrenia. Eur J Hum Genet 1997;5:406–412.

    CAS  PubMed  Google Scholar 

  759. Verge B, Alonso Y, Valero J, Miralles C, Vilella E, Martorell L. Mitochondrial DNA (mtDNA) and schizophrenia. Eur Psychiatry 2011;26:45–56.

    Article  CAS  PubMed  Google Scholar 

  760. Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J. Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res 1997;232:395–399.

    Article  CAS  PubMed  Google Scholar 

  761. Park YU, Jeong J, Lee H, Mun JY, Kim JH, Lee JS, Nguyen MD, Han SS, Suh PG, Park SK. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA 2010;107:17785–17790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  762. Adam D. On the spectrum. Nature 2013;496:416–418.

    Article  CAS  PubMed  Google Scholar 

  763. http://www.nature.com/news/seven-days-3-9-may-2013-1.12946.

  764. Masana MI, Dubocovich ML. Melatonin receptor signaling: finding the path through the dark. Sci STKE 2001;2001:pe39.

    CAS  PubMed  Google Scholar 

  765. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M. International union of pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 1996;48:567–592.

    CAS  PubMed  Google Scholar 

  766. Birnbaumer M. Vasopressin receptors. Trends Endocrinol Metab 2000;11:406–410.

    Article  CAS  PubMed  Google Scholar 

  767. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002;54:161–202.

    Article  CAS  PubMed  Google Scholar 

  768. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ. International union of pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 2002;54:247–264.

    Article  CAS  PubMed  Google Scholar 

  769. Kumar J, Mayer ML. Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol 2013;75:313–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  770. Yakel JL. Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch 2013;465:441–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health, NARSAD, and Dainippon Sumitomo Pharma for our molecular pharmacology research. A.G.B. was the recipient of a predoctoral fellowship from the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Maeso Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kurita, M., García-Bea, A., González-Maeso, J. (2016). Novel Targets for Drug Treatment in Psychiatry. In: Fatemi, S., Clayton, P. (eds) The Medical Basis of Psychiatry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2528-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2528-5_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2527-8

  • Online ISBN: 978-1-4939-2528-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics