Multicriteria Analysis of Olive Farms Sustainability: An Application of TOPSIS Models

Part of the International Series in Operations Research & Management Science book series (ISOR, volume 224)


This chapter presents an empirical application of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) models to measure the sustainability of olive farms in Andalusia, Spain. The Analytic Hierarchy Process is used to assess the weights of sustainability dimensions and the weights of each indicator when developing the TOPSIS model. In addition, an additive approach based on weighted sum is applied to compare sustainability results of olive farms. Taking into account the weights given to each indicator and to each of the sustainability dimensions, results show that ‘intensive olive farms’ are the most sustainable olive farms.


Analytic Hierarchy Process Olive Tree Economic Sustainability Olive Grove Agricultural Sustainability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial aid received from the Spanish Ministry of Science and Innovation (AGL2009-12553-C02-02 and AGL2010-17560-C02-01) and the Regional Government of Andalusia (P09-SEJ-4992).

Disclaimer: The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the Water Regulatory Council of Mozambique.


  1. Aguarón J, Moreno-Jiménez JM (2000) Local stability intervals in the analytic hierarchy process. Eur J Oper Res 125(1):114–133. doi: 10.1016/S0377-2217(99)00204-0 CrossRefGoogle Scholar
  2. Andersen E, Elbersen B, Godeschalk F, Verhoog D (2007) Farm management indicators and farm typologies as a basis for assessments in a changing policy environment. J Environ Manage 82(3):353–362. doi: 10.1016/j.jenvman.2006.04.021 CrossRefGoogle Scholar
  3. Andreoli M, Tellarini V (2000) Farm sustainability evaluation: methodology and practice. Agric Ecosyst Environ 77(1):43–52. doi: 10.1016/S0167-8809(99)00091-2 CrossRefGoogle Scholar
  4. Arriaza M, Gómez-Limón JA (2011) Valoración social del carácter multifuncional de la agricultura andaluza. ITEA-Inf Tec Econ Ag 107(2):102–125Google Scholar
  5. Arriaza M, Cañas Ortega JF, Cañas Madueño JA, Ruiz P (2004) Assessing the visual quality of rural landscapes. Landscape Urban Plan 69:115–125. doi: 10.1016/j.landurbplan.2003.10.029 CrossRefGoogle Scholar
  6. Awasthi A, Chauhan SS, Goyal SK (2011) A fuzzy multi criteria approach for evaluating environmental performance of suppliers. Int J Prod Econ 126:370–378. doi: 10.1016/j.ijpe.2010.04.029 CrossRefGoogle Scholar
  7. Beaufoy G, Cooper T (2009) The application of the high nature value impact indicator, European evaluation network for rural development. European Commission’s Directorate-General for Agriculture and Rural Development, BrusselsGoogle Scholar
  8. Behzadian M, Otaghsara SK, Yazdani M, Ignatius J (2012) A state-of the-art survey of TOPSIS applications. Expert Syst Appl 39:13051–13069. doi: 10.1016/j.eswa.2012.05.056 CrossRefGoogle Scholar
  9. Bockstaller C, Girardin P, van der Werf HMG (1997) Use of agro-ecological indicators for the evaluation of farming systems. Eur J Agron 7(1–3):261–270. doi: 10.1016/S1161-0301(97)00041-5 CrossRefGoogle Scholar
  10. CAyP, Consejería de Agricultura y Pesca (2008) El sector del aceite de oliva y la aceituna de mesa en Andalucía. Consejería de Agricultura y Pesca—Junta de Andalucía—Regional Government of Andalusia, SevilleGoogle Scholar
  11. CHG, Confederación Hidrográfica del Guadalquivir (2008) Esquema de Temas Importantes. Confederación Hidrográfica del Guadalquivir, SevilleGoogle Scholar
  12. Deng H, Yeh CH, Willis RJ (2000) Inter-company comparison using modified TOPSIS with objective weights. Comput Oper Res 27:963–973. doi: 10.1016/S0305-0548(99)00069-6 CrossRefGoogle Scholar
  13. DG ENV (2010) LIFE among the olives—good practice in improving environmental performance in the olive oil sector. Directorate General for Environment, European Commission, Brussels, Belgium. Accessed 13 Oct 2012
  14. Easley RF, Valacich JS, Venkataramanan MA (2000) Capturing group preferences in a multicriteria decision. Eur J Oper Res 125:73–83. doi: 10.1016/S0377-2217(99)00196-4, CrossRefGoogle Scholar
  15. Ebert U, Welsch H (2004) Meaningful environmental indices: a social choice approach. J Environ Econ Manage 47(2):270–283. doi: 10.1016/j.jeem.2003.09.001 CrossRefGoogle Scholar
  16. Forman E, Peniwati K (1998) Aggregating individual judgments and priorities with the analytic hierarchy process. Eur J Oper Res 108(2):165–169. doi: 10.1016/S0377-2217(97)00244-0 CrossRefGoogle Scholar
  17. Gallego-Ayala J (2012) Selecting irrigation water pricing alternative using a multi-methodological approach. Math Comput Model 55(3–4):861–883. doi: 10.1016/j.mcm.2011.09.014 CrossRefGoogle Scholar
  18. Girardin P, Bockstaller C, van der Werf H (2000) Assessment of potential impacts of agricultural practices on the environment: the AGRO-ECO method. Environ Impact Assess 20:227–239. doi: 10.1016/S0195-9255(99)00036-0 CrossRefGoogle Scholar
  19. Gómez Calero JA, Giráldez JV (2009) Erosión y degradación de suelos. In: Gómez Calero JA (ed) Sostenibilidad de la producción de olivar en Andalucía. Consejería de Agricultura y Pesca-Junta de Andalucía—Regional Government of Andalusia, SevilleGoogle Scholar
  20. Gómez Calero JA, Sobrinho TA, Giráldez JV, Fereres E (2009) Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Till Res 102(1):5–13. doi: 10.1016/j.still.2008.05.005 CrossRefGoogle Scholar
  21. Gómez-Limón JA, Riesgo L (2009) Alternative approaches to the construction of a composite indicator of agricultural sustainability. An application to irrigated agriculture in the Duero basin in Spain. J Environ Manage 90:3345–3362. doi: 10.1016/j.jenvman.2009.05.023 CrossRefGoogle Scholar
  22. Gómez-Limón JA, Riesgo L (2012) Sustainability assessment of olive groves in Andalusia: a methodological proposal. New Medit 12(2):39–49Google Scholar
  23. Hansen JW (1996) Is agricultural sustainability a useful concept? Agr Syst 50:117–143. doi: 10.1016/0308-521X(95)00011-S CrossRefGoogle Scholar
  24. Hwang CL, Yoon K (1981) Multiple attributes decision making methods and applications. Springer, New YorkCrossRefGoogle Scholar
  25. Kim G, Park CS, Yoon KP (1997) Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. Int J Prod Econ 50:23–33. doi: 10.1016/S0925-5273(97)00014-5 CrossRefGoogle Scholar
  26. Lai YJ, Liu TY, Hwang CL (1994) TOPSIS for MODM. Eur J Oper Res 76:486–500. doi: 10.1016/0377-2217(94)90282-8 CrossRefGoogle Scholar
  27. MAGRAMA, Spanish Ministry of Agriculture, Food and Environment (2010) Agricultural and statistics yearbooks. Spanish Ministry of Environment, and Rural and Marine Environments. Accessed 13 Oct 2012
  28. MAGRAMA, Spanish Ministry of Agriculture, Food and Environment (2012) El mercado del aceite de oliva. Spanish Ministry of Environment, and Rural and Marine Environments. Accessed 13 Oct 2012
  29. Morse S, McNamara N, Acholo M, Okwoli B (2001) Sustainability indicators: the problem of integration. Sustain Dev 9(1):1–15CrossRefGoogle Scholar
  30. Munda G (2008) Social multi-criteria evaluation for a sustainable economy. Springer, New YorkCrossRefGoogle Scholar
  31. Olson DL (2004) Comparison of weights in TOPSIS models. Math Comput Model 40:721–727. doi: 10.1016/j.mcm.2004.10.003 CrossRefGoogle Scholar
  32. Raman S (2006) Agricultural sustainability. Principles, processes and prospects. Haworth Press, New YorkGoogle Scholar
  33. Rowley HV, Peters GM, Lundie S, Moore SJ (2012) Aggregating sustainability indicators: beyond the weighted sum. J Environ Manage 111:24–33. doi: 10.1016/j.jenvman.2012.05.004 CrossRefGoogle Scholar
  34. Russillo A, Pintér L (2009) Linking farm-level measurement systems to environmental sustainability outcomes: challenges and ways forward. International Institute for Sustainable Development, WinnipegGoogle Scholar
  35. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  36. Sauvenier X, Valckx J, van Cauwenbergh N, Wauters E, Bachev H, Biala K, et al (2006) Framework for assessing sustainability levels in Belgian agricultural systems—SAFE. Part 1: sustainable production and consumption patterns. Final Report—SPSD II CP 28. Belgian Science Policy, BrusselsGoogle Scholar
  37. Shih HS, Shyur HJ, Lee ES (2007) An extension of TOPSIS for group decision making. Math Comput Model 45:801–813. doi: 10.1016/j.mcm.2006.03.023 CrossRefGoogle Scholar
  38. Srdjevic B, Medeiros YDP, Faria AS (2004) An objective multi-criteria evaluation of water management scenarios. Water Resour Manage 18:35–54CrossRefGoogle Scholar
  39. van Cauwenbergh N, Biala K, Bielders C et al (2007) SAFE—a hierarchical framework for assessing the sustainability of agricultural systems. Agr Ecosyst Environ 120:22–242. doi: 10.1016/j.agee.2006.09.006 Google Scholar
  40. van Passel S, Nevens F, Mathijs E, van Huylenbroeck G (2007) Measuring farm sustainability and explaining differences in sustainable efficiency. Ecol Econ 62:149–161. doi: 10.1016/j.ecolecon.2006.06.008 CrossRefGoogle Scholar
  41. Wu CS, Lin CT, Lee C (2010) Optimal marketing strategy: a decision-making with ANP and TOPSIS. Int J Prod Econ 127:190–196. doi: 10.1016/j.ijpe.2010.05.013 CrossRefGoogle Scholar
  42. Yan G, Ling Z, Dequn Z (2011) Performance evaluation of coal enterprises energy conservation and reduction of pollutant emissions base on GRD–TOPSIS. Energy Procedia 5:535–539. doi: 10.1016/j.egypro.2011.03.093 CrossRefGoogle Scholar
  43. Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agr Ecosyst Environ 49:299–307. doi: 10.1016/0167-8809(94)90059-0 CrossRefGoogle Scholar
  44. Zahedi F (1987) A utility approach to the analytic hierarchy process. Math Model 9:387–395. doi: 10.1016/0270-0255(87)90497-0 CrossRefGoogle Scholar
  45. Zanakis S, Solomon A, Wishart N, Dublish S (1998) Multi-attribute decision making: a simulation comparison of select methods. Eur J Oper Res 107:507–529. doi: 10.1016/S0377-2217(97)00147-1 CrossRefGoogle Scholar
  46. Zhou P, Ang BW (2009) Comparing MCDA aggregation methods in constructing composite indicators using the Shannon-Spearman measure. Soc Indic Res 94:83–96CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2015

Authors and Affiliations

  1. 1.Department of EconomicsUniversity Pablo de OlavideSevilleSpain
  2. 2.Water Regulatory Council of MozambiqueMaputoMozambique

Personalised recommendations