Skip to main content

Abstract

Wireless Sensor Networks (WSNs) enjoy great benefits due to their low-cost, small-scale factor, smart sensor nodes. Not only can they be employed in cumbersome and dangerous areas of interest, for monitoring or controlling the region, but they can also be deployed to automate mundane tasks. Early sensory units were expensive and lacked the computational and communicational capabilities of current smart sensor nodes, which can now sense, process, store, and forward data, all being powered by a battery.

Myriad applications exist that leverage WSNs as low-cost solutions for observing the habitat and environment, from military and civilian surveillance and target detection and tracking applications, to precision farming and agriculture, patient monitoring in health care, residential applications like energy management, for safety and efficiency in vehicular networks to outer space explorations.

The diversity of the applications of WSNs imposes varying design, implementation, and performance requirements on the WSNs. Therefore, for a thorough understanding of the different design and implementation techniques, we must understand the inherent characteristics of WSNs and their smart sensor nodes. This intrinsic nature of the application-specific WSNs makes classification and taxonomy delineation difficult and cumbersome.

In this chapter, we will delineate the inherent characteristics of the WSNs and their smart sensor nodes. Then, we will discuss the data delivery models and traffic patterns that instigate the design and development of novel network architecture protocols for WSN and distinguish them from its peers in other infrastructure-less computing paradigms.

We compare WSN with its peers, with respect to the problem space of WSN applications, followed by a brief overview of the challenges in programming WSN motes. Then, we present an overview of TinyOS, an operating system for WSN motes, and conclude with an overview of the challenges and limitations of WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. History of Innovation (1995–2012) [Online]. Available: http://www.ti.com/corp/docs/company/history/sensortimelinelowbandwidth.shtml. Accessed 6 Jan 2012

  2. Weinberg H (2012) How they work: MEMS (micro electro-mechanical systems) technology. Sensorland [Online]. Available: http://www.sensorland.com/HowPage023.html. Accessed 6 Jan 2012

  3. Akyildiz IF, Su W, Sankarasubramainiam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114

    Article  Google Scholar 

  4. Akyildiz IF, Kasimoglu IH (2004) Wireless sensor and actor networks: research challenges. Ad Hoc Netw 2(4):351–367

    Article  Google Scholar 

  5. Xia F (2008) QoS challenges and opportunities in wireless sensor/actuator networks. Sensors 8(2):1099–1110

    Article  Google Scholar 

  6. Akyildiz IF, Melodia T, Chowdury K (2007) A survey on wireless multimedia sensor networks. Comput Netw 51(4):921–960

    Article  Google Scholar 

  7. Lamont L, Toulgoat M, Deziel M, Patterson G (2011) Tiered wireless sensor network architecture for military surveillance applications. In: International conference on sensor technologies and applications (SENSORCOMM), Nice, Saint Laurent du Var

    Google Scholar 

  8. Antepli MA, Gurbuz SZ, Uysal-Biyikoglu E (2010) Ferromagnetic target detection and localization with a wireless sensor network. In: Military communications conference (MILCOM), San Jose

    Google Scholar 

  9. Teng J, Snoussi H, Richard C (2010) Decentralized variational filtering for target tracking in binary sensor networks. IEEE Trans Mob Comput 9(10):1465–1477

    Article  Google Scholar 

  10. Medagliani P, Ferrari G, Gay V, Leguay J (2013) Cross-layer design and analysis of WSN-based mobile target detection systems. Elsevier Ad Hoc Netw 11(2):712–732

    Google Scholar 

  11. Krishnamurty L, Adler R, Buonadonna P, Chhabra J, Flanigan M, Kushalnagar N, Nachman L, Yarvis M (2005) Design and deployment of industrial sensor networks: experiences from a semiconductor plant and the North Sea. In: 3rd international conference on embedded networked sensor systems (SenSys 05), San Diego

    Google Scholar 

  12. Sikka P, Corke P, Valencia P, Crossman C, Swain D, Bishop-Hurley G (2006) Wireless adhoc sensor and actuator networks on the farm. In: International conference on information processing in sensor networks, Nashville

    Google Scholar 

  13. Song W-Z, Huang R, Xu M, Ma A, Shirazi B, LaHusen R (2009) Air-dropped sensor network for real-time high-fidelity volcano monitoring. In: International conference on mobile system, applications and services (MobiSys 09), Krakow

    Google Scholar 

  14. Ceriotti M, Mottola L, Picco GP, Murphy AL, Corra M, Pozzi M, Zonta D, Zanon P (2009) Monitoring heritage buildings with wireless sensor networks: the Torre Aquila deployment. In: International conference on information processing in sensor networks (IPSN), San Francisco

    Google Scholar 

  15. Ko J, Lim JH, Muvaloiu-E R, Terzis A, Masson GM, Gao T, Destler W, Selavo L, Dutton RP (2010) MEDiSN: medical emergency detection in sensor networks. ACM Trans Embed Comput Syst (TECS) 10(1):1–29

    Google Scholar 

  16. Chen Y, Shen W, Huo H, Xu Y (2010) A smart gateway for health care system using wireless sensor network. In: International conference on sensor technologies and applications (SENSORCOMM 10), Venice

    Google Scholar 

  17. Ota N, Ahrens S, Redfern A, Wright P, Yang X (2006) An application-driven architecture for residential energy management with wireless sensor networks. In: IEEE international conference on mobile adhoc and sensor systems, Vancouver

    Google Scholar 

  18. Song H, Zhu S, Cao G (2008) SVATS: a sensor-network-based vehicle anti-theft system. In: IEEE conference on computer communications, Phoenix

    Google Scholar 

  19. Tubaishat M, Zhuang P, Qi Q, Shang Y (2009) Wireless sensor networks in intelligent transportation systems. Wirel Commun Mob Comput 9(3):287–302, Special Issue: Distributed Systems of Sensors and Actuators

    Article  Google Scholar 

  20. Vladimirova T, Bridges CP, Paul JR, Malik SA, Sweeting MN (2010) Space-based wireless sensor networks: design issues. In: IEEE aerospace conference, Big Sky

    Google Scholar 

  21. Culler D, Hill J, Horton M, Pister K, Szewczyk R, Woo A (2002) MICA: the commercialization of microsensor motes. Sensors Magazine, 1 April 2002 [Online]. Available: http://www.sensorsmag.com/networking-communications/mica-the-commercialization-microsensor-motes-1070. Accessed 1 Feb 2012

  22. Merrill W, Kaiser W (2004) Wireless integrated network sensors (WINS) next generation. Airforce Research Laboratory, Rome

    Google Scholar 

  23. Wireless Applications – Moteiv launches wireless mote with interface to mobile devices. Sensors, 11 May 2007 [Online]. Available: http://www.sensorsmag.com/wireless-applications/news/moteiv-launches-wireless-mote-with-interface-mobile-devices-2523. Accessed 7 Jan 2012

  24. Hill J, Horton M, Kling R, Krishnamurthy L (2004) The platforms enabling wireless sensor networks. Commun ACM 47(6):41–46

    Article  Google Scholar 

  25. Healy M, Newe T, Lewis E (2008) Wireless sensor node hardware: a review. In: IEEE sensors, Lecce

    Google Scholar 

  26. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw (Elsevier) 52(12):2292–2330

    Article  Google Scholar 

  27. Sun Z, Akyildiz IF (2010) Magnetic induction communications for wireless underground sensor networks. IEEE Trans Antennas Propag 58(7):2426–2435

    Article  Google Scholar 

  28. Bhuvaneswari P, Balakumar R, Vaidehi V, Balamuralidhar P (2009) Solar energy harvesting for wireless sensor networks. In: International conference on computational intelligence, communication systems and networks (CICSYN), Indore

    Google Scholar 

  29. Seah WK, Eu ZA, Tan H-P (2009) Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP) – survey and challenges. In: International conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (Wireless VITAE), Aalborg

    Google Scholar 

  30. Bokareva T. Mini hardware survey [Online]. Available: http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html. Accessed 7 Jan 2012

  31. Uchiyama T, Uehara Y, Mori M, Saito H, Tobe Y (2006) A system for analyzing life rhythm using wireless sensors on mules. In: International conference on mobile data management (MDM), Nara

    Google Scholar 

  32. Romer K, Mattern F (2004) The design space of wireless sensor networks. IEEE Wirel Commun 11(6):54–61

    Article  Google Scholar 

  33. Naumowicz T, Freeman R, Kirk H, Dean B, Calsyn M, Liers A, Braendle A, Guilford T, Schiller J (2010) Wireless sensor network for habitat monitoring on Skomer island. In: IEEE conference on local computer networks (LCN), Denver

    Google Scholar 

  34. Fok C-L, Roman G-C, Lu C (2007) Towards a flexible global sensing infrastructure. ACM SIGBED Rev 4(3):1–6, Special Issue on the Workshop on Wireless Sensor Network Architecture

    Article  Google Scholar 

  35. Polastre J, Szewczyk R, Mainwaring A, Culler D, Anderson J (2004) Analysis of wireless sensor networks for habitat monitoring. In: Wireless sensor networks. Kluwer Academic, Norwell, pp 399–423

    Google Scholar 

  36. Schoonmaker P, Luscombe W (2005) Habitat monitoring: an approach for reporting status and trends for state comprehensive wildlife conservation strategies. 22 March 2005 [Online]. Available: http://www.defenders.org/resources/publications/programs_and_policy/biodiversity_partners/habitat_monitoring.pdf. Accessed 8 Jan 2012

  37. Agarwal R, Martinez-Catala R, Harte S, Segard C, O’Flynn B (2008) Modeling power in multi-functionality sensor network applications. In: International conference on sensor technologies and applications (SENSORCOMM), Cap Esterel

    Google Scholar 

  38. Dargie W (2012) Dynamic power management in wireless sensor networks: state-of-the-art. IEEE J Sensors 12(5):1518–1528

    Google Scholar 

  39. Sohrabi K, Gao J, Ailawadhi V, Pottie GJ (2000) Protocols for self-organization of a wireless sensor network. IEEE Pers Commun 7(5):16–27

    Article  Google Scholar 

  40. Saglam O, Dalkili ME (2009) A self organizing multihop clustering protocol for wireless sensor networks. In: International conference on mobile ad-hoc and sensor networks (MSN), Fujian

    Google Scholar 

  41. Kacimi R, Dhaou R, Beylot A (2008) Energy-aware self-organization algorithms for wireless sensor networks. In: IEEE global telecommunications conference (GLOBECOM), New Orleans

    Google Scholar 

  42. Berman K, Annexstein F, Ranganathan A (2006) Dominating connectivity and reliability of heterogeneous sensor networks. In: IEEE international conference on pervasive computing and communications workshop (PerCom), Pisa

    Google Scholar 

  43. Abbasi A, Younis M, Baroudi U (2010) Restoring connectivity in wireless sensor-actor networks with minimal topology changes. In: International conference on communications (ICC), Cape Town

    Google Scholar 

  44. Ghosh A, Das SK (2008) Coverage and connectivity issues in wireless sensor networks: a survey. Pervasive Mob Comput 4(3):303–334

    Article  MathSciNet  Google Scholar 

  45. Wang P, Sun Z, Vuran M, Al-Rodhaan MA, Al-Dhelaan A, Akyildiz IF (2011) On network connectivity of wireless sensor networks for sandstorm monitoring. Comput Netw 55(5):1150–1157

    Article  Google Scholar 

  46. Lu M, Wu J, Cardei M, Li M (2009) Energy-efficient connected coverage of discrete targets in wireless sensor networks. Int J Ad Hoc Ubiquitous Comput 4(3–4):137–147

    Article  Google Scholar 

  47. Wang X, Xing G, Zhang Y, Lu C, Pless R, Gill C (2003) Integrated coverage and connectivity configuration in wireless sensor networks. In: International conference on embedded networked sensor systems (SenSys), Los Angeles

    Google Scholar 

  48. Bose R, Helal A (2010) Sensor-aware adaptive push–pull query processing in wireless sensor networks. In: International conference on intelligent environments (IE), Kuala Lumpur

    Google Scholar 

  49. Mottola L, Picco GP (2011) Programming wireless sensor networks: fundamental concepts and state of the art. ACM Comput Surv (CSUR) 43(3):1–51

    Google Scholar 

  50. Tilak S, Abu-Ghazaleh NB, Heinzelman W (2002) A taxonomy of wireless micro-sensor network models. ACM SIGMOBILE Mob Comput Commun Rev 6(2):28–36

    Article  Google Scholar 

  51. Villalba L, Orozco A, Cabrera A, Abbas C (2009) Routing protocols in wireless sensor networks. Sensors 9(11):8399–8421

    Article  Google Scholar 

  52. Akkaya K, Younis M (2005) A survey on routing protocols for wireless sensor networks. Elsevier Ad Hoc Netw 3(3):325–349

    Article  Google Scholar 

  53. Niculescu D (2005) Communication paradigms for sensor networks. Commun Mag 43(3):116–122

    Article  MathSciNet  Google Scholar 

  54. Paek J, Govindan R (2007) RCRT: rate-controlled reliable transport for wireless sensor networks. In: Proceedings of the 5th international conference on embedded networked sensor systems (SenSys’07), Sydney

    Google Scholar 

  55. Rathnayaka AJD, Potdar VM (2013) Wireless sensor network transport protocol: a critical review. J Netw Comput Appl 36(1):134–146

    Google Scholar 

  56. Vuran M, Akyildiz I (2010) XLP: a cross-layer protocol for efficient communication in wireless sensor networks. IEEE Trans Mob Comput 9(11):1578–1591

    Article  Google Scholar 

  57. Al-Karaki JN, Kamal AE (2004) Routing techniques in wireless sensor networks: a survey. IEEE Wirel Commun 11(6):6–28

    Article  Google Scholar 

  58. Wang Z, Bulut E, Szymanski BK (2009) Energy efficient collision aware multipath routing for wireless sensor networks. In: IEEE international conference on communications, Dresden

    Google Scholar 

  59. Shah RC, Rabaey JM (2002) Energy aware routing for low energy ad hoc sensor networks. In: IEEE wireless communications and networking conference, Orlando

    Google Scholar 

  60. Chang JH, Tassiulas L (2004) Maximum lifetime routing in wireless sensor networks. IEEE/ACM Trans Netw 12(4):609–619

    Article  Google Scholar 

  61. Dulman S, Nieberg T, Wu J, Havinga P (2003) Trade-off between traffic overhead and reliability in multipath routing for wireless sensor networks. In: IEEE wireless communications and networking, New Orleans

    Google Scholar 

  62. Saleem K, Fisal N, Hafizah S, Kamilah S, Rashid R (2009) A self-optimized multipath routing protocol for wireless sensor networks. Int J Recent Trends Eng (IJRTE) 2(1):93–97

    Google Scholar 

  63. Okdem S, Karaboga D (2009) Routing in wireless sensor networks using an ant colony optimization (ACO) router chip. Sensors 9(2):909–921

    Article  Google Scholar 

  64. Saleem M, Di Caro GA, Farooq M (2011) Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions. Inform Sci 181(20):4597–4624

    Article  Google Scholar 

  65. Kulik J, Heinzelman W, Balakrishnan H (2002) Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel Netw 8(2/3):169–185

    Article  MATH  Google Scholar 

  66. Huang X, Fang Y (2008) Multiconstrained QoS multipath routing in wireless sensor networks. Wirel Netw 14(4):465–478

    Article  Google Scholar 

  67. Kusy B, Lee HJ, Wicke M, Milosavljevic N, Guibas L (2009) Predictive QoS routing to mobile sinks in wireless sensor networks. In: International conference on information processing in sensor networks (IPSN), San Francisco

    Google Scholar 

  68. Ben-Othman J, Yahya B (2010) Energy efficient and QoS based routing protocol for wireless sensor networks. Elsevier J Parallel Distrib Comput 70(8):849–857

    Article  MATH  Google Scholar 

  69. Chen Y, Nasser N, El Salti T, Zhang H (2010) A multipath QoS routing protocol in wireless sensor networks. Int J Sensor Netw 7(4):207–216

    Article  Google Scholar 

  70. Zhou Y, Fang Y, Zhang Y (2008) Securing wireless sensor networks: a survey. IEEE Commun Surv Tutorials 10(3):6–28

    Article  Google Scholar 

  71. Sheu J-P, Jiang J-R, Tu C (2008) Anonymous path routing in wireless sensor networks. In: IEEE international conference on communications (ICC), Beijing

    Google Scholar 

  72. Zhang Z, Jiang C, Deng J (2010) A secure anonymous path routing protocol for wireless sensor networks. In: IEEE international conference on wireless communications, networking and information security (WCNIS), Beijing

    Google Scholar 

  73. Zahariadis T, Leligou H, Voliotis S, Maniatis S, Trakadas P, Karkazis P (2009) Energy-aware secure routing for large wireless sensor networks. World Sci Eng Acad Soc Trans Commun 8(9):981–991

    Google Scholar 

  74. Singh S, Singh M, Singh D (2010) Routing protocols in wireless sensor networks—a survey. Int J Comput Sci Eng Surv (IJCSES) 1(2):63–83

    Google Scholar 

  75. Koliousis A, Sventek J (2007) Proactive vs reactive routing for wireless sensor networks. Department of Computing Science, University of Glasgow, Glasgow

    Google Scholar 

  76. Du X, Lin F (2005) Improving routing in sensor networks with heterogeneous sensor nodes. In: Vehicular technology conference, Stockholm

    Google Scholar 

  77. Kim H, Abdelzaher T, Kwon W (2003) Minimum-energy asynchronous dissemination to mobile sinks in wireless sensor networks. In: 1st international conference on embedded networked sensor systems (SenSys’03), Los Angeles

    Google Scholar 

  78. Yao Y, Gehrke J (2002) The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Rec 31(3):9–18

    Article  Google Scholar 

  79. Lindsey S, Raghavendra C (2002) PEGASIS: power-efficient gathering in sensor information systems. In: IEEE aerospace conference, Big Sky

    Google Scholar 

  80. Langendoen K, Halkes G (2005) Energy efficient medium access control. In: Embedded systems handbook, CRC, pp 34.1–34.29

    Google Scholar 

  81. Tang L, Yanjun S, Gurewitz O, Johnson DB (2011) PW-MAC: an energy-efficient predictive-wakeup MAC protocol for wireless sensor networks. In: IEEE INFOCOM, Shanghai

    Google Scholar 

  82. Ye W, Heidemann J, Estrin D (2002) An energy-efficient MAC protocol for wireless sensor networks. In: INFOCOM 2002, 21st annual joint conference of IEEE computer and communications societies, New York

    Google Scholar 

  83. Buettner M, Yee GV, Anderson E, Han R (2006) X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proceedings of 4th international conference on embedded networked sensor systems (SenSys), Boulder

    Google Scholar 

  84. Ren Q, Liang Q (2005) An energy-efficient MAC protocol for wireless sensor networks. In: IEEE Globecom, St. Louis

    Google Scholar 

  85. Bachir A, Dohler M, Watteyne T, Leung K (2010) MAC essentials for wireless sensor networks. IEEE Commun Surv Tutorials 12(2):222–248

    Article  Google Scholar 

  86. Rao P, Rani R, Sankar S, Pradeep K, Kumar N, Kumar V (2010) Secure MAC for wireless sensor networks through RBFNN. Int J Eng Sci Technol 2(8):3510–3514

    Google Scholar 

  87. Hu Q, Tang Z (2011) ATPM: an energy efficient MAC protocol with adaptive transmit power scheme for wireless sensor networks. J Multimedia 6(2):122–128

    Article  Google Scholar 

  88. Yigitel M, Incel O, Ersoy C (2011) QoS-aware MAC protocols for wireless sensor networks: a survey. Elsevier Comput Netw 8(1):1982–2004

    Article  Google Scholar 

  89. Langendoen K (2011) The MAC alphabet soup served in wireless sensor networks – taxonomy. Delft University of Technology, 16 March 2011 [Online]. Available: http://www.st.ewi.tudelft.nl/~koen/MACsoup/taxonomy.php. Accessed 12 July 2012

  90. Sugihara R, Gupta RK (2008) Programming models for sensor networks: a survey. ACM Trans Sensor Netw (TOSN) 4(2):1–29

    Google Scholar 

  91. Farooq M, Kunz T (2011) Operating systems for wireless sensor networks: a survey. Sensors 11(6):5900–5930

    Article  Google Scholar 

  92. Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay D, Hill J, Welsh M, Brewer E, Culler D (2005) TinyOS: an operating system for sensor networks. In: Ambient intelligence. Springer, New York, pp 115–148

    Google Scholar 

  93. Gay D, Levis P, von Behren R, Welsh M, Brewer E, Culler D (2003) The nesC language: a holistic approach to networked embedded systems. In: Proceedings of programming language design and implementation (PLDI), San Diego

    Google Scholar 

  94. Anastasi G, Conti M, Di Francesco M, Passarella A (2009) Energy conservation in wireless sensor networks: a survey. Elsevier Ad Hoc Netw 7(3):537–568

    Article  Google Scholar 

  95. TinyOS Tutorial Lesson 1: getting started with TinyOS and nesC. TinyOS, 9 September 2003 [Online]. Available: http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson1.html. Accessed 8 Jan 2012

  96. Thusu R (2010) Wireless sensor use is expanding in industrial applications. Sensors, 1 June 2010 [Online]. Available: http://www.sensorsmag.com/networking-communications/wireless-sensor/wireless-sensor-use-is-expanding-industrial-applications-7212. Accessed 8 Jan 2012

  97. Boyle D, Newe T (2007) Security protocols for use with wireless sensor networks: a survey of security architectures. In: International conference on wireless and mobile communications (ICWMC), Guadeloupe, French Caribbean

    Google Scholar 

  98. Perrig A, Szewczyk R, Tygar JD, Wen V, Culler D (2002) SPINS: security protocols for sensor networks. Wirel Netw 8(5):521–534

    Article  MATH  Google Scholar 

  99. Zhu S, Setia S, Jajodia S (2003) LEAP: efficient security mechanisms for large-scale distributed sensor networks. In: ACM conference on computer and communications security, Washington, DC

    Google Scholar 

  100. Karlof C, Sastry N, Wagner D (2004) TinySec: a link layer security architecture for wireless sensor networks. In: International conference on embedded networked sensor systems, Baltimore

    Google Scholar 

  101. Kulkarni RV, Forster A, Venayagamoorthy GK (2011) Computational intelligence in wireless sensor networks: a survey. IEEE Commun Surv Tutorials 13(1):68–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zill-E-Huma Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Kamal, ZEH., Salahuddin, M.A. (2015). Introduction to Wireless Sensor Networks. In: Benhaddou, D., Al-Fuqaha, A. (eds) Wireless Sensor and Mobile Ad-Hoc Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2468-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2468-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2467-7

  • Online ISBN: 978-1-4939-2468-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics