Skip to main content

Childhood Threats to Adult Cognition in Sub-Saharan Africa: Malaria, Anemia, Stunting, Enteric Enteropathy, and the Microbiome of Malnutrition

  • Chapter
Brain Degeneration and Dementia in Sub-Saharan Africa

Abstract

Many common childhood conditions are associated with cognitive deficits. While some causes of impaired cognition, such as lead exposure, are well understood, other common conditions in countries such as Uganda – malnutrition, anemia and malaria – are not sufficiently recognized. In this chapter we discuss stunting and its root causes of undernutrition, a lack of sanitation and its relationship to environmental enteropathy and the intestinal microbiome. We also review information about iron-deficiency anemia and malaria, and their neurological and cognitive consequences. We believe that cognitive declines later in life, during adulthood, may be prevented or delayed by addressing these childhood threats to cognition.

Funding

Funding was provided by the US Agency for International Development (USAID) Feed the Future Innovation Laboratory: Collaborative Research in Nutrition for Africa (award number AID-OAA-L-10-00006 to Tufts University). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of USAID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

Alpha linoleic acid

ApoE:

Apolipoprotein E

DHA:

Docosahexaenoic acid

DHS:

Demographic and Health Survey

EE:

Environmental enteropathy

EPA:

Eicosapentaenoic acid

GABA:

gamma-aminobutyric acid

IDA:

Iron deficiency anemia

Pb:

Lead

PRBCs:

Parasitized red blood cells

TCA:

Tricarboxylic acid

References

  1. Schiepers OJ, et al. APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921. Mol Psychiatry. 2012;17:315–24.

    Article  CAS  PubMed  Google Scholar 

  2. Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet. 2003;4:293–340.

    Article  CAS  PubMed  Google Scholar 

  3. Campbell CC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet. 2008;9:403–33.

    Google Scholar 

  4. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.

    Article  CAS  PubMed  Google Scholar 

  5. Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe an the United States. Ann N Y Acad Sci. 2013;1281:64–91.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet. 2010;375:2254–66.

    Article  PubMed  Google Scholar 

  7. Bigler EK, Tate DF. Brain volume, intracranial volume, and dementia. Invest Radiol. 2001;36:539–46.

    Article  CAS  PubMed  Google Scholar 

  8. den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MMB. Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry. 2006;63:57–62.

    Article  Google Scholar 

  9. Plassman BL, et al. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med. 2010;153:182–93.

    Article  PubMed  Google Scholar 

  10. Olewe T, Mwanthi MW, Wang’ombe JK, Griffiths JK. Blood lead levels and potential environmental exposures among children under five years in Kibera slums, Nairobi. East Afr J Public Health. 2009;6:6–10.

    Google Scholar 

  11. Advisory Committee on Childhood Lead Poisoning Prevention of the Centers for Disease Control and Prevention. Low level lead exposure harms children: a renewed call for primary prevention. Available at: http://www.cdc.gov/nceh/lead/acclpp/final_document_010412.pdf (2012). Accessed 4 Jan 2012.

  12. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    Article  PubMed  Google Scholar 

  13. Martorell R, Rivera J, Kaplowitz J, Pollitt E. Long term consequences of growth retardation during early childhood. In: Hernandez M, Argenta J, editors. Human growth: basic and clinical aspects. Amsterdam: Elsevier; 1992. p. 143–9.

    Google Scholar 

  14. Mendez MA, Adair LS. Severity and timing of stunting in the first two years of life affect performance on cognitive tests in late childhood. J Nutr. 1999;129:1555–62.

    CAS  PubMed  Google Scholar 

  15. Ivanovic DM, Perez HT, Olivares MD, Diaz NS, Leyton BD, Ivanovic RM. Scholastic achievement: a multivariate analysis of nutritional, intellectual, socioeconomic, sociocultural, familial, and demographic variables in Chilean school-aged children. J Nutr. 2004;20:878–89.

    Article  Google Scholar 

  16. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Ritcher L, Sachdev HS. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371:340–57.

    Article  PubMed Central  CAS  Google Scholar 

  17. Bhutta ZA, Das JK, Rizvi A, et al. The Lancet Nutrition Interventions Review Group, The Maternal and Child Nutrition Study Group. Evidence based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet 2013; published online June 6. http://dx.doi.org/10.1016/S0140-6736(13)60996-4

  18. Ruel M, Alderman H, The Maternal and Child Nutrition Study Group. Nutrition-sensitive interventions and programmes. Lancet 2013; published online June 6. http://dx.doi.org/10.1016/S0140-6736(13)60843-0

  19. Uganda Bureau of Statistics (UBOS), ICF International Inc. Uganda Demographic and Health Survey 2011. Kampala/Maryland: UBOS and Calverton/ICF International Inc. Available at: http://www.ubos.org/onlinefiles/uploads/ubos/UDHS/UDHS2011.pdf (2012).

  20. Winick M, Brasel JA. Early malnutrition and subsequent brain development. Ann N Y Acad Sci. 1977;300:280–2.

    Article  CAS  PubMed  Google Scholar 

  21. Winick M, Rosso P. Head circumference and cellular growth of the brain in normal and marasmic children. J Pediatr. 1969;74:774–8.

    Article  CAS  PubMed  Google Scholar 

  22. Winick M. Prenatal protein-calorie malnutrition and brain development. Prog Clin Biol Res. 1985;163B:397–402.

    CAS  PubMed  Google Scholar 

  23. Martorell R, Horta BL, Adair LS, Stein AD, Richter L, Fall CHD, Bhargava SK, Biswas SKD, Perez L, Barros FC, Victora CG, Consortium on Health Oriented Research in Transitional Societies (COHORTS) Group. Weight gain in the first two years of life is an important predictor of schooling outcomes in pooled analyses from five birth cohorts from low- and middle-income countries. J Nutr. 2010;140:348–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Veena SR, Krishnaveni GV, Wills AK, Kurpad AV, Muthayya S, Hill JC, Karat SC, Nagarajaiah KK, Fall CHD, Srinivasan K. Association of birthweight and head circumference at birth to cognitive performance in 9–10 year old children in south India: prospective birth cohort study. Pediatr Res. 2010;67:424–9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Adair LS, Fall CHD, Osmond C, Stein AD, Martorell R, Ramirez-Sea M, Sachdev HS, Dahly DL, Bas I, Norris SA, Micklesfield L, Hallal P, Victora CG, for the COHORTS Group. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies. Lancet. 2013;382(9891):525–34.

    Google Scholar 

  26. Bhat D, Troy L, Karim R, Levinson FJ. Determinants of food consumption during pregnancy in rural Bangladesh. Bangladesh Dev Stud. 2002;28:95–104.

    Google Scholar 

  27. Özaltin E, Hill K, Subramanian SV. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. JAMA. 2010;303(15):1507–16.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Keino S, Plasqui G, Ettyang G, van den Borne B. Determinants of stunting and overweight among young children and adolescents in sub-Saharan Africa. Food Nutr Bull. 2014;35(2):167–78.

    PubMed  Google Scholar 

  29. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R, The Maternal and Child Nutrition Study Group. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–51.

    Article  PubMed  Google Scholar 

  30. Gallou-Kabani C, Junien C. Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes. 2005;54:1899–906.

    Article  CAS  PubMed  Google Scholar 

  31. Martorell R, Zongrone A. Intergenerational influences on child growth and undernutrition. Paediatr Perinat Epidemiol. 2012;26(S1):302–14.

    Article  PubMed  Google Scholar 

  32. Lawlor DA, Riddoch CJ, Page AS, Anderssen SA, Froberg K, Harro M, Stansbie D, Smith GD. The association of birthweight and contemporary size with insulin resistance among children from Estonia and Denmark: findings from the European Youth Heart Study. Diabet Med. 2005;22(7):921–30.

    Article  CAS  PubMed  Google Scholar 

  33. Krishnaveni GV, Veena SR, Wills AK, Hill JC, Karat SC, Fall CHD. Adiposity, insulin resistance and cardiovascular risk factors in 9–10-year-old Indian children: relationships with birth size and postnatal growth. J Dev Orig Health Dis. 2010;1(6):403–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Baker SJ, Mathan VI. Tropical enteropathy and tropical sprue. Am J Clin Nutr. 1972;25:1047–55.

    CAS  PubMed  Google Scholar 

  35. Fagundes-Neto U, Viaro T, Wehba J, Patricio FR, Machado NL. Tropical enteropathy (environmental enteropathy) in early childhood: a syndrome caused by contaminated environment. J Trop Pediatr. 1984;30:204–9.

    Article  CAS  PubMed  Google Scholar 

  36. Keusch GT. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutr Bull. 2013;34:357–61.

    PubMed  Google Scholar 

  37. Lunn PG, Northrop-Clewes CA, Downes RM. Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet. 1991;338:907–10.

    Article  CAS  PubMed  Google Scholar 

  38. Korpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med. 2012;18(6):328–36.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Humphrey JH. Children undernutrition, tropical enteropathy, toilets, and handwashing. Lancet. 2009;374:1032–5.

    Article  PubMed  Google Scholar 

  40. Prendergast AJ, Rukobo S, Chasekwa B, Mutasa K, Ntonzini R, et al. Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS One. 2014;9(2):e866928.

    Article  Google Scholar 

  41. Lin A, Arnold BF, Afreen S, Goto R, Huda TMN, Haque R, Raqib R, Unicomb L, Ahmed T, Colford Jr JM, Luby SP. Household environmental conditions are associated with enteropathy and impaired growth in rural Bangladesh. Am J Trop Med Hyg. 2013;89(1):130–7.

    Article  PubMed Central  PubMed  Google Scholar 

  42. DeBoer MD, Lima AAM, Oría RB, Scharf RJ, Moore SR, Luna MA, Guerrant RL. Early childhood growth failure and the developmental origins of adult disease: do enteric infections and malnutrition increase risk for the metabolic syndrome? Nutr Rev. 2012;70:642–53.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339:548–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3:448.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013;34:39–59.

    Article  CAS  PubMed  Google Scholar 

  46. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis fo the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.

    Article  PubMed  Google Scholar 

  47. Kordas K, Lopez P, Rosado JL, Vargas GG, Rico JA, Cebria’n ME, Stoltzfus RJ. Blood lead, anemia, and short stature are independently associated with cognitive performance in Mexican school children. J Nutr. 2004;134:363–71.

    CAS  PubMed  Google Scholar 

  48. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–58.

    Article  CAS  PubMed  Google Scholar 

  49. Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006;65(5 Pt 2):S34–91.

    Article  Google Scholar 

  50. Lozoff B, Jimenez E, Hagen J, et al. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105:E51. Available at: http://www.pediatricsorg/cgi/content/full/105/4/e51. Accessed 3 Oct 2006.

  51. Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency and low socio-economic status: a longitudinal analysis of cognitive test scores to 19 years. Arch Pediatr Adolesc Med. 2006;160(11):1108–13.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Uganda Bureau of Statistics (UBOS), ICF International Inc. Uganda Demographic and Health Survey 2011. Kampala/Maryland: UBOS and Calverton/ICF International Inc. Available at: http://www.ubos.org/onlinefiles/uploads/ubos/UDHS/UDHS2011.pdf (2012).

  53. Idro R, Marsh K, John CC, Newton CRJ. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res. 2010;68:267–74.

    Article  PubMed Central  PubMed  Google Scholar 

  54. John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, Wu B, Boivin MJ. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122:e92–9.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Opoka RO, Bangirana P, Boivin MJ, John CC, Byarugaba J. Seizure activity and neurological sequelae in Ugandan children who have survived an episode of cerebral malaria. Afr Health Sci. 2009;9:75–81.

    PubMed Central  PubMed  Google Scholar 

  56. Carter JA, Lees JA, Gona JK, Murira G, Rimba K, Neville BG, Newton CR. Severe falciparum malaria and acquired childhood language disorder. Dev Med Child Neurol. 2006;48:51–7.

    Article  PubMed  Google Scholar 

  57. Nankabirwa J, Wandera B, Kiwanuka N, Staedke SG, Kamya MR, Brooker SJ. Asymptomatic Plasmodium infection and cognition among primary schoolchildren in a high malaria transmission setting in Uganda. Am J Trop Med Hyg. 2013;88(6):1102–8.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Thuilliez J, Sissoko MS, Toure OB, Kamate P, Berthelemy JC, Doumbo OK. Malaria and primary education in Mali: a longitudinal study in the village of Doneguebougou. Soc Sci Med. 2010;71:324–34.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Al Serouri AW, Grantham-McGregor SM, Greenwood B, Costello A. Impact of asymptomatic malaria parasitemia on cognitive function and school achievement of schoolchildren in the Yemen Republic. Parasitology. 2000;121:337–45.

    Article  PubMed  Google Scholar 

  60. Fernando D, de Silva D, Carter R, Mendis KN, Wickremasinghe R. A randomized, double-blind, placebo-controlled, clinical trial of the impact of malaria prevention on the educational attainment of school children. Am J Trop Med Hyg. 2006;74(3):386–93.

    PubMed  Google Scholar 

  61. Fink G, Olgiati A, Hawela M, Miller JM, Matafwali B. Association between early childhood exposure to malaria and children’s pre-school development: evidence from the Zambia early childhood development project. Malar J. 2013;12:12.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey K. Griffiths AB, MD, MPH&TM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffiths, J.K., Kikafunda, J.K. (2015). Childhood Threats to Adult Cognition in Sub-Saharan Africa: Malaria, Anemia, Stunting, Enteric Enteropathy, and the Microbiome of Malnutrition. In: Musisi, S., Jacobson, S. (eds) Brain Degeneration and Dementia in Sub-Saharan Africa. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2456-1_7

Download citation

Publish with us

Policies and ethics