Skip to main content

Multisymplectic Geometry and Lie Groupoids

  • Chapter
Geometry, Mechanics, and Dynamics

Part of the book series: Fields Institute Communications ((FIC,volume 73))

Abstract

We study higher-degree generalizations of symplectic groupoids, referred to as multisymplectic groupoids. Recalling that Poisson structures may be viewed as infinitesimal counterparts of symplectic groupoids, we describe “higher” versions of Poisson structures by identifying the infinitesimal counterparts of multisymplectic groupoids. Some basic examples and features are discussed.

In memory of Jerry Marsden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, in the description of the interplay between hamiltonian dynamics and symmetries [29], and in the transition from classical to quantum mechanics [7].

  2. 2.

    Here the fibred product \(\mathcal{G}_{\mathsf{s}} \times _{\mathsf{t}}\mathcal{G} =\{ (g,h) \in \mathcal{G}\times \mathcal{G}\,\vert \,\mathsf{s}(g) = \mathsf{t}(h)\}\) represents the space of composable arrows.

  3. 3.

    For a function \(f \in \varOmega ^{0}(\mathcal{G}) = C^{\infty }(\mathcal{G})\), condition (5) becomes \(f(gh) = f(g) + f(h)\), i.e., it says that f is a groupoid morphism into \(\mathbb{R}\) (viewed as an abelian group).

  4. 4.

    See e.g. [37] for a nonintegrable example and [14] for a discussion of obstructions to integrability.

  5. 5.

    In the case of exact k-plectic manifolds, a different way to eliminate the jacobiator defect is presented in [16], based on a modification of the bracket (11) using the k-plectic potential.

  6. 6.

    We say that two IM (k + 1)-forms \(\mu _{1}: A_{1} \rightarrow \wedge ^{k}T^{{\ast}}M\) and \(\mu _{2}: A_{2} \rightarrow \wedge ^{k}T^{{\ast}}M\) are equivalent if there is a Lie-algebroid isomorphism ϕ: A 1 → A 2 such that μ 2ϕ = μ 1; these are infinitesimal versions of isomorphism of Lie groupoids preserving multiplicative forms.

References

  1. Arias Abad, C., Crainic, M.: The Weil algebra and the Van Est isomorphism. Ann. Inst. Fourier (Grenoble) 61, 927–970 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baez, J., Hoffnung, H., Rogers, C.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293, 701–715 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates, S., Weinstein, A.: Lectures on the Geometry of Quantization. Berkeley Mathematics Lecture Notes, vol. 8. American Mathematical Society/Berkeley Center for Pure and Applied Mathematics, Providence, RI/Berkeley, CA (1997)

    Google Scholar 

  4. Bursztyn, H., Cabrera, A.: Multiplicative forms at the infinitesimal level. Math. Ann. 353, 663–705 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bursztyn, H., Crainic, M.: Dirac structures, moment maps and quasi-Poisson manifolds. In: The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 1–40. Birkhauser, Boston (2005)

    Google Scholar 

  6. Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C.: Integration of twisted Dirac brackets. Duke Math. J. 123, 549–607 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannas da Silva, A., Weinstein, A.: Geometric Models for Noncommutative Algebras. Berkeley Mathematics Lecture Notes, vol. 10. American Mathematical Society/Berkeley Center for Pure and Applied Mathematics, Providence, RI/Berkeley, CA (1999)

    Google Scholar 

  8. Cantrijn, F., Ibort, A., de Leon, M.: Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Mat. Univ. Pol. Torino 54, 225–236 (1996). Geom. Struc. Phys. Theories, I

    Google Scholar 

  9. Cantrijn, F., Ibort, A., de Leon, M.: On the geometry of multisymplectic manifolds. J. Aust. Math. Soc. A 66, 303–330 (1999)

    Article  MATH  Google Scholar 

  10. Cattaneo, A., Felder, G.: Poisson sigma models and symplectic groupoids. In: Quantization of Singular Symplectic Quotients. Progress in Mathematics, vol. 198, pp. 61–93. Birkhauser, Basel (2001)

    Google Scholar 

  11. Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, vol. 2, i–ii, 1–62, Publ. Dép. Math. Nouvelle Sér. A, 87-2, Univ. Claude-Bernard, Lyon (1987)

    Google Scholar 

  12. Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crainic, M., Fernandes, R.: Integrability of Lie brackets. Ann. Math. 157, 575–620 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Crainic, M., Fernandes, R.: Integrability of Poisson brackets. J. Differ. Geom. 66, 71–137 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Dufour, J.-P., Zung, N.-T.: Poisson Structures and Their Normal Forms. Progress in Mathematics, vol. 242. Birkhauser, Boston (2005)

    Google Scholar 

  16. Forger, M., Paufler, C., Römer, H.: The Poisson bracket for poisson forms in multisymplectic field theory. Rev. Math. Phys. 15, 705–743 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gotay, M.: A multisymplectic framework for classical field theory and the calculus of variations. I. Covariant Hamiltonian formalism. In: Mechanics, Analysis and Geometry: 200 Years After Lagrange, pp. 203–235. Elsevier, New York (1991)

    Google Scholar 

  18. Gotay, M., Isenberg, J., Marsden, J., Montgomery, R.: Momentum maps and classical relativistic fields. Part I: covariant field theory. ArXiv: physics/9801019 (1998)

    Google Scholar 

  19. Gotay, M., Isenberg, J., Marsden, J.: Momentum maps and classical relativistic fields. Part II: canonical analysis of field theories. ArXiv: math-ph/0411032 (2004)

    Google Scholar 

  20. Gualtieri, M., Li, S.: Symplectic groupoids of log symplectic manifolds, Int. Math. Res. Not. 11, 3022–3074 (2014)

    MathSciNet  Google Scholar 

  21. Hélein, F.: Multisymplectic formalism and the covariant phase space. In: Variational Problems in Differential Geometry. London Mathematical Society Lecture Note Series, vol. 394, pp. 94–126. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  22. Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hrabak, S.P.: On a multisymplectic formulation of the classical BRST symmetry for first order field theories. Part I: algebraic structures. ArXiv:math-ph/9901012 (1999)

    Google Scholar 

  24. Iglesias Ponte, D., Marrero, J.C., Vaquero, M.: Poly-Poisson structures. Lett. Math. Phys. 103, 1103–1133 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kanatchikov, I.V.: On field theoretic generalizations of a Poisson algebra. Rep. Math. Phys. 40, 225–234 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kijowski, J., Szczyrba, W.: A canonical structure for classical field theories. Commun. Math. Phys. 46, 183–206 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mackenzie, K., Xu, P.: Integration of Lie bialgebroids. Topology 39, 445–467 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Madsen, T., Swann, A.: Closed forms and multi-moment maps. Geom. Dedicata 165, 25–52 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry. Text in Applied Mathematics, vol. 17. Springer, New York (1994)

    Google Scholar 

  30. Marsden, J.E., Patrick, G., Shkoller, S.: Multisymplectic geometry, variational integrators and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marsden, J.E., Pekarsky, S., Shkoller, S., West, M.: Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38, 253–284 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. N. Martnez: Poly-symplectic groupoids and poly-Poisson structures, arXiv:1409.0695 [math.SG] (2014)

    Google Scholar 

  33. Martinez-Torres, D.: A note on the separability of canonical integrations of Lie algebroids. Math. Res. Lett. 17, 69–75 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mikami, K., Weinstein, A.: Moments and reduction for symplectic groupoid actions. Publ. Res. Inst. Math. Sci. 24, 121–140 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rogers, C.: L -algebras from multisymplectic geometry. Lett. Math. Phys. 100, 29–50 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vankerschaver, J. Yoshimura, H., Leok, M.: The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories. J. Math. Phys. 53, 072903 (2012)

    Article  MathSciNet  Google Scholar 

  37. Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. Am. Math. Soc. (N.S.) 16, 101–104 (1987)

    Google Scholar 

  38. Zambon, M.: L -algebras and higher analogues of Dirac structures and Courant algebroids. J. Symplectic Geom. 10, 563–599 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

H.B. and A.C. thank the organizers of the Focus Program on Geometry, Mechanics and Dynamics: the Legacy of Jerry Marsden, held at the Fields Institute in July of 2012, for their hospitality during the program, as well as MITACS for travel support (for which we also thank J. Koiller). H. B. and A. C. were partly funded by CNPq, Faperj and Capes (through the grant PVE 11/2012) D. I. thanks MICINN (Spain) for a “Ramón y Cajal” research contract; he is partially supported by MICINN grants MTM2012-34478 and MTM2009-08166-E and Canary Islands government project SOLSUB200801000238. We have benefited from many stimulating conversations with M. Forger, J.C. Marrero, N. Martinez, C. Rogers and M. Zambon. We also thank the referees for several useful comments that improved the presentation of this note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Bursztyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bursztyn, H., Cabrera, A., Iglesias, D. (2015). Multisymplectic Geometry and Lie Groupoids. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_3

Download citation

Publish with us

Policies and ethics