Recent Advances in Use of Gene Therapy to Treat Hepatitis B Virus Infection

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 848)

Abstract

Chronic infection with hepatitis B virus (HBV) occurs in approximately 5 % of the world’s human population and persistence of the virus is associated with serious complications of cirrhosis and liver cancer. Currently available treatments are modestly effective and advancing novel therapeutic strategies is a medical priority. Stability of the viral cccDNA replication intermediate is a major factor that has impeded the development of therapies that are capable of eliminating chronic infection. Recent advances that employ gene therapy strategies offer useful advantages over current therapeutics. Silencing of HBV gene expression by harnessing the RNA interference pathway has been shown to be highly effective in cell culture and in vivo. However, a potential limitation of this approach is that the post-transcriptional mechanism of gene silencing does not disable cccDNA. Early results using designer transcription activator-like effector nucleases (TALENs) and repressor TALEs (rTALEs) have shown potential as a mode of inactivating cccDNA. In this article, we review the recent advances that have been made in HBV gene therapy, with a particular emphasis on the potential anti-HBV therapeutic utility of designed sequence-specific DNA binding proteins and their derivatives.

Keywords

HBV cccDNA RNAi Designer nucleases TALENs Zinc finger nucleases Repressor TALEs Targeted disruption Site-directed mutagenesis 

Notes

Acknowledgements

Work in the authors’ laboratory is generously supported by funding from the National Research Foundation (NRF, GUNs 81768, 81692, 68339, 85981 & 77954) of South Africa, South African Medical Research Council (MRC), Poliomyelitis Research Foundation (PRF) and from the German Research Foundation (DFG).

References

  1. 1.
    Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine. 2012;30(12):2212–9. PubMed PMID: 22273662. Epub 2012/01/26. eng.CrossRefPubMedGoogle Scholar
  2. 2.
    WHO. Hepatitis B virus fact sheet no. 204 (Updated July 2013). 2013. http://www.who.int/mediacentre/factsheets/fs204/en/index.html.
  3. 3.
    Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–38. PubMed PMID: 16879891. Epub 2006/08/02. eng.CrossRefPubMedGoogle Scholar
  4. 4.
    Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol. 2012;13(8):790–801. PubMed PMID: 22658655. Epub 2012/06/05. eng.CrossRefPubMedGoogle Scholar
  5. 5.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. PubMed PMID: 15761078. Epub 2005/03/12. eng.CrossRefPubMedGoogle Scholar
  6. 6.
    Chien YC, Jan CF, Kuo HS, Chen CJ. Nationwide hepatitis B vaccination program in Taiwan: effectiveness in the 20 years after it was launched. Epidemiol Rev. 2006;28:126–35. PubMed PMID: 16782778. Epub 2006/06/20. eng.CrossRefPubMedGoogle Scholar
  7. 7.
    Ni YH, Chen DS. Hepatitis B vaccination in children: the Taiwan experience. Pathol Biol (Paris). 2010;58(4):296–300. PubMed PMID: 20116181. Epub 2010/02/02. eng.CrossRefGoogle Scholar
  8. 8.
    Zoulim F. Hepatitis B virus resistance to antiviral drugs: where are we going? Liver Int. 2011; 31 Suppl 1:111–6. PubMed PMID: 21205147. Pubmed Central PMCID: 3096621. Epub 2011/01/19. eng.Google Scholar
  9. 9.
    Lai CL, Dienstag J, Schiff E, Leung NW, Atkins M, Hunt C, et al. Prevalence and clinical correlates of YMDD variants during lamivudine therapy for patients with chronic hepatitis B. Clin Infect Dis. 2003;36(6):687–96. PubMed PMID: 12627352. Epub 2003/03/11. eng.CrossRefPubMedGoogle Scholar
  10. 10.
    Lok AS, Lai CL, Leung N, Yao GB, Cui ZY, Schiff ER, et al. Long-term safety of lamivudine treatment in patients with chronic hepatitis B. Gastroenterology. 2003;125(6):1714–22. PubMed PMID: 14724824. Epub 2004/01/16. eng.CrossRefPubMedGoogle Scholar
  11. 11.
    Marcellin P, Chang TT, Lim SG, Sievert W, Tong M, Arterburn S, et al. Long-term efficacy and safety of adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. Hepatology. 2008;48(3):750–8. PubMed PMID: 18752330. Epub 2008/08/30. eng.CrossRefPubMedGoogle Scholar
  12. 12.
    Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64(1):51–68. Pubmed Central PMCID: 98986. Epub 2000/03/08. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Cummings IW, Browne JK, Salser WA, Tyler GV, Snyder RL, Smolec JM, et al. Isolation, characterization, and comparison of recombinant DNAs derived from genomes of human hepatitis B virus and woodchuck hepatitis virus. Proc Natl Acad Sci U S A. 1980;77(4):1842–6. PubMed PMID: 6246507. Pubmed Central PMCID: 348604. Epub 1980/04/01. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012;1:e00049.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986;47(3):451–60. PubMed PMID: 3768961. Epub 1986/11/07. eng.CrossRefPubMedGoogle Scholar
  16. 16.
    Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, et al. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995;69(6):3350–7. PubMed PMID: 7745682. Pubmed Central PMCID: 189047. Epub 1995/06/01. eng.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Moolla N, Kew M, Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J Viral Hepat. 2002;9(5):323–31. PubMed PMID: 12225325. Epub 2002/09/13. eng.CrossRefPubMedGoogle Scholar
  18. 18.
    Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39. PubMed PMID: 19165215. Epub 2009/01/24. eng.CrossRefPubMedGoogle Scholar
  19. 19.
    Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther. 2003;8(5):769–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Hamasaki K, Nakao K, Matsumoto K, Ichikawa T, Ishikawa H, Eguchi K. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett. 2003;543(1–3):51–4. PubMed PMID: 12753904.CrossRefPubMedGoogle Scholar
  21. 21.
    Klein C, Bock CT, Wedemeyer H, Wustefeld T, Locarnini S, Dienes HP, et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology. 2003;125(1):9–18. PubMed PMID: 12851866.CrossRefPubMedGoogle Scholar
  22. 22.
    Konishi M, Wu CH, Wu GY. Inhibition of HBV replication by siRNA in a stable HBV-producing cell line. Hepatology. 2003;38(4):842–50. PubMed PMID: 14512871. Epub 2003/09/27. eng.CrossRefPubMedGoogle Scholar
  23. 23.
    Qian ZK, Xuan BQ, Min TS, Xu JF, Li L, Huang WD. Cost-effective method of siRNA preparation and its application to inhibit hepatitis B virus replication in HepG2 cells. World J Gastroenterol. 2005;11(9):1297–302. PubMed PMID: 15761967. Epub 2005/03/12. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Cheng TL, Chang WW, Su IJ, Lai MD, Huang W, Lei HY, et al. Therapeutic inhibition of hepatitis B virus surface antigen expression by RNA interference. Biochem Biophys Res Commun. 2005;336(3):820–30. PubMed PMID: 16153600. Epub 2005/09/13. eng.CrossRefPubMedGoogle Scholar
  25. 25.
    McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21(6):639–44. PubMed PMID: 12740585.CrossRefPubMedGoogle Scholar
  26. 26.
    Ren X, Luo G, Xie Z, Zhou L, Kong X, Xu A. Inhibition of multiple gene expression and virus replication of HBV by stable RNA interference in 2.2.15 cells. J Hepatol. 2006;44(4):663–70. PubMed PMID: 16466826.CrossRefPubMedGoogle Scholar
  27. 27.
    Ren XR, Zhou LJ, Luo GB, Lin B, Xu A. Inhibition of hepatitis B virus replication in 2.2.15 cells by expressed shRNA. J Viral Hepat. 2005;12(3):236–42. PubMed PMID: 15850463.CrossRefPubMedGoogle Scholar
  28. 28.
    Shin D, Kim SI, Kim M, Park M. Efficient inhibition of hepatitis B virus replication by small interfering RNAs targeted to the viral X gene in mice. Virus Res. 2006;119(2):146–53. PubMed PMID: 16443303. Epub 2006/01/31. eng.CrossRefPubMedGoogle Scholar
  29. 29.
    Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. 2003;37(4):764–70. PubMed PMID: 12668968.CrossRefPubMedGoogle Scholar
  30. 30.
    Ying RS, Zhu C, Fan XG, Li N, Tian XF, Liu HB, et al. Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antiviral Res. 2007;73(1):24–30. PubMed PMID: 16844238. Epub 2006/07/18. eng.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang XN, Xiong W, Wang JD, Hu YW, Xiang L, Yuan ZH. siRNA-mediated inhibition of HBV replication and expression. World J Gastroenterol. 2004;10(20):2967–71. PubMed PMID: 15378775. Epub 2004/09/21. eng.PubMedGoogle Scholar
  32. 32.
    Hean J, Crowther C, Ely A, Ul Islam R, Barichievy S, Bloom K, et al. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artifi DNA PNA XNA. 2010;1(1):17–26. PubMed PMID: 21687523. Pubmed Central PMCID: 3109439. Epub 2011/06/21. Eng.CrossRefGoogle Scholar
  33. 33.
    Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23(8):1002–7. PubMed PMID: 16041363. Epub 2005/07/26. eng.CrossRefPubMedGoogle Scholar
  34. 34.
    Marimani MD, Ely A, Buff MC, Bernhardt S, Engels JW, Arbuthnot P. Inhibition of hepatitis B virus replication in cultured cells and in vivo using 2′-O-guanidinopropyl modified siRNAs. Bioorg Med Chem. 2013;21(20):6145–55. PubMed PMID: 23743442.CrossRefPubMedGoogle Scholar
  35. 35.
    Wooddell CI, Rozema DB, Hossbach M, John M, Hamilton HL, Chu Q, et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther. 2013;21(5):973–85. PubMed PMID: 23439496.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL, et al. Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther. 2006;13(2):411–21. PubMed PMID: 16337206.CrossRefPubMedGoogle Scholar
  37. 37.
    Ely A, Naidoo T, Arbuthnot P. Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res. 2009;37(13):e91. PubMed PMID: 19474340. Pubmed Central PMCID: 2715259. Epub 2009/05/29. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Ely A, Naidoo T, Mufamadi S, Crowther C, Arbuthnot P. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol Ther. 2008;16(6):1105–12. PubMed PMID: 18431360. Epub 2008/04/24. eng.CrossRefPubMedGoogle Scholar
  39. 39.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41. PubMed PMID: 16724069.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen CC, Ko TM, Ma HI, Wu HL, Xiao X, Li J, et al. Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther. 2007;14(1):11–9. PubMed PMID: 16929350. Epub 2006/08/25. eng.CrossRefPubMedGoogle Scholar
  41. 41.
    Chen CC, Sun CP, Ma HI, Fang CC, Wu PY, Xiao X, et al. Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther. 2009;17(2):352–9. PubMed PMID: 19066602. Pubmed Central PMCID: 2835062. Epub 2008/12/11. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Crowther C, Mowa MB, Ely A, Arbuthnot PB. Inhibition of hepatitis B virus replication in vivo using helper-dependent adenovirus vectors to deliver antiviral RNAi expression cassettes. Antivir Ther. 2014;19(4):363–73. PubMed PMID: 24296696.CrossRefPubMedGoogle Scholar
  43. 43.
    Starkey JL, Chiari EF, Isom HC. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro. J Gen Virol. 2009;90(Pt 1):115–26. PubMed PMID: 19088280. Pubmed Central PMCID: 2659548. Epub 2008/12/18. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Jamieson AC, Miller JC, Pabo CO. Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. 2003;2(5):361–8. PubMed PMID: 12750739. Epub 2003/05/17. eng.CrossRefPubMedGoogle Scholar
  45. 45.
    Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem. 2010;79:213–31. PubMed PMID: 20192761.CrossRefPubMedGoogle Scholar
  46. 46.
    Zimmerman KA, Fischer KP, Joyce MA, Tyrrell DL. Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J Virol. 2008;82(16):8013–21. PubMed PMID: 18524822. Pubmed Central PMCID: 2519588. Epub 2008/06/06. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Bernstein KA, Rothstein R. At loose ends: resecting a double-strand break. Cell. 2009;137(5):807–10. PubMed PMID: 19490890. Epub 2009/06/06. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211. PubMed PMID: 20192759. Pubmed Central PMCID: 3079308. Epub 2010/03/03. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Barker J, Voit R, Porteus M. Nuclease mediated targeted genome modification in mammalian cells. In: Renault S, Duchateau P, editors. Site-directed insertion of transgenes, Topics in current genetics, vol. 23. Netherlands: Springer; 2013. p. 327–52.CrossRefGoogle Scholar
  50. 50.
    Wirt SE, Porteus MH. Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol. 2012;24(5):609–16. PubMed PMID: 22981684.CrossRefPubMedGoogle Scholar
  51. 51.
    Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR. Targeted DNA mutagenesis for the cure of chronic viral infections. J Virol. 2012;86(17):8920–36. PubMed PMID: 22718830. Pubmed Central PMCID: 3416169. Epub 2012/06/22. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. PubMed PMID: 23287718. Epub 2013/01/05. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9. PubMed PMID: 23360964. Pubmed Central PMCID: 3686313.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Jacquier A, Dujon B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell. 1985;41(2):383–94. PubMed PMID: 3886163. Epub 1985/06/01. eng.CrossRefPubMedGoogle Scholar
  55. 55.
    Kostriken R, Strathern JN, Klar AJ, Hicks JB, Heffron F. A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell. 1983;35(1):167–74. PubMed PMID: 6313222. Epub 1983/11/01. eng.CrossRefPubMedGoogle Scholar
  56. 56.
    Thierry A, Dujon B. Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res. 1992;20(21):5625–31. PubMed PMID: 1333585. Pubmed Central PMCID: 334395. Epub 1992/11/11. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Grosse S, Huot N, Mahiet C, Arnould S, Barradeau S, Clerre DL, et al. Meganuclease-mediated inhibition of HSV1 infection in cultured cells. Mol Ther. 2011;19(4):694–702. PubMed PMID: 21224832. Pubmed Central PMCID: 3070101. Epub 2011/01/13. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–60. PubMed PMID: 8577732. Pubmed Central PMCID: 40048. Epub 1996/02/06. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61. PubMed PMID: 20660643. Pubmed Central PMCID: 2942870Pubmed Central PMCID: 2942870. Epub 2010/07/28. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 1998;95(18):10570–5. PubMed PMID: 9724744. Pubmed Central PMCID: 27935. Epub 1998/09/02. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK. Structure of the multimodular endonuclease FokI bound to DNA. Nature. 1997;388(6637):97–100. PubMed PMID: 92145100. Epub 1997/07/03. eng.CrossRefPubMedGoogle Scholar
  62. 62.
    Porteus MH. Mammalian gene targeting with designed zinc finger nucleases. Mol Ther. 2006;13(2):438–46. PubMed PMID: 16169774. Epub 2005/09/20. eng.CrossRefPubMedGoogle Scholar
  63. 63.
    Rahman SH, Maeder ML, Joung JK, Cathomen T. Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum Gene Ther. 2011;22(8):925–33. PubMed PMID: 21631241. Pubmed Central PMCID: 3159524. Epub 2011/06/03. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. 2010;18(5):947–54. PubMed PMID: 20160705. Pubmed Central PMCID: 2890117. Epub 2010/02/18. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2009;48:419–36. PubMed PMID: 19400638. Epub 2009/04/30. eng.CrossRefGoogle Scholar
  66. 66.
    Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 2008;5(5):374–5. PubMed PMID: 18446154. Epub 2008/05/01. eng.CrossRefPubMedGoogle Scholar
  67. 67.
    Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2010;8(1):67–9. PubMed PMID: 21151135. Pubmed Central PMCID: 3018472. Epub 2010/12/15. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12. PubMed PMID: 19933107. Epub 2009/11/26. eng.CrossRefPubMedGoogle Scholar
  69. 69.
    Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501. PubMed PMID: 19933106. Epub 2009/11/26. eng.CrossRefPubMedGoogle Scholar
  70. 70.
    Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55. PubMed PMID: 23169466. Pubmed Central PMCID: 3547402.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 2012;335(6069):716–9. PubMed PMID: 22223736. Pubmed Central PMCID: 3427646. Epub 2012/01/10. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93. PubMed PMID: 21813459. Pubmed Central PMCID: 3241638. Epub 2011/08/05. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4. PubMed PMID: 21738127. Pubmed Central PMCID: 3152587. Epub 2011/07/09. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315–25. PubMed PMID: 21459844. Pubmed Central PMCID: 3152341. Epub 2011/04/05. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013;12(2):238–51. PubMed PMID: 23246482. Pubmed Central PMCID: 3570604. Epub 2012/12/19. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther. 2013;21(10):1889–97. PubMed PMID: 23883864. Pubmed Central PMCID: 3808145. Epub 2013/07/26. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, et al. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther. 2013;12. PubMed PMID: 24025750. Epub 2013/09/13. Eng.Google Scholar
  78. 78.
    Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12(9):440–50. PubMed PMID: 16899408. Epub 2006/08/11. eng.CrossRefPubMedGoogle Scholar
  79. 79.
    Bree RT, Neary C, Samali A, Lowndes NF. The switch from survival responses to apoptosis after chromosomal breaks. DNA Repair. 2004;3(8–9):989–95. PubMed PMID: 15279785. Epub 2004/07/29. eng.CrossRefPubMedGoogle Scholar
  80. 80.
    Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158–69. PubMed PMID: 7666518. Pubmed Central PMCID: 189513. Epub 1995/10/01. eng.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Kim Y, Kweon J, Kim JS. TALENs and ZFNs are associated with different mutation signatures. Nat Methods. 2013;10(3):185. PubMed PMID: 23396284. Epub 2013/02/12. eng.CrossRefPubMedGoogle Scholar
  82. 82.
    Buttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev. 2010;34(2):107–33. PubMed PMID: 19925633. Epub 2009/11/21. eng.CrossRefPubMedGoogle Scholar
  83. 83.
    Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 2007;318(5850):648–51. PubMed PMID: 17962565. Epub 2007/10/27. eng.CrossRefPubMedGoogle Scholar
  84. 84.
    Romer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007;318(5850):645–8. PubMed PMID: 17962564. Epub 2007/10/27. eng.CrossRefPubMedGoogle Scholar
  85. 85.
    Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29(2):149–53. PubMed PMID: 21248753. Pubmed Central PMCID: 3084533. Epub 2011/01/21. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun. 2012;3:968. PubMed PMID: 22828628. Pubmed Central PMCID: 3556390. Epub 2012/07/26. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Garg A, Lohmueller JJ, Silver PA, Armel TZ. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 2012;40(15):7584–95. PubMed PMID: 22581776. Pubmed Central PMCID: 3424557. Epub 2012/05/15. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS One. 2011;6(5):e19509. PubMed PMID: 21625585. Pubmed Central PMCID: 3098229. Epub 2011/06/01. eng.CrossRefPubMedGoogle Scholar
  89. 89.
    Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA. The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A. 1991;88(9):3608–12. Pubmed Central PMCID: 51501. Epub 1991/05/01. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher 3rd FJ. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16(8):919–32. PubMed PMID: 11959841. Pubmed Central PMCID: 152359. Epub 2002/04/18. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Quasdorff M, Protzer U. Control of hepatitis B virus at the level of transcription. J Viral Hepat. 2010;17(8):527–36. PubMed PMID: 20546497. Epub 2010/06/16. eng.CrossRefPubMedGoogle Scholar
  92. 92.
    Bar-Yishay I, Shaul Y, Shlomai A. Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression. Liver Int. 2011;31(3):282–90. PubMed PMID: 21281428. Epub 2011/02/02. eng.CrossRefPubMedGoogle Scholar
  93. 93.
    Fukai K, Takada S, Yokosuka O, Saisho H, Omata M, Koike K. Characterization of a specific region in the hepatitis B virus enhancer I for the efficient expression of X gene in the hepatic cell. Virology. 1997;236(2):279–87. PubMed PMID: 9325235. Epub 1997/11/05. eng.CrossRefPubMedGoogle Scholar
  94. 94.
    Su H, Yee JK. Regulation of hepatitis B virus gene expression by its two enhancers. Proc Natl Acad Sci U S A. 1992;89(7):2708–12. PubMed PMID: 1313564. Pubmed Central PMCID: 48731. Epub 1992/04/01. eng.CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. 2000;405(6787):697–700. PubMed PMID: 10864328. Epub 2000/06/23. eng.CrossRefPubMedGoogle Scholar
  96. 96.
    Perrillo R. Benefits and risks of interferon therapy for hepatitis B. Hepatology. 2009;49(5 Suppl):S103–11. PubMed PMID: 19399806.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Gene and Cell Therapy 2015

Authors and Affiliations

  • Kristie Bloom
    • 1
  • Abdullah Ely
    • 2
  • Patrick Arbuthnot
    • 2
  1. 1.Institute for Cell and Gene Therapy and Center for Chronic ImmunodeficiencyUniversity Medical Center FreiburgFreiburgGermany
  2. 2.Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences FacultyUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations