Skip to main content

C Peptides as Entry Inhibitors for Gene Therapy

  • Chapter
  • First Online:
Gene Therapy for HIV and Chronic Infections

Abstract

Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

BCNU:

Bis-chloroethylnitrosourea

HIV-1:

Human immunodeficiency virus type 1

HPC:

Hematopoietic stem/progenitor cells

HR:

Heptad repeat

IC50 :

Inhibitory concentration 50

iSAVE:

In vivo secreted antiviral entry inhibitor

ma:

Membrane-anchored

MGMT:

O6-Methylguanine-DNA Methyltransferase

O6-BG:

O6-benzylguanine

SIN:

Self-inactivating

SIV:

Simian immunodeficiency virus

wPRE:

Woodchuck hepatitis virus posttranscriptional regulatory element

References

  1. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 1998;280(5371):1884–8.

    Article  CAS  PubMed  Google Scholar 

  2. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.

    Article  CAS  PubMed  Google Scholar 

  3. Rizzuto C, Sodroski J. Fine definition of a conserved CCR5-binding region on the human immunodeficiency virus type 1 glycorprotein gp120. AIDS Res Hum Retroviruses. 2000;16:741–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chan DC, Kim PS. HIV entry and its inhibition. Cell. 1998;93(5):681–4.

    Article  CAS  PubMed  Google Scholar 

  5. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997;387(6631):426–30.

    Article  CAS  PubMed  Google Scholar 

  6. Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997;89:263–73.

    Article  CAS  PubMed  Google Scholar 

  7. Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol. 1995;2(12):1075–82.

    Article  CAS  PubMed  Google Scholar 

  8. Lu M, Stoller MO, Wang S, Liu J, Fagan MB, Nunberg JH. Structural and functional analysis of interhelical interactions in the human immunodeficiency virus type 1 gp41 envelope glycoprotein by alanine-scanning mutagenesis. J Virol. 2001;75(22):11146–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Melikyan GB, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM, Cohen FS. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol. 2000;151(2):413–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wild C, Oas T, McDanal C, Bolognesi D, Matthews T. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A. 1992;89(21):10537–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kliger Y, Shai Y. Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol. 2000;295(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  12. Chinnadurai R, Munch J, Kirchhoff F. Effect of naturally-occurring gp41 HR1 variations on susceptibility of HIV-1 to fusion inhibitors. AIDS. 2005;19(13):1401–5.

    Article  CAS  PubMed  Google Scholar 

  13. Kilby JM et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med. 1998;4(11):1302–7.

    Article  CAS  PubMed  Google Scholar 

  14. Wild C, Greenwell T, Matthews T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retroviruses. 1993;9(11):1051–3.

    Article  CAS  PubMed  Google Scholar 

  15. Gallo SA, Sackett K, Rawat SS, Shai Y, Blumenthal R. The stability of the intact envelope glycoproteins is a major determinant of sensitivity of HIV/SIV to peptidic fusion inhibitors. J Mol Biol. 2004;340(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  16. Zahn RC et al. Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides. Gene Ther. 2008;15(17):1210–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A. 1994;91:9770–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lazzarin A et al. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med. 2003;348:2186–95.

    Article  CAS  PubMed  Google Scholar 

  19. Cervia JS, Smith MA. Enfuvirtide (T-20): a novel human immunodeficiency virus type 1 fusion inhibitor. Clin Infect Dis. 2003;37(8):1102–6.

    Article  CAS  PubMed  Google Scholar 

  20. Rimsky LT, Shugars DC, Matthews TJ. Determinants of human immunodeficiency virus type 1 resistance to gp41- derived inhibitory peptides. J Virol. 1998;72:986–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. von Laer D, Hasselmann S, Hasselmann K. Gene therapy for HIV infection: what does it need to make it work? J Gene Med. 2006;8(6):658–67.

    Article  Google Scholar 

  22. Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988;335(6189):395–6.

    Article  CAS  PubMed  Google Scholar 

  23. Lund O et al. Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect. Bull Math Biol. 1997;59(4):725–45.

    Article  CAS  PubMed  Google Scholar 

  24. Hildinger M et al. Membrane-anchored peptide inhibits human immunodeficiency virus entry. J Virol. 2001;75(6):3038–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Egelhofer M et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol. 2004;78(2):568–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schambach A et al. Towards hematopoietic stem cell-mediated protection against infection with human immunodeficiency virus. Gene Ther. 2006;13(13):1037–47.

    Article  CAS  PubMed  Google Scholar 

  27. Melikyan GB, Egelhofer M, von Laer D. Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion. J Virol. 2006;80(7):3249–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hermann FG et al. Protein scaffold and expression level determine antiviral activity of membrane-anchored antiviral peptides. Hum Gene Ther. 2009;20(4):325–36.

    Article  CAS  PubMed  Google Scholar 

  29. Kimpel J et al. Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection. PLoS One. 2010;5(8):e12357.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hermann FG et al. Mutations in gp120 contribute to the resistance of human immunodeficiency virus type 1 to membrane-anchored C-peptide maC46. J Virol. 2009;83(10):4844–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hufert FT et al. Germinal centre CD4+ T cells are an important site of HIV replication in vivo. AIDS. 1997;11(7):849–57.

    Article  CAS  PubMed  Google Scholar 

  32. Eskridge EM, Shields D. Cell-free processing and segregation of insulin precursors. J Biol Chem. 1983;258(19):11487–91.

    CAS  PubMed  Google Scholar 

  33. Lipp J, Dobberstein B, Haeuptle MT. Signal recognition particle arrests elongation of nascent secretory and membrane proteins at multiple sites in a transient manner. J Biol Chem. 1987;262(4):1680–4.

    CAS  PubMed  Google Scholar 

  34. Egerer L et al. Secreted Antiviral Entry Inhibitory (SAVE) peptides for gene therapy of HIV infection. Mol Ther. 2011;19(7):1236–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tebas P et al. Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood. 2013;121(9):1524–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. van Lunzen J et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol Ther. 2007;15(5):1024–33.

    PubMed  Google Scholar 

  37. Dudley ME et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    Article  CAS  PubMed  Google Scholar 

  39. Moratto D et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study. Blood. 2011;118(6):1675–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Stein S et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  41. Scholler J et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4(132):132ra53.

    Article  PubMed  Google Scholar 

  42. Newrzela S et al. Resistance of mature T cells to oncogene transformation. Blood. 2008;112(6):2278–86.

    Article  CAS  PubMed  Google Scholar 

  43. Aiuti A et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.

    Article  PubMed  Google Scholar 

  44. Cartier N et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol. 2012;507:187–98.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson PR et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med. 2009;15(8):901–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gao G et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther. 2006;13(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  47. Chan DC, Chutkowski CT, Kim PS. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci U S A. 1998;95(26):15613–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Dwyer JJ, Hasan A, Wilson KL, White JM, Matthews TJ, Delmedico MK. The hydrophobic pocket contributes to the structural stability of the N-terminal coiled coil of HIV gp41 but is not required for six-helix bundle formation. Biochemistry. 2003;42(17):4945–53.

    Article  CAS  PubMed  Google Scholar 

  49. Greenberg ML et al. In vitro antiviral activity of T-1249. Antiviral Therapy. 2002;7(Suppl):S10.

    Google Scholar 

  50. Lalezari JP et al. T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvirtide-containing treatment regimen. J Infect Dis. 2005;191(7):1155–63.

    Article  CAS  PubMed  Google Scholar 

  51. Lohrengel S et al. Determinants of human immunodeficiency virus type 1 resistance to membrane-anchored gp41-derived peptides. J Virol. 2005;79(16):10237–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kliger Y et al. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem. 2001;276(2):1391–7.

    Article  CAS  PubMed  Google Scholar 

  53. Schneider SE et al. Development of HIV fusion inhibitors. J Pept Sci. 2005;11(11):744–53.

    Article  CAS  PubMed  Google Scholar 

  54. Chong H et al. Discovery of critical residues for viral entry and inhibition through structural insight of HIV-1 fusion inhibitor CP621-652. J Biol Chem. 2012;287(24):20281–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Chong H et al. The M-T hook structure is critical for design of HIV-1 fusion inhibitors. J Biol Chem. 2012;287(41):34558–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Chong H et al. Short-peptide fusion inhibitors with high potency against wild-type and enfuvirtide-resistant HIV-1. FASEB J. 2013;27(3):1203–13.

    Article  CAS  PubMed  Google Scholar 

  57. Gustchina E, Hummer G, Bewley CA, Clore GM. Differential inhibition of HIV-1 and SIV envelope-mediated cell fusion by C34 peptides derived from the C-terminal heptad repeat of gp41 from diverse strains of HIV-1, HIV-2, and SIV. J Med Chem. 2005;48(8):3036–44.

    Article  CAS  PubMed  Google Scholar 

  58. Borrego P et al. An ancestral HIV-2/simian immunodeficiency virus peptide with potent HIV-1 and HIV-2 fusion inhibitor activity. AIDS. 2013;27(7):1081–90.

    Article  CAS  PubMed  Google Scholar 

  59. Dwyer JJ et al. Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci U S A. 2007;104(31):12772–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Otaka A et al. Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 with target cells. Angew Chem Int Ed Engl. 2002;41(16):2937–40.

    Article  PubMed  Google Scholar 

  61. He Y et al. Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem. 2008;283(17):11126–34.

    Article  CAS  PubMed  Google Scholar 

  62. Eggink D, Bontjer I, Langedijk JP, Berkhout B, Sanders RW. Resistance of human immunodeficiency virus type 1 to a third-generation fusion inhibitor requires multiple mutations in gp41 and is accompanied by a dramatic loss of gp41 function. J Virol. 2011;85(20):10785–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Brauer F et al. A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob Agents Chemother. 2013;57(2):679–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Porichis F, Kaufmann DE. Role of PD-1 in HIV pathogenesis and as target for therapy. Curr HIV/AIDS Rep. 2012;9(1):81–90.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Younan PM et al. Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood. 2013;122(2):179–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kiem HP, Wu RA, Sun G, von Laer D, Rossi JJ, Trobridge GD. Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Ther. 2010;17(1):37–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Hacein-Bey-Abina S et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348(3):255–6.

    Article  PubMed  Google Scholar 

  68. von Laer D, Hasselmann S, Hasselmann K. Impact of gene-modified T cells on HIV infection dynamics. J Theor Biol. 2006;238(1):60–77.

    Article  Google Scholar 

  69. Hauber I et al. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog. 2013;9(9):e1003587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee von Laer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Egerer, L., Kiem, HP., von Laer, D. (2015). C Peptides as Entry Inhibitors for Gene Therapy. In: Berkhout, B., Ertl, H., Weinberg, M. (eds) Gene Therapy for HIV and Chronic Infections. Advances in Experimental Medicine and Biology(), vol 848. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2432-5_10

Download citation

Publish with us

Policies and ethics