Skip to main content

Abstract

Macrophages have important functions in both alerting and activating the immune system. They have the ability to activate both the innate and adaptive immune responses through their role as antigen presenting cells, presenting viral antigens to immune cells. They can further reduce the viral burden by removing dead and dying cells, and they themselves contain several restriction factors that offer a level of protection against HIV-1 infection. However, macrophages also have a central role in the pathogenesis of HIV-1 infection. Through the secretion of chemokines, they can recruit T cells to the site of infection and provide new cellular targets for HIV-1. They have the ability to harbor HIV-1 in their internal vesicles, and facilitate infection of cells through cell–cell transfer of HIV-1. In addition, macrophages have a long-life span, and through persistent infection and recruitment of cellular targets, they can contribute to the viral reservoir. A viral reservoir is a cell or anatomical site where replication-competent HIV-1 accumulates and persists stably. Additionally macrophages, reside in multiple tissues within the body, including the central nervous system, creating complications for immune detection and penetration of current antiretroviral therapies. The multi faceted role of macrophages during HIV-1 disease pathogenesis makes them important immune cells to be considered in future HIV-1 elimination strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Cobos-Jiménez V, Booiman T, Hamann J, Kootstra NA. Macrophages and HIV-1. Curr Opin HIV AIDS. 2011;6:385–90.

    PubMed  Google Scholar 

  3. Olazabal IM, Martín-Cofreces NB, Mittelbrunn M, Martínez del Hoyo G, Alarcón B, Sánchez-Madrid F. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via “Phagocytic” and nonphagocytic pathways. Mol Biol Cell. 2008;19(2):701–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl). 2010;2:103–22.

    CAS  Google Scholar 

  5. Gorry PR, Ancuta P. Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep. 2011;8:45–53.

    PubMed  Google Scholar 

  6. Wilen CB, Tilton JC, Doms RW. Molecular mechanisms of HIV entry. Adv Exp Med Biol. 2012;726:223–42.

    CAS  PubMed  Google Scholar 

  7. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96(9):5215–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Lewin SR, Sonza S, Irving LB, McDonald CF, Mills J, Crowe SM. Surface CD4 is critical to in vitro HIV infection of human alveolar macrophages. AIDS Res Hum Retroviruses. 1996;12(10):877–83.

    CAS  PubMed  Google Scholar 

  9. Orenstein JM, Fox C, Wahl LM. Macrophages as a source of HIV during opportunistic infections. Science. 1997;276:1857–61.

    CAS  PubMed  Google Scholar 

  10. Gras G, Kaul M. Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology. 2010;7:30.

    PubMed Central  PubMed  Google Scholar 

  11. Meltzer MS, Nakamura M, Hansen BD, Turpin JA, Kalter DC, Gendelman HE. Macrophages as susceptible targets for HIV infection, persistent viral reservoirs in tissue, and key immunoregulatory cells that control levels of virus replication and extent of disease. AIDS Res Hum Retroviruses. 1990;6(8):967–71.

    CAS  PubMed  Google Scholar 

  12. Murphy J, Summer R, Wilson AA, Kotton DN, Fine A. The prolonged life-span of alveolar macrophages. Am J Respir Cell Mol Biol. 2008;38(4):380–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Parihar A, Eubank TD, Doseffa AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun. 2010;2(3):204–15.

    PubMed Central  PubMed  Google Scholar 

  14. Gavegnano C, Schinazi RF. Antiretroviral therapy in macrophages: implication for HIV eradication. Antivir Chem Chemother. 2009;20(2):63–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Stevenson M. Can HIV be cured? Sci Am. 2008;299:78–83.

    PubMed  Google Scholar 

  16. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.

    CAS  PubMed  Google Scholar 

  17. Classen A, Lloberas J, Celada A. Macrophage activation: classical vs. alternative. Methods Mol Biol. 2009;531:29–43.

    CAS  PubMed  Google Scholar 

  18. Herbein G, Varin A. The macrophage in HIV-1 infection: From activation to deactivation? Retrovirology. 2010;7:33.

    PubMed Central  PubMed  Google Scholar 

  19. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    CAS  PubMed  Google Scholar 

  20. Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology. 2009;6:118.

    PubMed Central  PubMed  Google Scholar 

  21. Coleman CM, Wu L. HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology. 2009;6:51.

    PubMed Central  PubMed  Google Scholar 

  22. Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol. 2005;174:3015–23.

    CAS  PubMed  Google Scholar 

  23. Clerici M, Shearer GM. A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol Today. 1993;14(3):107–11.

    CAS  PubMed  Google Scholar 

  24. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MBA. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med. 2006;12(11):1301–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Flynn JK, Dore GJ, Hellard M, Yeung B, Rawlinson WD, White PA, et al. Early IL-10 predominant responses are associated with progression to chronic hepatitis C virus infection in injecting drug users. J Viral Hepat. 2011;18(8):549–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Filippi CM, von Herrath MG. IL-10 and the resolution of infections. J Pathol. 2008;214(2):224–30.

    CAS  PubMed  Google Scholar 

  27. Blackburn SD, Wherry JE. IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 2007;15(4):143–6.

    CAS  PubMed  Google Scholar 

  28. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393(6686):648–59.

    CAS  PubMed  Google Scholar 

  29. Jones KL, Smyth RP, Pereira CF, Cameron PU, Lewin SR, Jaworowski A, et al. Early events of HIV-1 infection: can signaling be the next therapeutic target? J Neuroimmune Pharmacol. 2011;6:269–83.

    PubMed  Google Scholar 

  30. Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, et al. CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol. 1998;72(6):4694–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Brasseur R, Cornet B, Burny A, Vandenbranden M, Ruysschaert JM. Mode of insertion into a lipid membrane of the N-terminal HIV gp41 peptide segment. AIDS Res Hum Retroviruses. 1988;4:83–90.

    CAS  PubMed  Google Scholar 

  32. Waki K, Freed EO. Macrophages and cell-cell spread of HIV-1. Viruses. 2010;2:1603–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Kelly J, Beddall MH, Yu D, Iyer SR, Marsh JW, Wu Y. Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology. 2008;372:300–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381(6584):661–6.

    CAS  PubMed  Google Scholar 

  35. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272(5270):1955–8.

    CAS  PubMed  Google Scholar 

  36. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7.

    CAS  PubMed  Google Scholar 

  37. Collman R, Balliet JW, Gregory SA, Friedman H, Kolson DL, Nathanson N, et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J Virol. 1992;66(12):7517–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yi Y, Isaacs SN, Williams DA, Frank I, Schols D, De Clercq E, et al. Role of CXCR4 in cell-cell fusion and infection of monocyte-derived macrophages by primary human immunodeficiency virus type 1 (HIV-1) strains: two distinct mechanisms of HIV-1 dual tropism. J Virol. 1999;73(9):7117–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Goodenow MM, Collman RG. HIV-1 coreceptor preference is distinct from target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol. 2006;80(5):965–72.

    CAS  PubMed  Google Scholar 

  40. Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, et al. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol. 2001;75(21):10073–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Gray L, Sterjovski J, Churchill M, Ellery P, Nasr N, Lewin SR, et al. Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology. 2005;337(2):384–98.

    CAS  PubMed  Google Scholar 

  42. Peters PJ, Duenas-Decamp MJ, Sullivan WM, Brown R, Ankghuambom C, Luzuriaga K, et al. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology. 2008;5:5.

    PubMed Central  PubMed  Google Scholar 

  43. Peters PJ, Sullivan WM, Duenas-Decamp MJ, Bhattacharya J, Ankghuambom C, Brown R, et al. Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol. 2006;80(13):6324–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Gray L, Roche M, Churchill MJ, Sterjovski J, Ellett A, Poumbourios P, et al. Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virol. 2009;83(11):5430–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Brelot A, Heveker N, Adema K, Hosie MJ, Willett B, Alizon M. Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. J Virol. 1999;73(4):2576–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Sterjovski J, Roche M, Churchill MJ, Ellett A, Farrugia W, Gray LR, et al. An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology. 2010;404:269–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Cashin K, Roche M, Sterjovski J, Ellett A, Gray LR, Cunningham AL, et al. Alternative coreceptor requirements for efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages. J Virol. 2011;85:10699–709.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Shen R, Richter HE, Smith PD. Early HIV-1 target cells in human vaginal and ectocervical mucosa. Am J Reprod Immunol. 2011;65(3):261–7.

    PubMed Central  PubMed  Google Scholar 

  49. Kim EY, Veazey RS, Zahn R, McEvers KJ, Baumeister SH, Foster GJ, et al. Contribution of CD8+ T cells to containment of viral replication and emergence of mutations in Mamu-A*01-restricted epitopes in Simian immunodeficiency virus-infected rhesus monkeys. J Virol. 2008;82(11):5631–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Goulder PJR, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol. 2008;8:619–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Leslie A, Matthews PC, Listgarten J, Carlson JM, Kadie C, Ndung'u T, et al. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol. 2010;84(19):9879–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Fujiwara M, Takiguchi M. HIV-1 specific CTLs effectively suppress replication of HIV-1 in HIV-1 infected macrophages. Blood. 2007;109:4832–8.

    CAS  PubMed  Google Scholar 

  53. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med. 1996;2:338–42.

    CAS  PubMed  Google Scholar 

  54. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature. 1998;391:397–401.

    CAS  PubMed  Google Scholar 

  55. Lubben NB, Sahlender DA, Motley AM, Lehner PJ, Benaroch P, Robinson MS. HIV-1 Nef-induced down-regulation of MHC class I requires AP-1 and Clathrin but not PACS-1 by AP-2. Mol Biol Cell. 2007;18(9):3351–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Brown A, Gartner S, Kawano T, Benoit N, Cheng-Mayer C. HLA-A2 down-regulation on primary human macrophages infected with an M-tropic EGFP-tagged HIV-1 reporter virus. J Leukoc Biol. 2005;78(3):675–85.

    CAS  PubMed  Google Scholar 

  57. Fantuzzi L, Belardelli F, Gessani S. Monocyte/macrophage-derived CC chemokines and their modulation by HIV-1 and cytokines: a complex network of interactions influencing viral replication and AIDS pathogenesis. J Leukoc Biol. 2003;74(5):719–25.

    CAS  PubMed  Google Scholar 

  58. Fantuzzi L, Canini I, Belardelli F, Gessani S. HIV-1 gp120 stimulates the production of beta-chemokines in human peripheral blood monocytes through a CD4-independent mechanism. J Immunol. 2001;166:5381–7.

    CAS  PubMed  Google Scholar 

  59. Swingler S, Mann A, Jacqué J-M, Brichacek B, Sasseville VG, Williams K, et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med. 1999;5:997–1999.

    CAS  PubMed  Google Scholar 

  60. Groot F, Russell RA, Baxter AE, Welsch S, Duncan CJA, Willberg C, et al. Efficient macrophage infection by phagocytosis of dying HIV-1 -infected CD4+T cells. Retrovirology. 2011;8 Suppl 2:O31.

    PubMed Central  Google Scholar 

  61. Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevalance in Human Immunodeficiency virus type I infection. Retrovirology. 2012;9:82.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Gousset K, Ablan SD, Coren LV, Ono A, Soheilian F, Nagashima K, et al. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 2008;4(3):e1000015.

    PubMed Central  PubMed  Google Scholar 

  63. Groot F, Welsch S, Sattentau QJ. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood. 2008;111:4660–3.

    CAS  PubMed  Google Scholar 

  64. Duncan CJA, Russell RA, Sattentau QJ. High multiplicity HIV-1 cell-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS. 2013;27:2201–6.

    CAS  PubMed  Google Scholar 

  65. Cohen MS, Gay CL, Busch MP, Hecht FM. The detection of acute HIV infection. J Infect Dis. 2010;202 Suppl 2:S270–7.

    PubMed  Google Scholar 

  66. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68(9):6103–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68:4650–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Meltzer MS, Gendelman HE. Mononuclear phagocytes as targets, tissue reservoirs, and immunoregulatory cells in human immunodeficiency virus disease. Curr Top Microbiol Immunol. 1992;181:239–63.

    CAS  PubMed  Google Scholar 

  69. Tuttle DL, Harrison JK, Anders C, Sleasman JW, Goodenow MM. Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J Virol. 1998;72(6):4962–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Ochsenbauer C, Edmonds TG, Ding H, Keele BF, Decker J, Salazar MG, et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J Virol. 2012;86(5):2715–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ping LH, Joseph SB, Anderson JA, Abrahams MR, Salazar-Gonzalez JF, Kincer LP, et al. Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J Virol. 2013;87(13):7218–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Veazey RS, Mansfield KG, Tham IC, Carville AC, Shvetz DE, Forand AE, et al. Dynamics of CCR5 expression by CD4+ T cells in lymphoid tissues during simian immunodeficiency virus Infection. J Virol. 2000;74(23):11001–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71.

    CAS  PubMed  Google Scholar 

  74. Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008;1(1):23–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Epple HJ, Zeitz M. HIV infection and the intestinal mucosal barrier. Ann N Y Acad Sci. 2012;1258:19–24.

    CAS  PubMed  Google Scholar 

  76. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83(7):3258–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75:388–97.

    CAS  PubMed  Google Scholar 

  78. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10(1):11–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Coiras M, López-Huertas MR, Pérez-Olmeda M, Alcamí J. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol. 2009;7:798–812.

    CAS  PubMed  Google Scholar 

  80. Aquaro S, Perno CF, Balestra E, Balzarini J, Cenci A, Francesconi M, et al. Inhibition of replication of HIV in primary monocyte/macrophages by different antiviral drugs and comparative efficacy in lymphocytes. J Leukoc Biol. 1997;62(1):138–43.

    CAS  PubMed  Google Scholar 

  81. Kaufmann GR, Furrer H, Ledergerber B, Perrin L, Opravil M, Vernazza P, et al. Characteristics, determinants, and clinical relevance of CD4 T cell recovery to <500 cells/microL in HIV type 1-infected individuals receiving potent antiretroviral therapy. Clin Infect Dis. 2005;41(3):361–72.

    PubMed  Google Scholar 

  82. Flynn JK, Dore GJ, Matthews G, Hellard M, Yeung B, Rawlinson WD, et al. Impaired hepatitis C virus (HCV)–specific interferon-γ responses in individuals with HIV who acquire HCV infection: correlation with CD4+ T-cell counts. J Infect Dis. 2012;206(10):1568–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Regoes RR, Bonhoeffer S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol. 2005;13(6):269–77.

    CAS  PubMed  Google Scholar 

  84. Kamp C. Understanding the HIV coreceptor switch from a dynamical perspective. BMC Evol Biol. 2009;9:274.

    PubMed Central  PubMed  Google Scholar 

  85. Tuttle DL, Anders CB, Aquino-De Jesus MJ, Poole PP, Lamers SL, Briggs DR, et al. Increased replication of non-syncytium-inducing HIV type 1 isolates in monocyte-derived macrophages is linked to advanced disease in infected children. AIDS Res Hum Retroviruses. 2002;18(5):353–62.

    PubMed  Google Scholar 

  86. Gorry PR, Churchill M, Crowe SM, Cunningham AL, Gabuzda D. Pathogenesis of macrophage tropic HIV. Curr HIV Res. 2005;3(1):53–60.

    CAS  PubMed  Google Scholar 

  87. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Boven LA. Macrophages and HIV-1-associated dementia. Arch Immunol Ther Exp. 2000;48(4):273–9.

    CAS  Google Scholar 

  89. Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A. 1986;83(18):7089–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Glass JD, Fedor H, Wesselingh SL, McArthur JC. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol. 1995;38(5):755–62.

    CAS  PubMed  Google Scholar 

  91. Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog. 2009;5(4):e1000395.

    PubMed Central  PubMed  Google Scholar 

  92. Thompson KA, Cherry CL, Bell JE, McLean CA. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol. 2011;179(4):1623–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci. 2002;25:537–62.

    CAS  PubMed  Google Scholar 

  94. Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91(3):401–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S. HIV-1-Tat protein promotes chemotaxis and invasive behavior by monocytes. J Immunol. 1996;57(3):974–7.

    Google Scholar 

  96. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A. 1998;95(6):3117–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Gessani S, Borghi P, Fantuzzi L, Varano B, Conti L, Puddu P, et al. Induction of cytokines by HIV-1 and its gp120 protein in human peripheral blood monocyte/macrophages and modulation of cytokine response during differentiation. J Leukoc Biol. 1997;61(1):49–53.

    Google Scholar 

  98. Conant K, McArthur JC, Griffin DE, Sjulson L, Wahl LM, Irani DN. Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol. 1999;46(3):391–8.

    CAS  PubMed  Google Scholar 

  99. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Orenstein JM, Bhat N, Yoder C, Fox C, Polis MA, Metcalf JA, et al. Rapid activation of lymph nodes and mononuclear cell HIV expression upon interrupting highly active antiretroviral therapy in patients after prolonged viral suppression. AIDS. 2000;14(12):1709–15.

    CAS  PubMed  Google Scholar 

  101. Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr Opin HIV AIDS. 2008;6:388–400.

    CAS  Google Scholar 

  102. Herbein G, Gras G, Khan KA, Abbas W. Macrophage signaling in HIV-1 infection. Retrovirology. 2010;7:34.

    PubMed Central  PubMed  Google Scholar 

  103. Herbein G, Khan KA. Is HIV infection a TNF receptor signalling-driven disease? Trends Immunol. 2008;29(2):61–7.

    CAS  PubMed  Google Scholar 

  104. Aquaro S, Bagnarelli P, Guenci T, De Luca A, Clementi M, Balestra E, et al. Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus. J Med Virol. 2002;68(4):479–88.

    PubMed  Google Scholar 

  105. Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med. 2002;53:557–93.

    CAS  PubMed  Google Scholar 

  106. Carter CA, Ehrlich LS. Cell biology of HIV-1 infection of macrophages. Annu Rev Microbiol. 2008;62:425–43.

    CAS  PubMed  Google Scholar 

  107. Iglesias-Ussel MD, Romerio F. HIV reservoirs: the new frontier. AIDS Rev. 2011;13(1):13–29.

    PubMed  Google Scholar 

  108. Lewin SR, Kirihara J, Sonza S, Irving L, Mills J, Crowe SM. HIV-1 DNA and mRNA concentrations are similar in peripheral blood monocytes and alveolar macrophages in HIV-1-infected individuals. AIDS. 1998;12(7):719–27.

    CAS  PubMed  Google Scholar 

  109. Hufert FT, Schmitz J, Schreiber M, Schmitz H, Rácz P, von Laer DD. Human Kupffer cells infected with HIV-1 in vivo. J Acquir Immune Defic Syndr. 1993;6(7):772–7.

    CAS  PubMed  Google Scholar 

  110. Clarke JR, Krishnan V, Bennett J, Mitchell D, Jeffries DJ. Detection of HIV-1 in human lung macrophages using the polymerase chain reaction. AIDS. 1990;4(11):1133–6.

    CAS  PubMed  Google Scholar 

  111. Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol. 2013;95:71–81. doi:10.1189/jlb.0713368 [Epub ahead of print].

    PubMed  Google Scholar 

  112. Aleixo LF, Goodenow MM, Sleasman JW. Molecular analysis of highly enriched populations of T-cell-depleted monocytes. Clin Diagn Lab Immunol. 1995;2(6):733–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Josefsson L, Eriksson S, Sinclair E, Ho T, Killian M, Epling L, et al. Characterization of persistent HIV-1 in a broad spectrum of CD4+ T cells isolated from peripheral blood and gut associated lymphoid tissue from patients on long-term suppressive therapy. 14th International AIDS Conference (Washington, DC); 2012.

    Google Scholar 

  114. Pierson T, McArthur J, Siliciano RF. Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol. 2000;18:665–708.

    CAS  PubMed  Google Scholar 

  115. Strain MC, Little SJ, Daar ES, Havlir DV, Günthard HF, Lam RY, et al. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J Infect Dis. 2005;91(9):1410–8.

    Google Scholar 

  116. Henrich TJ, Gandhi RT. Early treatment and HIV-1 reservoirs: a stitch in time? J Infect Dis. 2013;208(8):1189–93.

    PubMed Central  PubMed  Google Scholar 

  117. Best BM, Letendre SL, Koopmans P, Rossi SS, Clifford DB, Collier AC, et al. Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J Acquir Immune Defic Syndr. 2012;59(4):376–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Nath A, Clements JE. Eradication of HIV from the brain: reasons for pause. AIDS. 2011;25:577–80.

    PubMed Central  PubMed  Google Scholar 

  119. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. 2009;66(2):253–8.

    PubMed  Google Scholar 

  120. Zalar A, Figueroa MI, Ruibal-Ares B, Baré P, Cahn P, de Bracco MM, et al. Macrophage HIV-1 infection in duodenal tissue of patients on long term HAART. Antiviral Res. 2010;87(2):269–71.

    CAS  PubMed  Google Scholar 

  121. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007;177(2):329–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Welsch S, Groot F, Kräusslich H-G, Keppler OT, Sattentau QJ. Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages. J Virol. 2011;85(15):7922–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Kräusslich H-G. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 2007;3(3):e36.

    PubMed Central  PubMed  Google Scholar 

  124. Koppensteiner H, Banning C, Schneider C, Hohenberg H, Schindler M. Macrophage internal HIV-1 is protected from neutralizing antibodies. J Virol. 2012;86(5):2826–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Tan J, Sattentau QJ. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol. 2013;21(8):405–12.

    CAS  PubMed  Google Scholar 

  126. Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med. 2012;2:a006940.

    PubMed Central  PubMed  Google Scholar 

  127. Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology. 2012;9:35.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Imamichi T, Yang J, Huang D-W, Branna TW, Fullmer BA, Adelsbergerc JW, et al. IL-27, a novel anti-HIV cytokine, activates multiple interferon-inducible genes in macrophages. AIDS. 2008;22:39–45.

    CAS  PubMed  Google Scholar 

  129. Dai L, Lidie KB, Chen Q, Adelsberger JW, Zheng X, Huang D, et al. IL-27 inhibits HIV-1 infection in human macrophages by down-regulating host factor SPTBN1 during monocyte to macrophage differentiation. J Exp Med. 2013;210(3):517–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Neil SJD, Eastman SW, Jouvenet N, Bieniasz PD. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2006;2(5):e39.

    PubMed Central  PubMed  Google Scholar 

  131. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451(7177):425–30.

    CAS  PubMed  Google Scholar 

  132. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004;427(6977):848–53.

    CAS  PubMed  Google Scholar 

  133. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A. 2006;103(4):5514–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424(6944):99–103.

    CAS  PubMed  Google Scholar 

  135. Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe. 2008;3(4):245–52.

    PubMed Central  PubMed  Google Scholar 

  136. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 2011;474(7355):658–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474:654–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;23(3):223–8.

    Google Scholar 

  139. Brandariz-Nuñez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology. 2012;9:49.

    PubMed Central  PubMed  Google Scholar 

  140. Schindler M, Rajan D, Banning C, Wimmer P, Koppensteiner H, Iwanski A, et al. Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue. Retrovirology. 2010;7:1.

    PubMed Central  PubMed  Google Scholar 

  141. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.

    CAS  PubMed  Google Scholar 

  142. Cheney KM, McKnight Á. Interferon-alpha mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication. PLoS One. 2010;5(10):e13521.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

PRG is supported by an Australian Research Council Future Fellowship (FT2). The authors gratefully acknowledge the contribution to this work of the Victorian Operational Infrastructure Support Program received by the Burnet Institute. JKF and PRG declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Gorry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flynn, J.K., Gorry, P.R. (2015). Role of Macrophages in the Immunopathogenesis of HIV-1 Infection. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_27

Download citation

Publish with us

Policies and ethics