Skip to main content

Abstract

West Nile virus belongs to the family Flaviviridae, genus Flavivirus. Other members of the Flaviviridae family that are major human pathogens include Japanese encephalitis virus (JE), Saint Louis Encephalitis virus (SLE), Dengue virus, and Yellow fever virus. West Nile virus is maintained in nature in an enzootic cycle between birds and mosquitoes. The virus is amplified in the avian host and transmitted to humans by mosquito bites. Transmission is usually during the summer months, peaking in August in the USA. Symptoms range from a mild febrile illness to devastating neurological disease with high morbidity and mortality and treatment remains supportive at this time. The dynamic relationship between vectors and hosts, including mosquito feeding and avian migratory patterns together with a changing climate, has facilitated the distribution of WNV as one of the most widespread arboviruses in the world. This chapter recaps the major findings about this virus, its fascinating journey from its original home in Africa to Eurasia and the western hemisphere, its pathogenesis and clinical manifestations and briefly reviews the factors that may have contributed to its spread and its potential as a bioterrorism weapon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kramer LD, Styer LM, Ebel GD. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol. 2008;53:61–81.

    Article  CAS  PubMed  Google Scholar 

  2. Chambers TJ, et al. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–883.

    Article  CAS  PubMed  Google Scholar 

  3. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  4. Best SM, et al. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol. 2005;70(20):12828–39.

    Article  Google Scholar 

  5. Guo JT, Hayashi J, Seeger C. West Nile virus inhibits the signal transduction pathway of alpha interferon. J Virol. 2005;79(3):1343–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Khromykh AA, et al. Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol. 1999;73(12):10272–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Lin RJ, et al. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol. 2006;80(12):5908–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Liu WJ, et al. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol. 2005;79(3):1934–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Munoz-Jordan JL, et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol. 2005;79(13):8004–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hayes EB, et al. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1167–73.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lanciotti RS, Deubel RJ, Smith J, Parker M, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286(5448):2333–7.

    Article  CAS  PubMed  Google Scholar 

  12. Davis CT, Guzman H, Siirin M, Parsons RE, et al. Emergence of attenuated West Nile virus variants in Texas, 2003. Virology. 2004;330:342–50.

    Article  CAS  PubMed  Google Scholar 

  13. McMullen AR, Li L, Guzman H, Bueno Jr R, Dennett JA, et al. Evolution of new genotype of West Nile virus in North America. Emerg Infect Dis. 2011;17(5):785–93.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Smithburn KC, Burke AW, Paul JH. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg. 1940;20:471–73.

    Google Scholar 

  15. Gubler DJ. The continuing spread of West Nile virus in the western hemisphere. Clin Infect Dis. 2007;45(8):1039–46.

    Article  PubMed  Google Scholar 

  16. Nash D, et al. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med. 2001;344(24):1807–14.

    Article  CAS  PubMed  Google Scholar 

  17. Giladi M, et al. West Nile encephalitis in Israel, 1999: the New York connection. Emerg Infect Dis. 2001;7(4):659–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. May FJ, Li L, Zhang S, et al. Genetic variation of St. Louis encephalitis virus J Gen Virol. 2008;89:1901–10.

    Article  CAS  Google Scholar 

  19. Reisen WK, Lothrop H, Wheeler SS, et al. Persistent West Nile virus transmission and the apparent displacement of St. Louis encephalitis virus in southeastern California, 2003-2006. J Med Entomol. 2008;45:494–508.

    PubMed Central  PubMed  Google Scholar 

  20. Brault AC, Bowen RA, Panella NA, Biggerstaff BJ, et al. Differential virulence of West Nile strains for American crows. Emerg Infect Dis. 2004;10(p):2161–8.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Balenghien T, Fouque F, Sabatier P, Bicout DJ. Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. J Med Entomol. 2006;43:936–46.

    Article  CAS  PubMed  Google Scholar 

  22. Gould EA, Higgs S, et al. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg. 2009;103:109–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Johnson GD, et al. Geographic prediction of human onset of West Nile virus using dead crow clusters: an evaluation of year 2002 data in New York State. Am J Epidemiol. 2006;163(2):171–80.

    Article  PubMed  Google Scholar 

  24. Nicolle L, et al. Serological studies of West Nile virus in a liver transplant population. Can J Infect Dis Med Microbiol. 2004;15(5):271–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. CDC. Serosurveys for West Nile virus infection—New York and Connecticut counties 2000. MMWR Morb Mortal Wkly Rep. 2001;50(3):37–9.

    Google Scholar 

  26. Mostashari F, et al. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet. 2001;358(9278):261–4.

    Article  CAS  PubMed  Google Scholar 

  27. Petersen LR, et al. West Nile virus: a primer for the clinician. Ann Intern Med. 2002;137(3):173–9.

    Article  PubMed  Google Scholar 

  28. Tsai TF, et al. West Nile encephalitis epidemic in southeastern Romania. Lancet. 1998;352(9130):767–71.

    Article  CAS  PubMed  Google Scholar 

  29. CDC. West Nile virus infections in organ transplant recipients—New York and Pennsylvania, August-September. MMWR Morb Mortal Wkly Rep. 2005;54(40):1021–3.

    Google Scholar 

  30. Pealer LN, Marfin A, Petersen LR, et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med. 2003;349:1236–45.

    Article  CAS  PubMed  Google Scholar 

  31. Ravindra KV, Freifeld A, Kalil AC, et al. West Nile virus-associated encephalitis in recipients of renal and pancreatic transplants: Case series and literature review. Clin Infect Dis. 2004;38:1257–60.

    Article  PubMed  Google Scholar 

  32. Busch MP, Caglioti S, Robertson EF, McAuley JD, et al. Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N Engl J Med. 2005;353(5):460–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lindsey N, et al. Surveillance for human West Nile virus disease—United States, 1999–2008. Surveillance summaries. MMWR Morb Mortal Wkly Rep. 2010;59(SS-2):1–17.

    Google Scholar 

  34. Turell MJ, et al. Potential North American vectors of West Nile virus. Ann N Y Acad Sci. 2001;951:317–24.

    Article  CAS  PubMed  Google Scholar 

  35. Watson JT, et al. Dead crow reports and location of human West Nile virus cases, Chicago, 2002. Emerg Infect Dis. 2004;10(5):938–40.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Suthar MS, Diamond MS, Gale Jr M. West Nile virus infection and immunity. Nat Rev Microbiol. 2013;11(2):115–28.

    Article  CAS  PubMed  Google Scholar 

  37. Glass WG, et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med. 2005;202(8):1087–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Asselin-Paturel C, et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J Exp Med. 2005;201(7):1157–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Le Bon A, et al. Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol. 2006;176(4):2074–8.

    Article  PubMed  Google Scholar 

  40. Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J Exp Med. 1999;189(3):521–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Samuel MA. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005;79(21):13350–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5(10):981–6.

    Article  CAS  PubMed  Google Scholar 

  43. Diamond MS, et al. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol. 2003;77(4):2578–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Diamond MS, et al. A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med. 2003;198(12):1853–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Roozendaal R, Carroll MC. Emerging patterns in complement-mediated pathogen recognition. Cell. 2006;125(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  46. Shrestha B, et al. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol. 2006;80:5338–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wang T, et al. IFN-gamma-producing gamma delta T cells help control murine West Nile virus infection. J Immunol. 2003;171(5):2524–31.

    Article  CAS  PubMed  Google Scholar 

  48. Samuel MA, et al. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol. 2006;80(14):7009–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Garcia-Tapia D, Loiacono CM, Kleiboeker SB. Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet Immunol Immunopathol. 2006;110(3–4):229–44.

    Article  CAS  PubMed  Google Scholar 

  50. Yang JS, et al. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis. 2002;8(12):1379–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Keller BC, et al. Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol. 2006;80(19):9424–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Bigham AW, et al. Host genetic risk factors for West Nile virus infection and disease progression. PLoS One. 2011;6:e24745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lim JK, et al. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog. 2009;5:e1000321.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Hayes EB, et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1174–9.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Sejvar JJ, et al. Manifestations of West Nile neuroinvasive disease. Rev Med Virol. 2006;16(4):209–24.

    Article  PubMed  Google Scholar 

  56. Sejvar JJ. Clinical manifestations and outcomes of West Nile virus infection. Viruses. 2014;6(2):606–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Davis LE, DeBiasi R, Groade D, et al. West Nile virus neuroinvasive disease. Ann Neurol. 2006;60(3):286–300.

    Article  PubMed  Google Scholar 

  58. Sejvar JJ, Haddad MB, Tierney BC, et al. Neurologic manifestations and outcome of West Nile virus infection. JAMA. 2003;290(4):511–5.

    Article  PubMed  Google Scholar 

  59. Asnis DS, Conetta R, Teixeira AA, et al. The West Nile Virus outbreak of 1999 in New York: the flushing hospital experience. Clin Infect Dis. 2000;30:413–8.

    Article  CAS  PubMed  Google Scholar 

  60. Granwehr BP, et al. West Nile virus: where are we now? Lancet Infect Dis. 2004;4(9):547–56.

    Article  PubMed  Google Scholar 

  61. Busch MP, Kleiman SH, Tobler LH, Kamel HT, et al. Virus and antibody dynamics in acute West Nile infection. J Infect Dis. 2008;198(7):984.

    Article  CAS  PubMed  Google Scholar 

  62. Prince HE, Tobler LH, Lapé-Nixon M, Foster GA, Stramer SL, Busch MP. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol. 2005;43(9):4316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Petropoulou KA, Gordon SM, Prayson RA, Ruggierri PM. West Nile virus meningoencephalitis: MR imaging findings. AJNR Am J Neuroradiol. 2005;26(8):1986.

    PubMed  Google Scholar 

  64. Klee AL, et al. Long-term prognosis for clinical West Nile virus infection. Emerg Infect Dis. 2004;10(8):1405–11.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Solomon T, Vaughn D. Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr Top Microbiol Immunol. 2002;267:171–94.

    CAS  PubMed  Google Scholar 

  66. Kalil AC, et al. Use of interferon-alpha in patients with West Nile encephalitis: report of 2 cases. Clin Infect Dis. 2005;40(5):764–6.

    Article  PubMed  Google Scholar 

  67. Chowers MY, et al. Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg Infect Dis. 2001;7(4):675–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Anderson JF, Rahal JJ. Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg Infect Dis. 2002;8(1):107–8.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Morrey JD, et al. Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem Chemother. 2004;15(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  70. Agrawal AG, Petersen LR. Human immunoglobulin as a treatment for West Nile virus infection. J Infect Dis. 2003;188(1):1–4.

    Article  PubMed  Google Scholar 

  71. Planitzer CB, Modrof J, Kreil TR. West Nile virus neutralization by US plasma-derived immunoglobulin products. J Infect Dis. 2007;196(3):435–40.

    Article  PubMed  Google Scholar 

  72. Watson JT, et al. Clinical characteristics and functional outcomes of West Nile Fever. Ann Intern Med. 2004;141(5):360–5.

    Article  PubMed  Google Scholar 

  73. Khairallah M, et al. Chorioretinal involvement in patients with West Nile virus infection. Ophthalmology. 2004;111(11):2065–70.

    Article  PubMed  Google Scholar 

  74. Kleinschmidt-DeMasters K, et al. Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch Neurol. 2004;61(8):1210–20.

    Article  CAS  PubMed  Google Scholar 

  75. Loeb M, et al. Prognosis after West Nile virus infection. Ann Intern Med. 2008;149(4):232–41.

    Article  PubMed  Google Scholar 

  76. O’Leary DR, et al. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 2004;4(1):61–70.

    Article  PubMed  Google Scholar 

  77. Leis AA, et al. A poliomyelitis-like syndrome from West Nile virus infection. N Engl J Med. 2002;347(16):1279–80.

    Article  PubMed  Google Scholar 

  78. Marciniak C, Sorosky S, Hynes C. Acute flaccid paralysis associated with West Nile virus: motor and functional improvement in 4 patients. Arch Phys Med Rehabil. 2004;85(12):1933–8.

    Article  PubMed  Google Scholar 

  79. Gujral IB, et al. Behavioral risks for West Nile virus disease, northern Colorado, 2003. Emerg Infect Dis. 2007;13(3):419–25.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Eidson M, Kate S, Hagiwara Y, Anand M, Backenson PB, Gotham I, et al. Dead crow density and West Nile virus monitoring, New York. Emerg Infect Dis. 2005;11:1370–5.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Theophilides CN, Ahearn S, Grady S, Merlino M. Identifying West Nile virus risk areas: the Dynamic Continuous-Area Space-Time system. Am J Epidemiol. 2003;157:843–54.

    Article  PubMed  Google Scholar 

  82. Carney RM, Ahearn SC, et al. Early Warning System for West Nile Virus Risk Areas, California, USA. Emerg Infect Dis. 2011;17:1445–54.

    PubMed Central  PubMed  Google Scholar 

  83. Montgomery SP, et al. Transfusion-associated transmission of West Nile virus, United States 2003 through 2005. Transfusion. 2006;46(12):2038–46.

    Article  PubMed  Google Scholar 

  84. Minke JM, et al. Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch Virol Suppl. 2004;18:221–30.

    PubMed  Google Scholar 

  85. Monath TP, et al. A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci U S A. 2006;103(17):6694–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Davis BS, et al. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol. 2001;75(9):4040–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Martin JE, et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis. 2007;196(12):1732–40.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Foci A. Infectious diseases: considerations for the 21st century. Clin Infect Dis. 2001;32:675–85.

    Article  Google Scholar 

  89. Schneider C. (2005) Preparing for the inevitable: bioterrorism and emerging infectious diseases in biosecurity conference. Available at http://ihcrp.georgetown.edu/lifesciandsociety/pdfs/biosecurityconferencetranscript.pdf. Accessed June 9, Georgetown University

  90. Spranger CB. Assessment of physician preparedness and response capacity to bioterrorism or other public health emergency events in a major metropolitan area. Disaster Manag Response. 2007;5(3):82–6.

    Article  PubMed  Google Scholar 

  91. Roehrig JT, Layton M, Smith P, et al. The emergence of West Nile virus in North America: ecology, epidemiology and surveillance. In: Barrett ADT, Deubel V, Mackenzie JS, editors. Japanese encephalitis and West Nile viruses. Berlin: Springer-Verlag; 2002. p. 223–40.

    Chapter  Google Scholar 

  92. Soverow JE, Wellenius GA, Fisman DN, Mittleman MA. Infectious disease in a warming world: how weather influenced West Nile virus in the United States 2001–2005. Environ Health Perspect. 2009;117(7):1049–52.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Chakrapol Sriaroon, MD, Elvis Castillo, MD and Phoung Y. Nguyen, MD for their contribution.

The authors report no financial conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally F. Alrabaa M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alrabaa, S.F., Somboonwit, C., Shapshak, P. (2015). West Nile Virus. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_17

Download citation

Publish with us

Policies and ethics