Skip to main content

Viral Hemorrhagic Fevers of Animals Caused by DNA Viruses

  • Chapter

Abstract

The term “viral hemorrhagic fevers” (VHFs) can loosely be applied to many serious diseases of animals (including fish, which are incapable of a fever response). While VHFs of humans are caused by viruses limited to only four to five families (i.e., Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, and possibly Rhabdoviridae), VHFs of animals are caused by a much broader variety of viruses. Therefore, Chaps. 11–14 were grouped using the Baltimore classification, i.e., by genome type, as opposed to the classification supported by the International Committee on Taxonomy of Viruses. As one could guess, the largest number of VHFs in animals is caused by mononegaviruses, but some are caused by viruses that have positive-sense or double-stranded RNA genomes, and some even have DNA genomes. This chapter focuses on DNA viruses. However, the reader is encouraged to read all four chapters to get an idea of the breadth of disease mechanisms and natural histories of this fascinating group of viruses that have both direct and indirect effects on humans, as well as implications for larger societal issues, such as food security and ecological dynamics. At the end of each chapter, “honorable mention” is given to some serious viral diseases that may have incomplete hemorrhagic features in regard to the definition provided in the introduction to the first chapter of this series.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Family Asfarviridae. In: King AM, Lefkowitz E, Adams MJ, Carstens EB, editors. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. San Diego, CA: Academic; 2009. p. 153–62.

    Google Scholar 

  2. Breese Jr SS, DeBoer CJ. Electron microscope observations of African swine fever virus in tissue culture cells. Virology. 1966;28(3):420–8.

    PubMed  Google Scholar 

  3. Carrascosa JL, Carazo JM, Carrascosa AL, Garcia N, Santisteban A, Vinuela E. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984;132(1):160–72.

    CAS  PubMed  Google Scholar 

  4. Esteves A, Marques MI, Costa JV. Two-dimensional analysis of African swine fever virus proteins and proteins induced in infected cells. Virology. 1986;152(1):192–206.

    CAS  PubMed  Google Scholar 

  5. Schloer GM. Polypeptides and structure of African swine fever virus. Virus Res. 1985;3(4):295–310.

    CAS  PubMed  Google Scholar 

  6. Andres G, Simon-Mateo C, Vinuela E. Assembly of African swine fever virus: role of polyprotein pp 220. J Virol. 1997;71(3):2331–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Rouiller I, Brookes SM, Hyatt AD, Windsor M, Wileman T. African swine fever virus is wrapped by the endoplasmic reticulum. J Virol. 1998;72(3):2373–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Carrascosa JL, Gonzalez P, Carrascosa AL, Garcia-Barreno B, Enjuanes L, Vinuela E. Localization of structural proteins in African swine fever virus particles by immunoelectron microscopy. J Virol. 1986;58(2):377–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Garcia-Escudero R, Andres G, Almazan F, Vinuela E. Inducible gene expression from African swine fever virus recombinants: analysis of the major capsid protein p72. J Virol. 1998;72(4):3185–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Andres G, Garcia-Escudero R, Vinuela E, Salas ML, Rodriguez JM. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. J Virol. 2001;75(15):6758–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Nunes JF, Vigario JD, Terrinha AM. Ultrastructural study of African swine fever virus replication in cultures of swine bone marrow cells. Arch Virol. 1975;49(1):59–66.

    CAS  PubMed  Google Scholar 

  12. Montgomery RE. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol. 1921;34:159–91.

    Google Scholar 

  13. Costard S, Wieland B, de Glanville W, Jori F, Rowlands R, Vosloo W, et al. African swine fever: how can global spread be prevented? Philos Trans R Soc Lond B Biol Sci. 2009;364(1530):2683–96.

    PubMed Central  PubMed  Google Scholar 

  14. Simeon-Negrin R, Frias Lepoureau M. Eradication of African swine fever in Cuba (1971 and 1980). In: Morilla A, Yoon K-J, Zimmerman JJ, editors. Trends in emerging viral infections of swine. Ames, IA: Iowa State Press; 2002. p. 125–31.

    Google Scholar 

  15. Arias M, Sanchez Vizcaino, J. African swine fever. In: Morilla A, Yoon KJ, Zimmerman JJ, editors. Trends in emerging viral infections of swine. Ames, IA: Iowa State Press; 2002. p. 119–24.

    Google Scholar 

  16. Rendleman C, Spinelli FJ. The costs and benefits of African swine fever prevention. Am J Agric Econ. 1994;76:1255.

    Google Scholar 

  17. Plowright W, Thomson GR, Neser JA. African swine fever. In: Coetzer JAW, Thomson GR, Tustin RC, editors. Infectious diseases of livestock. Capetown: Oxford University Press; 1994. p. 568–99.

    Google Scholar 

  18. Anderson EC, Hutchings GH, Mukarati N, Wilkinson PJ. African swine fever virus infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Vet Microbiol. 1998;62(1):1–15.

    CAS  PubMed  Google Scholar 

  19. Oura CA, Powell PP, Anderson E, Parkhouse RM. The pathogenesis of African swine fever in the resistant bushpig. J Gen Virol. 1998;79(Pt 6):1439–43.

    CAS  PubMed  Google Scholar 

  20. Oura CA, Powell PP, Parkhouse RM. Detection of African swine fever virus in infected pig tissues by immunocytochemistry and in situ hybridisation. J Virol Methods. 1998;72(2):205–17.

    CAS  PubMed  Google Scholar 

  21. Heuschele WP, Coggins L. Epizootiology of African swine fever virus in warthogs. Bull Epizoot Dis Afr. 1969;17(2):179–83.

    CAS  PubMed  Google Scholar 

  22. Thomson GR. The epidemiology of African swine fever: the role of free-living hosts in Africa. Onderstepoort J Vet Res. 1985;52(3):201–9.

    CAS  PubMed  Google Scholar 

  23. Tulman ER, Delhon GA, Ku BK, Rock DL. African swine fever virus. Curr Top Microbiol Immunol. 2009;328:43–87.

    CAS  PubMed  Google Scholar 

  24. DeKock G, Robinson EM, Keppel JJG. Swine fever in South Africa. Onderstepoort J Vet Sci Anim Ind. 1994;14:31–93.

    Google Scholar 

  25. Detray DE, Scott GR. Blood changes in swine with African swine fever. Am J Vet Res. 1957;18(68):484–90.

    CAS  PubMed  Google Scholar 

  26. Carrillo C, Borca MV, Afonso CL, Onisk DV, Rock DL. Long-term persistent infection of swine monocytes/macrophages with African swine fever virus. J Virol. 1994;68(1):580–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Plowright W. African swine fever. In: Davis JW, Karstad LH, Trainer DO, editors. Infectious diseases of wild animals. 2nd ed. Ames, IA: Iowa University Press; 1981.

    Google Scholar 

  28. Colgrove GS, Haelterman EO, Coggins L. Pathogenesis of African swine fever in young pigs. Am J Vet Res. 1969;30(8):1343–59.

    CAS  PubMed  Google Scholar 

  29. Konno S, Taylor WD, Dardiri AH. Acute African swine fever. Proliferative phase in lymphoreticular tissue and the reticuloendothelial system. Cornell Vet. 1971;61(1):71–84.

    CAS  PubMed  Google Scholar 

  30. Mebus CA. African swine fever. Adv Virus Res. 1988;35:251–69.

    CAS  PubMed  Google Scholar 

  31. Moulton J, Coggins L. Comparison of lesions in acute and chronic African swine fever. Cornell Vet. 1968;58(3):364–88.

    CAS  PubMed  Google Scholar 

  32. Neilan JG, Zsak L, Lu Z, Kutish GF, Afonso CL, Rock DL. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. J Virol. 2002;76(7):3095–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Moore DM, Zsak L, Neilan JG, Lu Z, Rock DL. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. J Virol. 1998;72(12):10310–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Zsak L, Caler E, Lu Z, Kutish GF, Neilan JG, Rock DL. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J Virol. 1998;72(2):1028–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Sussman MD, Lu Z, Kutish G, Afonso CL, Roberts P, Rock DL. Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence-associated gene of herpes simplex virus. J Virol. 1992;66(9):5586–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zsak L, Lu Z, Kutish GF, Neilan JG, Rock DL. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. J Virol. 1996;70(12):8865–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Conceicao J. Estudo das zoonoses porcinas de ngola; primeiro relatorio. A zoonose porcina africana de virus filtravel. Pecuaria. 1949;1:217–45.

    Google Scholar 

  38. Creig A, Plowright W. The excretion of two virulent strains of African swine fever virus by domestic pigs. J Hygiene. 1970;68:673–82.

    Google Scholar 

  39. Haresnape JM, Wilkinson PJ, Mellor PS. Isolation of African swine fever virus from ticks of the Ornithodoros moubata complex (Ixodoidea: Argasidae) collected within the African swine fever enzootic area of Malawi. Epidemiol Infect. 1988;101(1):173–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Mendes A. Considérations sur le diagnostic et la prophylaxie de la peste porcine africaine. Bull Off Int Épizoot. 1961;57:591–600.

    Google Scholar 

  41. Thomson GR, Gainaru MD, van Dellen AF. African swine fever: pathogenicity and immunogenicity of two non-haemadsorbing viruses. Onderstepoort J Vet Res. 1979;46(3):149–54.

    CAS  PubMed  Google Scholar 

  42. Edwards JF, Dodds WJ, Slauson DO. Mechanism of thrombocytopenia in African swine fever. Am J Vet Res. 1985;46(10):2058–63.

    CAS  PubMed  Google Scholar 

  43. Wardley RC, Wilkinson PJ. The association of African swine fever virus with blood components of infected pigs. Arch Virol. 1977;55(4):327–34.

    CAS  PubMed  Google Scholar 

  44. Sanchez-Vizcaino JM, Slauson DO, Ruiz-Gonzalvo F, Valero F. Lymphocyte function and cell-mediated immunity in pigs with experimentally induced African swine fever. Am J Vet Res. 1981;42(8):1335–41.

    CAS  PubMed  Google Scholar 

  45. Wardley RC, Wilkinson PJ. Lymphocyte responses to African swine fever virus infection. Res Vet Sci. 1980;28(2):185–9.

    CAS  PubMed  Google Scholar 

  46. Anderson EC, Williams SM, Fisher-Hoch SP, Wilkinson PJ. Arachidonic acid metabolites in the pathophysiology of thrombocytopenia and haemorrhage in acute African swine fever. Res Vet Sci. 1987;42(3):387–94.

    CAS  PubMed  Google Scholar 

  47. Edwards JF. The pathogenesis of thrombocytopenia and haemorrhage in African swine fever. Ithaca, NY: Cornell University (Thesis); 1983.

    Google Scholar 

  48. Carpintero R, Alonso C, Pineiro M, Iturralde M, Andres M, Le Potier MF, et al. Pig major acute-phase protein and apolipoprotein A-I responses correlate with the clinical course of experimentally induced African swine fever and Aujeszky’s disease. Vet Res. 2007;38(5):741–53.

    CAS  PubMed  Google Scholar 

  49. Sanchez-Cordon PJ, Ceron JJ, Nunez A, Martinez-Subiela S, Pedrera M, Romero-Trevejo JL, et al. Serum concentrations of C-reactive protein, serum amyloid A, and haptoglobin in pigs inoculated with African swine fever or classical swine fever viruses. Am J Vet Res. 2007;68(7):772–7.

    CAS  PubMed  Google Scholar 

  50. Gomez-Villamandos JC, Hervas J, Mendez A, Carrasco L, Martin de las Mulas J, Villeda CJ, et al. Experimental African swine fever: apoptosis of lymphocytes and virus replication in other cells. J Gen Virol. 1995;76(Pt 9):2399–405.

    CAS  PubMed  Google Scholar 

  51. Oura CA, Powell PP, Parkhouse RM. African swine fever: a disease characterized by apoptosis. J Gen Virol. 1998;79(Pt 6):1427–38.

    CAS  PubMed  Google Scholar 

  52. Ramiro-Ibanez F, Ortega A, Brun A, Escribano JM, Alonso C. Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. J Gen Virol. 1996;77(Pt 9):2209–19.

    CAS  PubMed  Google Scholar 

  53. Salguero FJ, Sanchez-Cordon PJ, Sierra MA, Jover A, Nunez A, Gomez-Villamandos JC. Apoptosis of thymocytes in experimental African swine fever virus infection. Histol Histopathol. 2004;19(1):77–84.

    CAS  PubMed  Google Scholar 

  54. Detray DE. African swine fever. Adv Vet Sci Comp Med. 1963;19:299–333.

    Google Scholar 

  55. Konno S, Taylor WD, Hess WR, Heuschele WP. Spleen pathology in African swine fever. Cornell Vet. 1972;62(3):486–506.

    CAS  PubMed  Google Scholar 

  56. Manso Ribeiro J, Rosa Azevedo F. Réapparition de la peste porcine africaine (PPA) au Portugal. Bull Off Int Epizoot. 1961;55:88–106.

    Google Scholar 

  57. Maurer FD, Griesemer RA. The pathology of African swine fever; a comparison with hog cholera. Am J Vet Res. 1958;19(72):517–39.

    CAS  PubMed  Google Scholar 

  58. Nunes Petisca J. Etudes anatomo-pathologiques et histopathologiques sur la peste porcine africaine (Virose L) au Portugal. Bull Off Int Epizoot. 1965;63:103–42.

    Google Scholar 

  59. Steyn D. East African virus disease in pigs. In: 18th Report of the Director of Veterinary Services and Animal Industry, Union of South Africa. 1932, p 99–109.

    Google Scholar 

  60. Steyn DG. Preliminary report on a South African virus disease amongst pigs. Government Printer and Stationery Office, Pretoria. 1928.

    Google Scholar 

  61. Bastos AD, Penrith ML, Cruciere C, Edrich JL, Hutchings G, Roger F, et al. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch Virol. 2003;148(4):693–706.

    CAS  PubMed  Google Scholar 

  62. Gallardo C, Mwaengo DM, Macharia JM, Arias M, Taracha EA, Soler A, et al. Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes. 2009;38(1):85–95.

    CAS  PubMed  Google Scholar 

  63. Dixon LK, Wilkinson PJ. Genetic diversity of African swine fever virus isolates from soft ticks (Ornithodoros moubata) inhabiting warthog burrows in Zambia. J Gen Virol. 1988;69(Pt 12):2981–93.

    CAS  PubMed  Google Scholar 

  64. Sumption KJ, Hutchings GH, Wilkinson PJ, Dixon LK. Variable regions on the genome of Malawi isolates of African swine fever virus. J Gen Virol. 1990;71(Pt 10):2331–40.

    Google Scholar 

  65. Lubisi B, Bastos ADS, Dwarka RM, Vosloo W. Genotyping African swine fever virus strains from East Africa. In: Proceedings of the Third Annual Conference of Southern African Society of Veterinary Epidemiology and Preventive Medicine 21-2 August 2003. Pretoria, 2003:10–4.

    Google Scholar 

  66. Wambura PN, Masambu J, Msami H. Molecular diagnosis and epidemiology of African swine fever outbreaks in Tanzania. Vet Res Commun. 2006;30(6):667–72.

    CAS  PubMed  Google Scholar 

  67. Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C, Vosloo W, et al. African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis. 2008;14(12):1870–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Aguero M, Fernandez J, Romero LJ, Zamora MJ, Sanchez C, Belak S, et al. A highly sensitive and specific gel-based multiplex RT-PCR assay for the simultaneous and differential diagnosis of African swine fever and Classical swine fever in clinical samples. Vet Res. 2004;35(5):551–63.

    CAS  PubMed  Google Scholar 

  69. Zsak L, Borca MV, Risatti GR, Zsak A, French RA, Lu Z, et al. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J Clin Microbiol. 2005;43(1):112–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Coggins L. African swine fever virus. Pathogenesis. Prog Med Virol. 1974;18:48–63.

    CAS  PubMed  Google Scholar 

  71. Forman AJ, Wardley RC, Wilkinson PJ. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Arch Virol. 1982;74(2–3):91–100.

    CAS  PubMed  Google Scholar 

  72. Kihm U, Ackermann M, Mueller H, Pool R. Approaches to vaccination. In: Becker Y, editor. African swine fever. Boston, MA: Martinus Nijhoff; 1987. p. 127–44.

    Google Scholar 

  73. Lewis T, Zsak L, Burrage TG, Lu Z, Kutish GF, Neilan JG, et al. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol. 2000;74(3):1275–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Hamdy FM, Dardiri AH. Clinical and immunologic responses of pigs to African swine fever virus isolated from the Western Hemisphere. Am J Vet Res. 1984;45(4):711–4.

    CAS  PubMed  Google Scholar 

  75. Ruiz-Gonzalvo F, Carnero ME, Bruye V. Immunological responses of pigs to partially attenuated ASF and their resistance to virulent homologous and heterologous viruses. In: Wilkinson P, editor. Proceedings of FAO/CEC Expert Consultation in ASF Research, Sardinia, Italy, September 1981. Luxembourg: Commission of the European Communities. 1981, p. 206–16.

    Google Scholar 

  76. Onisk DV, Borca MV, Kutish G, Kramer E, Irusta P, Rock DL. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology. 1994;198(1):350–4.

    CAS  PubMed  Google Scholar 

  77. Gomez-Puertas P, Rodriguez F, Oviedo JM, Ramiro-Ibanez F, Ruiz-Gonzalvo F, Alonso C, et al. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol. 1996;70(8):5689–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Neilan JG, Zsak L, Lu Z, Burrage TG, Kutish GF, Rock DL. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004;319(2):337–42.

    CAS  PubMed  Google Scholar 

  79. Oura CA, Denyer MS, Takamatsu H, Parkhouse RM. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol. 2005;86(Pt 9):2445–50.

    CAS  PubMed  Google Scholar 

  80. Gomez del Moral M, Ortuno E, Fernandez-Zapatero P, Alonso F, Alonso C, Ezquerra A, et al. African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. J Virol. 1999;73(3):2173–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Salguero FJ, Ruiz-Villamor E, Bautista MJ, Sanchez-Cordon PJ, Carrasco L, Gomez-Villamandos JC. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Vet Immunol Immunopathol. 2002;90(1–2):11–22.

    CAS  PubMed  Google Scholar 

  82. Salguero FJ, Sanchez-Cordon PJ, Nunez A, Fernandez de Marco M, Gomez-Villamandos JC. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol. 2005;132(4):289–302.

    CAS  PubMed  Google Scholar 

  83. Powell PP, Dixon LK, Parkhouse RM. An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol. 1996;70(12):8527–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol. 2004;78(4):1858–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Zsak L, Lu Z, Burrage TG, Neilan JG, Kutish GF, Moore DM, et al. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J Virol. 2001;75(7):3066–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol. 1998;72(4):2881–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Borca MV, Kutish GF, Afonso CL, Irusta P, Carrillo C, Brun A, et al. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology. 1994;199(2):463–8.

    CAS  PubMed  Google Scholar 

  88. Miskin JE, Abrams CC, Goatley LC, Dixon LK. A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science. 1998;281(5376):562–5.

    CAS  PubMed  Google Scholar 

  89. Granja AG, Nogal ML, Hurtado C, Vila V, Carrascosa AL, Salas ML, et al. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway. J Biol Chem. 2004;279(51):53736–46.

    CAS  PubMed  Google Scholar 

  90. Boklund A, Toft N, Alban L, Uttenthal A. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark. Prev Vet Med. 2009;90(3–4):180–93.

    CAS  PubMed  Google Scholar 

  91. Li H, Cunha CW, Taus NS, Knowles DP. Malignant catarrhal fever: inching towards understanding. Annu Rev Anim Biosci. 2013;2:209–33.

    PubMed  Google Scholar 

  92. O’Toole D, Li H. Malignant catarrhal fever with an emphasis on ovine herpesvirus-2. Vet Pathol. 2013;51:437–52.

    Google Scholar 

  93. Rossiter P. Malignant catarrhal fever. In: Lefevre P, Blancou J, Chermette R, Uilenberg G, editors. Infectious and parasitic diseases of livestock. New York: CABI; 2011;471–88.

    Google Scholar 

  94. Li H, Wunschmann A, Keller J, Hall DG, Crawford TB. Mural folliculitis and alopecia caused by infection with goat-associated malignant catarrhal fever virus in two sika deer. J Vet Diagn Invest. 2003;15(1):46–9.

    PubMed  Google Scholar 

  95. Russel GC, Stewart JP, Haig DM. A novel subgroup of rhadinoviruses in ruminants. Vet J. 2009;179:324–35.

    Google Scholar 

  96. Plowright W. Malignant catarrhal fever virus. In: Dinter Z, Morein B, editors. Virus infections of ruminants. New York, NY: Elsevier; 1990. p. 123–50.

    Google Scholar 

  97. Li H, Gailbreath K, Taus NS, Cooley J, Keller J, Russel GC, et al. A novel subgroup of rhadinoviruses in ruminants. J Virol. 2005;86:3021–6.

    CAS  Google Scholar 

  98. Li H, Taus NS, Jones C, Murphy B, Evermann JF, Crawford TB. A devastating outbreak of malignant catarrhal fever in a bison feedlot. J Vet Diagn Invest. 2006;18:119–23.

    PubMed  Google Scholar 

  99. Li H, Taus NS, Lewis NS, Kim O, Traul DL, Crawford TB. Shedding of ovine herpesvirus 2 in sheep nasal secretions: the predominant mode for transmission. J Clin Microbiol. 2004;42:5558–64.

    PubMed Central  PubMed  Google Scholar 

  100. Palmeira L, Sorel O, Van Campe W, Boudry C, Roels S, Myster F, et al. An essential role for gamma-herpesvirus latency-associated nuclear antigen homolog in an acute lymphoproliferative disease of cattle. Proc Natl Acad Sci U S A. 2013;110(21):E1933–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD41 T cells. Eur J Immunol. 1995;25:3053–9.

    CAS  PubMed  Google Scholar 

  102. Meier-Trummer CS, Rehrauer H, Ranchini M, Patrignani A, Wagner U, Ackermann M. Malignant catarrhal fever of cattle is associated with low abundance of IL-2 transcript and a predominantly latent profile of ovine herpesvirus 2 gene expression. PLoS One. 2009;4:e6265.

    PubMed Central  PubMed  Google Scholar 

  103. Li H, Brooking A, Cunha CW, Highland MA, O’Toole D, Knowles DP, et al. Experimental induction of malignant catarrhal fever in pigs with ovine herpesvirus 2 by intranasal nebulization. Vet Microbiol. 2012;159(3–4):485–9.

    PubMed  Google Scholar 

  104. Moore DA, Kohrs P, Baszler T, Faux C, Sathre P, Wenz JR, et al. Outbreak of malignant catarrhal fever among cattle associated with a state livestock exhibition. J Am Vet Med Assoc. 2010;237(1):87–92.

    PubMed  Google Scholar 

  105. Gailbreath KL, O’Toole D, Taus NS, Knowles DP, Oaks JL, Li H. Experimental nebulization of American bison (Bison bison) with low doses of ovine herpesvirus 2 from sheep nasal secretions. Vet Microbiol. 2010;143(2–4):389–93.

    CAS  PubMed  Google Scholar 

  106. Traul DL, Li H, Dasgupta N, O’Toole D, Eldridge JA, Besser TE, et al. Resistance to malignant catarrhal fever in American bison (Bison bison) is associated with MHC class IIa polymorphisms. Anim Genet. 2007;38(2):141–6.

    CAS  PubMed  Google Scholar 

  107. Liggitt HD, DeMartini JC, McChesney AE, Pierson RE, Storz J. Experimental transmission of malignant catarrhal fever in cattle: gross and histopathologic changes. Am J Vet Res. 1978;39(8):1249–57.

    CAS  PubMed  Google Scholar 

  108. O’Toole D, Li H, Roberts S, Rovnak J, DeMartini J, Cavender J, et al. Chronic generalized obliterative arteriopathy in cattle: a sequel to sheep-associated malignant catarrhal fever. J Vet Diagn Invest. 1995;7(1):108–21.

    PubMed  Google Scholar 

  109. Whiteley HE, Young S, Liggitt HD, DeMartini JC. Ocular lesions of bovine malignant catarrhal fever. Vet Pathol. 1985;22(3):219–25.

    CAS  PubMed  Google Scholar 

  110. O’Toole D, Li H, Sourk C, Montgomery DL, Crawford TB. Malignant catarrhal fever in a bison (Bison bison) feedlot, 1993-2000. J Vet Diagn Invest. 2002;14(3):183–93.

    PubMed  Google Scholar 

  111. O'Toole D, Li H, Miller D, Williams WR, Crawford TB. Chronic and recovered cases of sheep-associated malignant catarrhal fever in cattle. Vet Rec. 1997;140(20):519–24.

    PubMed  Google Scholar 

  112. Palmer MV, Thacker TC, Madison RJ, Koster LG, Swenson SL, Li H. Active and Latent Ovine Herpesvirus-2 (OvHV-2) infection in a herd of captive white-tailed Deer (Odocoileus virginianus). J Comp Pathol. 2013;149(2–3):162–6.

    CAS  PubMed  Google Scholar 

  113. Crawford TB, Li H, Rosenburg SR, Norhausen RW, Garner MM. Mural folliculitis and alopecia caused by infection with goat-associated malignant catarrhal fever virus in two sika deer. J Am Vet Med Assoc. 2002;221(6):843–7. 01.

    PubMed  Google Scholar 

  114. Gasper D, Barr B, Li H, Taus N, Peterson R, Benjamin G, et al. Ibex-associated malignant catarrhal fever-like disease in a group of bongo antelope (Tragelaphus eurycerus). Vet Pathol. 2012;49(3):492–7.

    CAS  PubMed  Google Scholar 

  115. Li H, Karney G, O’Toole D, Crawford TB. Long distance spread of malignant catarrhal fever virus from feedlot lambs to ranch bison. Can Vet J. 2008;49(2):183–5.

    PubMed Central  PubMed  Google Scholar 

  116. Schultheiss PC, Collins JK, Austgen LE, DeMartini JC. Malignant catarrhal fever in bison, acute and chronic cases. J Vet Diagn Invest. 1998;10(3):255–62.

    CAS  PubMed  Google Scholar 

  117. Schultheiss PC, Collins JK, Spraker TR, DeMartini JC. Epizootic malignant catarrhal fever in three bison herds: differences from cattle and association with ovine herpesvirus-2. J Vet Diagn Invest. 2000;12(6):497–502.

    CAS  PubMed  Google Scholar 

  118. Taus NS, Oaks JL, Gailbreath K, Traul DL, O’Toole D, Li H. Experimental aerosol infection of cattle (Bos taurus) with ovine herpesvirus 2 using nasal secretions from infected sheep. Vet Microbiol. 2006;116(1–3):29–36.

    PubMed  Google Scholar 

  119. Fraser SJ, Nettleton PF, Dutia BM, Haig DM, Russell GC. Development of an enzyme-linked immunosorbent assay for the detection of antibodies against malignant catarrhal fever viruses in cattle serum. Vet Microbiol. 2006;116(1–3):21–8.

    CAS  PubMed  Google Scholar 

  120. Li H, McGuire TC, Muller-Doblies UU, Crawford TB. A simpler, more sensitive competitive inhibition enzyme-linked immunosorbent assay for detection of antibody to malignant catarrhal fever viruses. J Vet Diagn Invest. 2001;13(4):361–4.

    CAS  PubMed  Google Scholar 

  121. Vikoren T, Li H, Lillehaug A, Jonassen CM, Bockerman I, Handeland K. Malignant catarrhal fever in free-ranging cervids associated with OvHV-2 and CpHV-2 DNA. J Wildl Dis. 2006;42(4):797–807.

    PubMed  Google Scholar 

  122. Zarnke RL, Li H, Crawford TB. Serum antibody prevalence of malignant catarrhal fever viruses in seven wildlife species from Alaska. J Wildl Dis. 2002;38(3):500–4.

    PubMed  Google Scholar 

  123. Berezowski JA, Appleyard GD, Crawford TB, Haigh J, Li H, Middleton DM, et al. An outbreak of sheep-associated malignant catarrhal fever in bison (Bison bison) after exposure to sheep at a public auction sale. J Vet Diagn Invest. 2005;17(1):55–8.

    PubMed  Google Scholar 

  124. Bedelian C, Nkedianye D, Herrero M. Maasai perception of the impact and incidence of malignant catarrhal fever (MCF) in southern Kenya. Prev Vet Med. 2007;78(3–4):296–316.

    PubMed  Google Scholar 

  125. Li H, Taus NS, Oaks JL. Sheep-associated malignant catarrhal fever virus: prospects for vaccine development. Expert Rev Vaccines. 2006;5(1):133–41.

    CAS  PubMed  Google Scholar 

  126. Russell GC, Benavides J, Grant D, Todd H, Deane D, Percival A, et al. Duration of protective immunity and antibody responses in cattle immunised against alcelaphine herpesvirus-1-induced malignant catarrhal fever. Vet Res. 2012;43(1):51.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Li H, Snowder G, Crawford TB. Production of malignant catarrhal fever virus-free sheep. Vet Microbiol. 1999;65(2):167–72.

    CAS  PubMed  Google Scholar 

  128. Heuschele WP, Reid HW. Malignant catarrhal fever. In: Williams ES, Barker IK, editors. Infectious diseases of wild mammals. 3rd ed. Ames, IA: Iowa State University Press; 2001. p. 157–64.

    Google Scholar 

  129. United States Animal Health Association. Foreign animal diseases. 7th ed. Boca Raton, FL: Boca Publications Group, Inc.; 2008.

    Google Scholar 

  130. Klieforth R, Maalouf G, Stalis I, Terio K, Janssen D, Schrenzel M. Malignant catarrhal fever-like disease in Barbary red deer (Cervus elaphus barbarus) naturally infected with a virus resembling alcelaphine herpesvirus 2. J Clin Microbiol. 2002;40(9):3381–90.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have no conflict of interests. We thank Laura Bollinger (IRF-Frederick) for technical writing services. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, the US Department of Agriculture, and/or the institutions and companies affiliated with the authors. JHK performed this work as an employee of Tunnell Government Services, Inc., a subcontractor to Battelle Memorial Institute under its prime contract with NIAID, under Contract No. HHSN272200700016I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David White D.V.M., Ph.D., D.A.C.V.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borca, M. et al. (2015). Viral Hemorrhagic Fevers of Animals Caused by DNA Viruses. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_12

Download citation

Publish with us

Policies and ethics