Skip to main content

Viral Hemorrhagic Fevers of Animals Caused by Negative-Strand RNA Viruses

  • Chapter
Global Virology I - Identifying and Investigating Viral Diseases

Abstract

The term “viral hemorrhagic fevers” (VHFs) can loosely be applied to many serious diseases of animals (including fish, who are incapable of a fever response). While VHFs of humans are caused by viruses limited to only 4–5 families (i.e., Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, and possibly Rhabdoviridae), VHFs of animals are caused by a much broader variety of viruses. Therefore, chapters 11–14 were grouped using the Baltimore classification, i.e., by genome type, as opposed to the classification supported by the International Committee on Taxonomy of Viruses. As one could guess, the largest number of VHFs in animals is caused by negative-stranded RNA viruses, but some are caused by viruses that have positive-sense or double-stranded RNA genomes, and some even have DNA genomes. This chapter focuses on negative-stranded RNA viruses. However, the reader is encouraged to read all four chapters to get an idea of the breadth of disease mechanisms and natural histories of this fascinating group of viruses that have both direct and indirect effects on humans, as well as implications for larger societal issues, such as food security and ecological dynamics. At the end of each chapter, “honorable mention” is given to some serious viral diseases that may have incomplete hemorrhagic features in regard to the definition provided in this first chapter of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedersen NC, Elliott JB, Glasgow A, Poland A, Keel K. An isolated epizootic of hemorrhagic-like fever in cats caused by a novel and highly virulent strain of feline calicivirus. Vet Microbiol. 2000;73(4):281–300.

    CAS  PubMed  Google Scholar 

  2. Kuhn JH, Clawson AN, Radoshitzky SR, Wahl-Jensen V, Bavari S, Jahrling PB. Viral hemorrhagic fevers: history and definitions. In: Singh SK, Ruzek D, editors. Viral hemorrhagic fevers. Boca Raton, FL: Taylor & Francis/CRC Press; 2013. p. 3–13.

    Google Scholar 

  3. Leroy EM, Rouquet P, Formenty P, Souquiere S, Kilbourne A, Froment JM, et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science. 2004;303(5656):387–90.

    CAS  PubMed  Google Scholar 

  4. Mort M, Convery I, Baxter J, Bailey C. Psychosocial effects of the 2001 UK foot and mouth disease epidemic in a rural population: qualitative diary based study. BMJ. 2005;331(7527):1234.

    PubMed Central  PubMed  Google Scholar 

  5. Normile D. Rinderpest. Driven to extinction. Science. 2008;319(5870):1606–9.

    CAS  PubMed  Google Scholar 

  6. Rucker R, Whipple W, Parvin J, Evans C. A contagious disease of sockeye salmon possibly of virus origin. US Fish Wildlife Ser Fish Bull. 1953;54:35–46.

    Google Scholar 

  7. Watson S, Guenther R, Rucker R. A virus disease of sockeye salmon: interim report. US Fish Wildlife Ser Spec Sci Rpt Fish. 1954;138:1–36.

    Google Scholar 

  8. Wingfield W. Characterization of the Oregon sockeye salmon virus. Corvallis, OR: Oregon State Univ; 1968.

    Google Scholar 

  9. Amend D, Yasutaki W, Mead R. A hematopoietic virus disease of rainbow trout and sockeye salmon. Trans Am Fish Soc. 1969;98:796–804.

    Google Scholar 

  10. Wingfield W, Fryer J, Pilcher K. Properties of the sockeye salmon virus (Oregon strain). Proc Sci Exp Biol Med. 1969;130:1055–9.

    CAS  Google Scholar 

  11. Wolf K. Infectious hematopoietic necrosis virus. In: Wolf K, editor. Fish viruses and fish viral disease. Ithaca, NY: Cornell University Press; 1988. p. 83–114.

    Google Scholar 

  12. Kurath G, Ahern K, Pearson G, Leong J. Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R-loop mapping. J Virol. 1985;53:469–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Morzunov S, Winton J, Nichol S. The complete genome structure and phylogenetic relationship of infectious hematopoietic necrosis virus. Virus Res. 1995;38:175–92.

    CAS  PubMed  Google Scholar 

  14. Fauquet CM, Mayo MA. The 7th ICTV report. Arch Virol. 2001;146(1):189–94.

    CAS  PubMed  Google Scholar 

  15. Tordo N, Benmansour A, Calisher C, Dietzgen R, Fang R, Jackson A, et al. The eighth report of the international committee for taxonomy of viruses. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus taxonomy. San Diego, CA: Academic; 2004. p. 623–44.

    Google Scholar 

  16. Hsu Y, Engelking H, Leong J. Occurrence of different types of infectious hematopoietic necrosis virus in fish. Appl Environ Microbiol. 1986;52:1353–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Ristow S, Arnzen J. Development of monoclonal antibodies that recognize a type-2 specific and a common epitope on the nucleoprotein of infectious hematopoietic necrosis virus. J Aquat Anim Health. 1989;1:119–25.

    Google Scholar 

  18. Ristow S, Arnzen J. Monoclonal antibodies to the glycoprotein and nucleoprotein of infectious hematopoietic necrosis virus (IHNV) reveal differences among isolates of the virus by fluorescence, neutralization and electrophoresis. Dis Aquat Organ. 1991;11:105–15.

    CAS  Google Scholar 

  19. Winton J, Arakawa C, Lannan C, Fryer J. Neutralizing monoclonal antibodies recognize antigenic variants among isolates of infectious hematopoietic necrosis virus. Dis Aquat Organ. 1988;4:199–204.

    Google Scholar 

  20. LaPatra S, Lauda K, Jones G. Antigenic variants of infectious hematopoietic necrosis virus and implications for vaccine development. Dis Aquat Organ. 1994;20:119–26.

    Google Scholar 

  21. Oshima K, Arakawa C, Higman K, Landolt M, Nichol S, Winton J. The genetic diversity and epizootiology of infectious hematopoietic necrosis virus. Virus Res. 1995;35:123–41.

    CAS  PubMed  Google Scholar 

  22. Kurath G, Garver K, Troyer R, Emmenegger E, Einer-Jensen K, Anderson E. Phylogeography of infectious hematopoietic necrosis virus in North America. J Gen Virol. 2003;84:803–14.

    CAS  PubMed  Google Scholar 

  23. Garver K, Troyer R, Kurath G. Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin. Dis Aquat Organ. 2003;55:187–203.

    CAS  PubMed  Google Scholar 

  24. Nishizawa T, Kinoshita S, Kim W, Higashi S, Yoshimizu M. Nucleotide diversity of Japanese isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene. Dis Aquat Organ. 2006;71:267–72.

    CAS  PubMed  Google Scholar 

  25. Troyer R, LaPatra S, Kurath G. Genetic analyses reveal unusually high diversity of infectious hematopoietic necrosis virus in rainbow trout aquaculture. J Gen Virol. 2000;81:2823–32.

    CAS  PubMed  Google Scholar 

  26. Kelley G, Bendorf C, Yun S, Kurath G. Genotypes and phylogeographical relationships of infectious hematopoietic necrosis virus in California, USA. Dis Aquat Organ. 2007;77:29–40.

    CAS  PubMed  Google Scholar 

  27. Rudakova S, Kurath G, Bochkova E. Occurrence and genetic typing of infectious hematopoietic necrosis virus in Kamchatka, Russia. Dis Aquat Organ. 2007;75:1–11.

    CAS  PubMed  Google Scholar 

  28. Enzmann P, Kurath G, Fitchner D, Bergman S. Infectious hematopoietic necrosis virus: monophyletic origin of European isolates from North American Genogroup M. Dis Aquat Organ. 2005;66:187–95.

    CAS  PubMed  Google Scholar 

  29. Johansson T, Einer-Jensen K, Batts W, Ahrens P, Bjokblom C, Kurath G, et al. Genetic and serologic typing of European infectious hematopoietic necrosis virus (IHNV) isolates. Dis Aquat Organ. 2009;86:213–21.

    CAS  PubMed  Google Scholar 

  30. Kurath G. An online database for IHN virus in pacific salmonid fish: MEAP-IHNV. In: Interior USDot, editor. U.S. geological Survey. Tacoma, WA: Tacoma Publishing Service Center; 2012.

    Google Scholar 

  31. Enzmann PJ, Castric J, Bovo G, Thiery R, Fichtner D, Schutze H, et al. Evolution of infectious hematopoietic necrosis virus (IHNV), a fish rhabdovirus, in Europe over 20 years: implications for control. Dis Aquat Organ. 2010;89(1):9–15.

    CAS  PubMed  Google Scholar 

  32. Kimura T, Yoshimizu M. Viral diseases of fish in Japan. Annu Rev Fish Dis. 1991;1:67–82.

    Google Scholar 

  33. Yoshimizu M. Disease problems of salmonid fish in Japan caused by international trade. Rev Sci Tech. 1996;15:533–49.

    CAS  PubMed  Google Scholar 

  34. Kim W, Oh M, Nishizawa T, Park J, Kurath G, Yoshimizu M. Genotyping of Korean isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene. Arch Virol. 2007;152:2119–24.

    CAS  PubMed  Google Scholar 

  35. Park M, Sohn S, Lee S, Chun S, Park J. Infectious hematopoietic necrosis virus from salmonids cultured in Korea. J Fish Dis. 1993;16:471–8.

    Google Scholar 

  36. He M, Yan XC, Liang Y, Sun XW, Teng CB. Evolution of the viral hemorrhagic septicemia virus: divergence, selection and origin. Mol Phylogenet Evol. 2014;77:34–40.

    PubMed  Google Scholar 

  37. Penaranda M, Purcell M, Kurath G. Differential virulence mechanisms of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics. J Gen Virol. 2009;90:2172–82.

    CAS  PubMed  Google Scholar 

  38. Busch R, editor Viral disease considerations in the commercial trout industry in Idaho. Proceedings of a workshop on viral diseases of salmonid fishes in the Columbia River Basin; 1983 October 7–8, 1982; Portland, OR, USA: Spec Publ Bonneville Power Admin.

    Google Scholar 

  39. Groberg W, editor The status of viral fish diseases in the Columbia River basin. Proceedings of a workshop on viral diseases of salmonid fishes in the Columbia River Basin; 1983 October 7–8, 1982; Portland, OR, USA: Spec Publ Bonneville Power Admin.

    Google Scholar 

  40. Breyta R, Jones A, Stewart B, Brunson R, Thomas J, Kerwin J, et al. Emergence of MD type infectious hematopoietic necrosis virus in Washington State coastal steelhead trout. Dis Aquat Organ. 2013;104(3):179–95.

    PubMed  Google Scholar 

  41. Bootland L, Leong J. Infectious hematopoietic necrosis virus. In: Woo P, Bruno D, editors. Fish diseases and disorders, vol. 3. New York, NY: CAB International; 1999. p. 57–121.

    Google Scholar 

  42. OIE. Infectious hematopoietic necrosis virus. In: Commission AHS, editor. Manual of diagnostic tests for aquatic animals. 7th ed. Paris: OIE (World Organisation for Animal Health); 2012. p. 300–13.

    Google Scholar 

  43. LaPatra S, Batts W, Overturf K, Jones G, Shewmaker W, Winton J. Negligible risk associated with movement of processed rainbow trout, Oncorhynchus mykiss (Walbaum), from an infectious hematopoietic necrosis virus (IHNV) endemic area. J Fish Dis. 2001;24:399–408.

    Google Scholar 

  44. Meyers T, Korn D, Burton T, Glass K, Follett J, Thomas J, et al. Infectious hematopoietic necrosis virus (IHNV) in Alaskan sockeye salmon culture from 1973 to 2000: annual virus prevalences and titers in broodstocks compared with juvenile losses. J Aquat Anim Health. 2003;15(1):21–30.

    Google Scholar 

  45. Traxler G, Garver K, Funk V. BC researchers test efficacy of IHN vaccine in Atlantic salmon. In: Canada FaOo, editor. Government of Canada; 2008.

    Google Scholar 

  46. Garver K, Batts W, Kurath G. Virulence comparisons of infectious hematopoietic necrosis virus U and M genogroups in sockeye salmon and rainbow trout. J Aquat Anim Health. 2006;18:232–43.

    Google Scholar 

  47. Purcell M, Garver K, Conway C, Eilliott D, Kurath G. Infectious hematopoietic necrosis virus genogroup-specific virulence mechanisms in sockeye salmon, Oncorhynchus nerka (Walbaum), from Redfish Lake, Idaho. J Fish Dis. 2009;32:619–31.

    CAS  PubMed  Google Scholar 

  48. Follett J, Meyers T, Burton T, Geesin J. Comparative susceptibilities of salmonid species in Alaska to infectious hematopoietic necrosis virus (IHNV) and North American viral hemorrhagic septicemia virus (VHSV). J Aquat Anim Health. 1997;9:34–40.

    Google Scholar 

  49. Hart L, Traxler G, Garver K, Richard J, Gregg J, Grady C, et al. Larval and juvenile Pacific herring Clupea pallasii are not susceptible to infectious hematopoietic necrosis under laboratory conditions. Dis Aquat Organ. 2011;93:105–10.

    PubMed  Google Scholar 

  50. McAllister P, Bebak J, Wagner B. Susceptibility of Arctic char to experimental challenge with infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV). J Aquat Anim Health. 2000;12:35–43.

    Google Scholar 

  51. Shors ST, Winston V. Detection of infectious hematopoietic necrosis virus in an invertebrate (Callibaetis sp). Am J Vet Res. 1989;50(8):1307–9.

    CAS  PubMed  Google Scholar 

  52. Mulcahy D, Klaybor D, Batts W. Isolation of infectious hematopoietic necrosis virus from a leech (Piscicola salmositica) and a copepod (Salmincola sp.), ectoparasites of sockeye salmon Oncorhynchus nerka. Dis Aquat Organ. 1990;8:29–34.

    Google Scholar 

  53. Jakob E, Barker D, Garver K. Vector potential of the salmon louse Lepeophtheirus salmonis in the transmission of infectious hematopoietic necrosis virus (IHNV). Dis Aquat Organ. 2011;97:155–65.

    CAS  PubMed  Google Scholar 

  54. Traxler G, Roome J, Kent M. Transmission of infectious hematopoietic necrosis virus in seawater. Dis Aquat Organ. 1993;16:111–4.

    Google Scholar 

  55. Mulcahy D, Pascho R, Jenes C. Detection of infectious hematopoietic necrosis virus in river water and demonstration of waterborne transmission. J Fish Dis. 1983;6:321–30.

    Google Scholar 

  56. Harmache A, LeBerre M, Droineau S, Giovanni M, Bremont M. Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol. 2006;80(7):3655–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Olsen C, Thomas J. An outbreak of infectious hematopoietic necrosis in the Baker River system affecting two year classes of sockeye. Fish Health Sect Newsl. 1994;22:1–2.

    Google Scholar 

  58. Grant A, Jakob E, Richard J, Garver K. Concentration of infectious aquatic rhabdoviruses from freshwater and seawater using ultrafiltration. J Aquat Anim Health. 2011;23:218–23.

    PubMed  Google Scholar 

  59. Amos K, Hopper K, LeVander L. Absence of infectious hematopoietic necrosis virus in adult sockeye salmon. J Aquat Anim Health. 1989;1:281–3.

    Google Scholar 

  60. Follett J, Burton T. Epizootics of infectious hematopoietic necrosis virus in an enhanced population of sockeye salmon Oncorhynchus nerka smolts at Chenik Lake, Alaska. AK. Fish Res Bull. 1995;2:137–42.

    Google Scholar 

  61. Burke J, Grischkowksy R. An epizootic caused by infectious hematopoietic necrosis virus in an enhanced population of sockeye salmon, Oncorhynchus nerka (Walbaum), smolts at Hidden Creek. J Fish Dis. 1984;7:421–9.

    Google Scholar 

  62. Mulcahy D. Association of infectious hematopoietic necrosis (IHN) virus with natural sediments. US Fish Wildlife Res Infor Bull. 1985:85–93

    Google Scholar 

  63. Yoshinaka T, Yoshimizu M, Ezura Y. Adsorption and infectivity of infectious hematopoietic necrosis virus (IHNV) with various solids. J Aquat Anim Health. 2000;12:64–8.

    Google Scholar 

  64. Toranzo A, Hetrick F. Comparative stability of two salmonid viruses in fresh, estuarine and marine waters. J Fish Dis. 1982;5:223–31.

    Google Scholar 

  65. Meyers T, Thomas J, Follett J, Saft R. Infectious hematopoietic necrosis virus: trends in prevalence and the risk management approach in Alaskan sockeye salmon culture. J Aquat Anim Health. 1990;2:85–98.

    Google Scholar 

  66. Meyers T. Healthy juvenile sockeye salmon reared in virus-free hatchery water return as adults infected with IHNV: a case report and review of controversial issues in the epizootiology of IHNV. J Aquat Anim Health. 1998;10:172–81.

    Google Scholar 

  67. Mulcahy D, Pascho R. Adsorption to fish sperm of vertically transmitted fish viruses. Science. 1984;225:333–5.

    CAS  PubMed  Google Scholar 

  68. Bootland L, Lorz H, Drolet B, Chen S, Fryer J, Rohovec J, et al. Current status of studies on the life cycle of infectious hematopoietic necrosis virus (IHNV). International symposium on aquatic animal health; September 4–8, 1995; Seattle, WA, Abstract W4.1.

    Google Scholar 

  69. Drolet B, Chiou P, Heidel J, Leong J. Detection of truncated virus particles in a persistent RNA virus infection in vivo. J Virol. 1995;69:2140–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Chiou P, Drolet B, Leong J. Polymerase chain amplification of infectious hematopoietic necrosis virus RNA extracted from fixed and embedded fish tissues. J Aquat Anim Health. 1995;7:9–15.

    Google Scholar 

  71. Kim C, Dummer D, Chiou P, Leong J. Truncated particles produced in fish surviving infectious hematopoietic necrosis virus infection: mediators of persistence. J Virol. 1999;73:843–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Muller A, Sutherland BJG, Koop BF, Johnson SC, Garver KA. Proceedings of the 54th Joint Western Fish Disease Workshop and AFS Fish Health Section Meeting, Port Townsend, WA, June 18–20, 2013.

    Google Scholar 

  73. Yasutaki W. Comparative histopathology of epizootic salmonid virus diseases. In: Snieszko SF, editor. A symposium on diseases of fish and shellfish. Washington, DC: American Fisheries Society; 1970.

    Google Scholar 

  74. Wolf K. Viral hemorrhagic septicemia virus. In: Wolf K, editor. Fish viruses and fish viral disease. Ithaca, NY: Cornell University Press; 1988. p. 217–49.

    Google Scholar 

  75. Chilmonczyk S, Winton J. Involvement of rainbow trout leucocytes in the pathogenesis of infectious hematopoietic necrosis. Dis Aquat Organ. 1994;19:89–94.

    Google Scholar 

  76. Lorenzen N, LaPatra S. Immunity to rhabdoviruses in rainbow trout: the antibody response. Fish Shellfish Immunol. 1999;9:345–60.

    Google Scholar 

  77. Purcell MK, Nichols KM, Winton JR, Kurath G, Thorgaard GH, Wheeler P, et al. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus. Mol Immunol. 2006;43(13):2089–106.

    CAS  PubMed  Google Scholar 

  78. Cain K, LaPatra S, Baldwin T, Shewmaker B, Jones J, Ristow S. Characterization of mucosal immunity in rainbow trout Oncorhynchus mykiss challenged with infectious hematopoietic necrosis virus: identification of antiviral activity. Dis Aquat Organ. 1996;27:161–72.

    Google Scholar 

  79. Oshima S, Hata J, Segawa C, Yamashita S. Mother to fry, successful transfer of immunity against infectious hematopoietic necrosis virus infection in rainbow trout. J Gen Virol. 1996;77:2441–5.

    CAS  PubMed  Google Scholar 

  80. Meyers T, Burton T, Bentz C, Starkey N. Common diseases of wild and cultured fishes in Alaska. Juneau, AK: Alaska Department of Fish and Game, Fish Pathology Laboratories; 2008. p. 105.

    Google Scholar 

  81. Amend D. Infectious hematopoietic necrosis virus disease in rainbow trout, Fish Disease Leaflet, 39. Washington, DC: Department of the Interior, U.S. Fish and Wildlife Service; 1974.

    Google Scholar 

  82. Saksida S. Infectious hematopoietic necrosis epidemic (2001 to 2003) in farmed Atlantic salmon Salmo salar in British Columbia. Dis Aquat Organ. 2006;72:213–24.

    CAS  PubMed  Google Scholar 

  83. Emmenegger E, Meyers T, Burton T, Kurath G. Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska. Dis Aquat Organ. 2000;40:163–76.

    CAS  PubMed  Google Scholar 

  84. Meyers T, Disease transmission from cultured salmonids to wild fish stocks: perspectives on the Alaskan hatchery program. In Cipriano RC, Shchelkunov IS, Faisal M, editors. Health and diseases of aquatic organisms: bilateral perspectives. Proceedings of the second bilateral conference between Russia and the United States; 2005 September 21–28, 2003; Shepardstown, WV. East Lansing, MI: Michigan State University, p 228–237.

    Google Scholar 

  85. Kurath G, Garver K, Corbeil S, Elliott D, Anderson E, LaPatra S. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine. 2006;24:345–54.

    CAS  PubMed  Google Scholar 

  86. Lorenzen N, LaPatra S. DNA vaccines for aquacultured fish. Res Vet Sci Tech Off Int Epiz. 2005;24:201–13.

    CAS  Google Scholar 

  87. Holvold LB, Myhr AI, Dalmo RA. Strategies and hurdles using DNA vaccines to fish. Vet Res. 2014;45:21.

    PubMed Central  PubMed  Google Scholar 

  88. McDaniel T, Pratt K, Meyers T, Ellison T, Follett J, Burke J. Alaska sockeye salmon culture manual. Alaska Department of Fish and Game. Special fisheries report No. 6. Juneau, AK: Commercial Fisheries Management and Development Division; 1994.

    Google Scholar 

  89. Boustead N, Meyers T, Short S. Absence of infectious haematopoietic necrosis virus (IHNV) in New Zealand sockeye-salmon, Oncorhynchus nerka. N Z J Mar Freshwater Res. 1993;27(1):55–60.

    Google Scholar 

  90. Thorud KE, Djupvik HO. Infectious salmon anaemia in Atlantic salmon (Salmo salar L.). Bull Eur Assoc Fish Pathol. 1988;8:109–11.

    Google Scholar 

  91. Rimstad E, Dale OB, Dannevig BH, Falk K. Infectious salmon anaemia. In: Woo PTK, Bruno DW, editors. Fish diseases and disorders, vol 3: viral, bacterial and fungal infections. 2nd ed. Oxfordshire: CAB International; 2011. p. 143–65.

    Google Scholar 

  92. Hellebø A, Vilas U, Falk K, Vlasak R. Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J Virol. 2004;78(6):3055–62.

    PubMed Central  PubMed  Google Scholar 

  93. Aamelfot M, Dale OB, Weli SC, Koppang EO, Falk K. Expression of the infectious salmon anemia virus receptor on Atlantic salmon endothelial cells correlates with the cell tropism of the virus. J Virol. 2012;86(19):10571–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Devold M, Falk K, Dale B, Krossøy B, Biering E, Aspehaug V, et al. Strain variation, based on the hemagglutinin gene, in Norwegian ISA virus isolates collected from 1987 to 2001: indications of recombination. Dis Aquat Organ. 2001;47(2):119–28.

    CAS  PubMed  Google Scholar 

  95. Mjaaland S, Hungnes O, Teig A, Dannevig BH, Thorud K, Rimstad E. Polymorphism in the infectious salmon anemia virus hemagglutinin gene: importance and possible implications for evolution and ecology of infectious salmon anemia disease. Virology. 2002;304(2):379–91.

    CAS  PubMed  Google Scholar 

  96. Cunningham CO, Gregory A, Black J, Simpson I, Raynard RS. A novel variant of the infectious salmon anaemia virus (ISAV) haemagglutinin gene suggests mechanisms for virus diversity. Bull Eur Assoc Fish Pathol. 2002;22(6):366–74.

    Google Scholar 

  97. Christiansen DH, Østergaard PS, Snow M, Dale OB, Falk K. A low-pathogenic variant of infectious salmon anemia virus (ISAV-HPR0) is highly prevalent and causes a non-clinical transient infection in farmed Atlantic salmon (Salmo salar L.) in the Faroe Islands. J Gen Virol. 2011;92:909–18.

    CAS  PubMed  Google Scholar 

  98. Lyngstad TM, Hjortaas MJ, Kristoffersen AB, Markussen T, Karlsen ET, Jonassen CM, et al. Use of molecular epidemiology to trace transmission pathways for infectious salmon anaemia virus (ISAV) in Norwegian salmon farming. Epidemics. 2011;3(1):1–11.

    CAS  PubMed  Google Scholar 

  99. Raynard RS, Murray AG, Gregory A. Infectious salmon anaemia virus in wild fish from Scotland. Dis Aquat Organ. 2001;46(2):93–100.

    CAS  PubMed  Google Scholar 

  100. Plarre H, Devold M, Snow M, Nylund A. Prevalence of infectious salmon anaemia virus (ISAV) in wild salmonids in western Norway. Dis Aquat Organ. 2005;66(1):71–9.

    CAS  PubMed  Google Scholar 

  101. Lyngstad TM, Jansen PA, Sindre H, Jonassen CM, Hjortaas MJ, Johnsen S, et al. Epidemiological investigation of infectious salmon anaemia (ISA) outbreaks in Norway 2003-2005. Prev Vet Med. 2008;84(3–4):213–27.

    CAS  PubMed  Google Scholar 

  102. Thorud KE. Infectious salmon anaemia. Transmission trials, haematological, clinical chemical and morphological investigations. Dr thesis, Norwegian College of Veterinary Medicine, Oslo 1991.

    Google Scholar 

  103. Mjaaland S, Markussen T, Sindre H, Kjoglum S, Dannevig BH, Larsen S, et al. Susceptibility and immune responses following experimental infection of MHC compatible Atlantic salmon (Salmo salar L.) with different infectious salmon anaemia virus isolates. Arch Virol. 2005;150(11):2195–216.

    CAS  PubMed  Google Scholar 

  104. Kibenge FSB, Kibenge MJT, Groman D, McGeachy S. In vivo correlates of infectious salmon anemia virus pathogenesis in fish. J Gen Virol. 2006;87(Pt 9):2645–52.

    CAS  PubMed  Google Scholar 

  105. Ritchie RJ, McDonald JT, Glebe B, Young-Lai W, Johnsen E, Gagne N. Comparative virulence of Infectious salmon anaemia virus isolates in Atlantic salmon, Salmo salar L. J Fish Dis. 2009;32(2):157–71.

    CAS  PubMed  Google Scholar 

  106. Falk K, Dannevig BH. Demonstration of a protective immune-response in infectious salmon anemia (Isa)-infected Atlantic Salmon Salmo-Salar. Dis Aquat Organ. 1995;21(1):1–5.

    Google Scholar 

  107. Jørgensen SM, Hetland DL, Press CM, Grimholt U, Gjøen T. Effect of early infectious salmon anaemia virus (ISAV) infection on expression of MHC pathway genes and type I and II interferon in Atlantic salmon (Salmo salar L.) tissues. Fish Shellfish Immunol. 2007;23(3):576–88.

    PubMed  Google Scholar 

  108. LeBlanc F, Laflamme M, Gagne N. Genetic markers of the immune response of Atlantic salmon (Salmo salar) to infectious salmon anemia virus (ISAV). Fish Shellfish Immunol. 2010;29(2):217–32.

    CAS  PubMed  Google Scholar 

  109. Lauscher A, Krossoy B, Frost P, Grove S, Konig M, Bohlin J, et al. Immune responses in Atlantic salmon (Salmo salar) following protective vaccination against Infectious salmon anemia (ISA) and subsequent ISA virus infection. Vaccine. 2011;29(37):6392–401.

    CAS  PubMed  Google Scholar 

  110. Mikalsen AB, Sindre H, Torgersen J, Rimstad E. Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon. Vaccine. 2005;23(41):4895–905.

    CAS  PubMed  Google Scholar 

  111. Wolf A, Hodneland K, Frost P, Braaen S, Rimstad E. A hemagglutinin-esterase-expressing salmonid alphavirus replicon protects Atlantic salmon (Salmo salar) against infectious salmon anemia (ISA). Vaccine. 2013;31(4):661–9.

    CAS  PubMed  Google Scholar 

  112. Vågsholm I, Djupvik HO, Willumsen FV, Tveit AM, Tangen K. Infectious salmon anemia (Isa) epidemiology in Norway. Prev Vet Med. 1994;19(3–4):277–90.

    Google Scholar 

  113. Jarp J, Karlsen E. Infectious salmon anaemia (ISA) risk factors in sea-cultured Atlantic salmon Salmo salar. Dis Aquat Organ. 1997;28(2):79–86.

    Google Scholar 

  114. Raynard RS, Snow M, Bruno DW. Experimental infection models and susceptibility of Atlantic salmon Salmo salar to a Scottish isolate of infectious salmon anaemia virus. Dis Aquat Organ. 2001;47(3):169–74.

    CAS  PubMed  Google Scholar 

  115. Håstein T, Hill BJ, Winton JR. Successful aquatic animal disease emergency programmes. Rev Sci Tech. 1999;18(1):214–27.

    PubMed  Google Scholar 

  116. Jones SRM, MacKinnon AM, Salonius K. Vaccination of freshwater-reared Atlantic salmon reduces mortality associated with infectious salmon anaemia virus. Bull Eur Assoc Fish Pathol. 1999;19(3):98–101.

    Google Scholar 

  117. Marczinke BI, Nichol ST. Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology. 2002;303(1):146–51.

    CAS  PubMed  Google Scholar 

  118. Peiris JSM. Nairobi sheep disease. In: Service MW, editor. The encyclopedia of arthropod-transmitted infections. New York, NY: CABI Publishing; 2001. p. 364–8.

    Google Scholar 

  119. Holzer B, Bakshi S, Bridgen A, Baron MD. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PLoS One. 2011;6(12):e28594.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Davies FG, Terpstra C. Nairobi sheep disease. In: Coetzer J, Tustin R, editors. Infectious diseases of livestock, vol. 2. 2nd ed. Oxford: Oxford University Press; 2004. p. 1071–6.

    Google Scholar 

  121. White WR. Nairobi sheep disease. Foreign animal diseases. 7th ed. St. Joseph, MO: United States Animal Health Association; 2008.

    Google Scholar 

  122. Yadav PD, Vincent MJ, Khristova M, Kale C, Nichol ST, Mishra AC, et al. Genomic analysis reveals Nairobi sheep disease virus to be highly diverse and present in both Africa, and in India in the form of the Ganjam virus variant. Infect Genet Evol. 2011;11(5):1111–20.

    CAS  PubMed  Google Scholar 

  123. Crabtree MB, Sang R, Miller BR. Kupe virus, a new virus in the family bunyaviridae, genus nairovirus, Kenya. Emerg Infect Dis. 2009;15(2):147–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Honig JE, Osborne JC, Nichol ST. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology. 2004;318(1):10–6.

    CAS  PubMed  Google Scholar 

  125. Sudeep AB, Jadi RS, Mishra AC. Ganjam virus. Indian J Med Res. 2009;130(5):514–9.

    CAS  PubMed  Google Scholar 

  126. Peeler EJ, Wanyangu SW. Infectious causes of small ruminant mortality in Kenya: a review. Small Ruminant Res. 1998;29:1–11.

    Google Scholar 

  127. Davies FG. Nairobi sheep disease. Parassitologia. 1997;39:95–8.

    CAS  PubMed  Google Scholar 

  128. Joshi MV, Geevarghese G, Joshi GD, Ghodke YS, Mourya DT, Mishra AC. Isolation of Ganjam virus from ticks collected off domestic animals around Pune, Maharashtra, India. J Med Entomol. 2005;42(2):204–6.

    CAS  PubMed  Google Scholar 

  129. Davies F. Nairobi sheep disease. In: Monath T, editor. The arboviruses: epidemiology and ecology, vol. 3. Boca Raton, FL: CRC Press; 1988. p. 191–203.

    Google Scholar 

  130. Kirya GB, Tukei P, Lule M, Mujomba E. Nairobi sheep disease in man. In: East African Virus Research Institute Report. Nairobi: East African Community; 1976. p. 284.

    Google Scholar 

  131. Rwambo PM, Shaw MK, Rurangirwa FR, DeMartini JC. Ultrastructural studies on the replication and morphogenesis of Nairobi sheep disease virus, a Nairovirus. Arch Virol. 1996;141:1479–92.

    CAS  PubMed  Google Scholar 

  132. Davies FG, Mwakima F. Qualitative studies of the transmission of Nairobi sheep disease virus by Rhipicephalus appendiculatus (Ixodoidea, ixodidae). J Comp Pathol. 1982;92(1):15–20.

    CAS  PubMed  Google Scholar 

  133. Bin Tarif A, Lasecka L, Holzer B, Baron MD. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep. Vet Res. 2012;43(1):71.

    PubMed Central  PubMed  Google Scholar 

  134. Davies FG, Mungai JN, Taylor M. The laboratory diagnosis of Nairobi sheep disease. Tropl Anim Health Prod. 1977;9(2):75–80.

    CAS  Google Scholar 

  135. King AM, Adams MJ, Lefkowitz EJ, Carstens EB. Virus taxonomy: IXth report of the International Committee on Taxonomy of viruses. Access Online via Elsevier; 2011

    Google Scholar 

  136. Kuhn JH. Filoviruses: a compendium of 40 years of epidemiological, clinical, and laboratory studies. New York, NY: Springer; 2008.

    Google Scholar 

  137. Miranda MEG, Miranda NLJ. Reston ebolavirus in humans and animals in the Philippines: a review. J Infect Dis. 2011;204 suppl 3:S757–60.

    PubMed  Google Scholar 

  138. Barrette RW, Metwally SA, Rowland JM, Xu L, Zaki SR, Nichol ST, et al. Discovery of Swine as a host for the reston ebolavirus. Science. 2009;325(5937):204–6.

    CAS  PubMed  Google Scholar 

  139. Marsh GA, Haining J, Robinson R, Foord A, Yamada M, Barr JA, et al. Ebola reston virus infection of pigs: clinical significance and transmission potential. J Infect Dis. 2011;204 suppl 3:S804–9.

    PubMed  Google Scholar 

  140. Dalgard DW, Hardy RJ, Pearson SL, Pucak GJ, Quander RV, Zack PM, et al. Combined simian hemorrhagic fever and Ebola virus infection in cynomolgus monkeys. Lab Anim Sci. 1992;42(2):152–7.

    CAS  PubMed  Google Scholar 

  141. Hoenen T, Groseth A, Falzarano D, Feldmann H. Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med. 2006;12(5):206–15.

    CAS  PubMed  Google Scholar 

  142. Sullivan N, Yang Z-Y, Nabel GJ. Ebola virus pathogenesis: implications for vaccines and therapies. J Virol. 2003;77(18):9733–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Jahrling PB, Geisbert TW, Johnson ED, Peters CJ, Dalgard DW, Hall WC. Preliminary report: isolation of Ebola virus from monkeys imported to USA. Lancet. 1990;335(8688):502–5.

    CAS  PubMed  Google Scholar 

  144. WHO. WHO experts consultation on Ebola Reston pathogenicity in humans. Geneva, Switzerland: World Health Organization; 2009.

    Google Scholar 

  145. Swanepoel R, Leman PA, Burt FJ, Zachariades NA, Braack L, Ksiazek TG, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis. 1996;2(4):321.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Control CfD, Prevention. Biosafety in Microbiological and Biomedical Laboratories (BMBL). St Louis, MO: US Government Printing Office; 2009.

    Google Scholar 

  147. Miller R, Baumgardner J, Armstrong C, Jenkins S, Woolard C, Miller G, et al. Update: filovirus infections among persons with occupational exposure to nonhuman primates. MMWR Morb Mortal Wkly Rep. 1990;39:266–73.

    Google Scholar 

  148. Daubney R, Hudson J. Rift Valley fever. J Comp Pathol Ther. 1933;46:205–9.

    Google Scholar 

  149. Bird BH, Ksiazek TG, Nichol ST, Maclachlan NJ. Rift Valley fever virus. J Am Vet Med Assoc. 2009;234(7):883–93.

    PubMed  Google Scholar 

  150. Ikegami T. Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Res. 2012;95(3):293–310.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus (bunyaviridae: phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res. 2010;41(6):61.

    PubMed Central  PubMed  Google Scholar 

  152. Bird BH, Githinji JW, Macharia JM, Kasiiti JL, Muriithi RM, Gacheru SG, et al. Multiple virus lineages sharing recent common ancestry were associated with a Large Rift Valley fever outbreak among livestock in Kenya during 2006-2007. J Virol. 2008;82(22):11152–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Bird BH, Khristova ML, Rollin PE, Ksiazek TG, Nichol ST. Complete genome analysis of 33 ecologically and biologically diverse Rift Valley fever virus strains reveals widespread virus movement and low genetic diversity due to recent common ancestry. J Virol. 2007;81(6):2805–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Moutailler S, Roche B, Thiberge JM, Caro V, Rougeon F, Failloux AB. Host alternation is necessary to maintain the genome stability of rift valley fever virus. PLoS Negl Trop Dis. 2011;5(5):e1156.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Morvan J, Rollin PE, Laventure S, Rakotoarivony I, Roux J. Rift Valley fever epizootic in the central highlands of Madagascar. Res Virol. 1992;143:407–15.

    CAS  PubMed  Google Scholar 

  156. Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science. 1999;285(5426):397–400.

    CAS  PubMed  Google Scholar 

  157. Evans A, Gakuya F, Paweska JT, Rostal M, Akoolo L, Van Vuren PJ, et al. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife. Epidemiol Infect. 2008;136(9):1261–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. House C, Alexander KA, Kat PW, O’Brien SJ, Mangiafico J. Serum antibody to Rift Valley fever virus in African carnivores. Ann N Y Acad Sci. 1996;791:345–9.

    CAS  PubMed  Google Scholar 

  159. Chevalier V, Lancelot R, Thiongane Y, Sall B, Diaite A, Mondet B. Rift Valley fever in small ruminants, Senegal, 2003. Emerg Infect Dis. 2005;11(11):1693–700.

    PubMed Central  PubMed  Google Scholar 

  160. Anyamba A, Linthicum KJ, Tucker CJ. Climate-disease connections: rift valley fever in Kenya. Cad Saude Publica. 2001;17(Suppl):133–40.

    PubMed  Google Scholar 

  161. Rich KM, Wanyoike F. An assessment of the regional and national socio-economic impacts of the 2007 Rift Valley fever outbreak in Kenya. Am J Trop Med Hyg. 2010;83(2 Suppl):52–7.

    PubMed Central  PubMed  Google Scholar 

  162. Hartley DM, Rinderknecht JL, Nipp TL, Clarke NP, Snowder GD, National Center for Foreign A, et al. Potential effects of Rift Valley fever in the United States. Emerg Infect Dis. 2011;17(8):e1.

    PubMed Central  PubMed  Google Scholar 

  163. Boiro I, Konstaninov O, Numerov A. Isolation of Rift Valley fever virus from bats in the Republic of Guinea. Bull Soc Pathol Exot. 1986;80(1):62–7.

    Google Scholar 

  164. McIntosh BM. Rift Valley fever. 1. Vector studies in the field. J S Afr Vet Med Assoc. 1972;43(4):391–5.

    CAS  PubMed  Google Scholar 

  165. Sang R, Kioko E, Lutomiah J, Warigia M, Ochieng C, O’Guinn M, et al. Rift Valley fever virus epidemic in Kenya, 2006/2007: the entomologic investigations. Am J Trop Med Hyg. 2010;83(2 Suppl):28–37.

    PubMed Central  PubMed  Google Scholar 

  166. Jupp PG, Kemp A, Grobbelaar A, Lema P, Burt FJ, Alahmed AM, et al. The 2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies. Med Vet Entomol. 2002;16(3):245–52.

    CAS  PubMed  Google Scholar 

  167. Anyamba A, Chretien JP, Formenty PB, Small J, Tucker CJ, Malone JL, et al. Rift Valley fever potential, Arabian Peninsula. Emerg Infect Dis. 2006;12(3):518–20.

    PubMed Central  PubMed  Google Scholar 

  168. Linthicum KJ, Davies FG, Kairo A, Bailey CL. Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. J Hyg. 1985;95(1):197–209.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Romoser WS, Oviedo MN, Lerdthusnee K, Patrican LA, Turell MJ, Dohm DJ, et al. Rift Valley fever virus-infected mosquito ova and associated pathology: possible implications for endemic maintenance. Res Rep Trop Med. 2011;2:121–7.

    Google Scholar 

  170. Arishi HM, Aqeel AY, Al Hazmi MM. Vertical transmission of fatal Rift Valley fever in a newborn. Ann Trop Paediatr. 2006;26(3):251–3.

    PubMed  Google Scholar 

  171. Sherman DM. The spread of pathogens through trade in small ruminants and their products. Rev Sci Tech. 2011;30(1):207–17.

    CAS  PubMed  Google Scholar 

  172. Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, Muchiri E, et al. An outbreak of Rift Valley fever in northeastern Kenya, 1997-98. Emerg Infect Dis. 2002;8(2):138–44.

    PubMed Central  PubMed  Google Scholar 

  173. do Valle TZ, Billecocq A, Guillemot L, Alberts R, Gommet C, Geffers R, et al. A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever. J Immunol. 2010;185(10):6146–56.

    PubMed  Google Scholar 

  174. Dodd KA, Bird BH, Metcalfe MG, Nichol ST, Albarino CG. Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge. J Virol. 2012;86(8):4204–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. McElroy AK, Nichol ST. Rift Valley fever virus inhibits a pro-inflammatory response in experimentally infected human monocyte derived macrophages and a pro-inflammatory cytokine response may be associated with patient survival during natural infection. Virology. 2012;422(1):6–12.

    CAS  PubMed  Google Scholar 

  176. Dodd KA, McElroy AK, Jones ME, Nichol ST, Spiropoulou CF. Rift Valley fever virus clearance and protection from neurologic disease are dependent on CD4+ T cell and virus-specific antibody responses. J Virol. 2013;87(11):6161–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Bird BH, Maartens LH, Campbell S, Erasmus BJ, Erickson BR, Dodd KA, et al. Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep. J Virol. 2011;85(24):12901–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Naslund J, Lagerqvist N, Habjan M, Lundkvist A, Evander M, Ahlm C, et al. Vaccination with virus-like particles protects mice from lethal infection of Rift Valley Fever Virus. Virology. 2009;385(2):409–15.

    PubMed  Google Scholar 

  179. Coetzer J. The pathology of Rift Valley fever. I. Lesions occurring in natural cases in new-born lambs. Onderstepoort J Vet Res. 1977;44(4):205.

    CAS  PubMed  Google Scholar 

  180. Coetzer J. The pathology of Rift Valley fever. II. Lesions occurring in field cases in adult cattle, calves and aborted foetuses. Onderstepoort J Vet Res. 1982;49(1):11.

    CAS  PubMed  Google Scholar 

  181. Swanepoel R, Coetzer JAW. Rift Valley fever. In: Coetzer JAW, Thomson GR, Tustin RC, Kriek NPJ, editors. Infectious diseases of livestock: with special reference to Southern Africa. 2nd ed. Cape Town: Oxford University Press; 2004. p. 1037–70.

    Google Scholar 

  182. Erasmus B, Coetzer J, editors. Symptomatology and pathology of Rift Valley fever in domestic animals. Proceedings Rift Valley fever; a workshop; 1981.

    Google Scholar 

  183. Peters CJ, Anderson Jr G. Pathogenesis of rift valley fever. Contrib Epidemiol Biostat. 1981;3(21):45–54.

    Google Scholar 

  184. Walker JS, Stephen EL, Remmele NS, Carter RC, Mitten JQ, Schuh LG, et al. The clinical aspects of Rift Valley fever virus in household pets. II. Susceptibility of the cat. J Infect Dis. 1970;121(1):19–24.

    CAS  PubMed  Google Scholar 

  185. Nfon CK, Marszal P, Zhang S, Weingartl HM. Innate immune response to Rift Valley fever virus in goats. PLoS Negl Trop Dis. 2012;6(4):e1623.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Mitten JQ, Remmele NS, Walker JS, Carter RC, Stephen EL, Klein F. The clinical aspects of Rift Valley fever virus in household pets. 3. Pathologic changes in the dog and cat. J Infect Dis. 1970;121(1):25–31.

    CAS  PubMed  Google Scholar 

  187. Swanepoel R, Paweska J. Rift valley fever. In: Oxford textbook of zoonoses: biology, clinical practice, and public health control. Oxford: Oxford University Press; 2011. p. 423.

    Google Scholar 

  188. Shawky S. Rift valley fever. Saudi Med J. 2000;21(12):1109–15.

    CAS  PubMed  Google Scholar 

  189. Easterday BC. Rift valley fever. Adv Vet Sci. 1965;10:65–127.

    CAS  PubMed  Google Scholar 

  190. OIE A. Manual of diagnostic tests and vaccines for terrestrial animals. Paris, France: Office International des Epizooties; 2008. p. 323–33.

    Google Scholar 

  191. Paweska JT, Burt FJ, Swanepoel R. Validation of IgG-sandwich and IgM-capture ELISA for the detection of antibody to Rift Valley fever virus in humans. J Virol Methods. 2005;124(1–2):173–81.

    CAS  PubMed  Google Scholar 

  192. Nierengarten MB, Lutwick LI. Vaccines for Rift Valley fever, Yellow fever, Omsk HF, and Kyasanur Forest Disease. Medscape Infectious Diseases. 2002;4(2).

    Google Scholar 

  193. Ikegami T, Won S, Peters CJ, Makino S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol. 2006;80(6):2933–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Lubroth J, Rweyemamu MM, Viljoen G, Diallo A, Dungu B, Amanfu W. Veterinary vaccines and their use in developing countries. Rev Sci Tech. 2007;26(1):179–201.

    CAS  PubMed  Google Scholar 

  195. Lagerqvist N, Moiane B, Bucht G, Fafetine J, Paweska JT, Lundkvist A, et al. Stability of a formalin-inactivated Rift Valley fever vaccine: evaluation of a vaccination campaign for cattle in Mozambique. Vaccine. 2012;30(46):6534–40.

    CAS  PubMed  Google Scholar 

  196. Media Centre WHO. Rift Valley fever. Geneva: WHO Media Centre; 2010.

    Google Scholar 

  197. Hassan OA, Ahlm C, Sang R, Evander M. The 2007 Rift Valley fever outbreak in Sudan. PLoS Negl Trop Dis. 2011;5(9):e1229.

    PubMed Central  PubMed  Google Scholar 

  198. Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res. 2002;33(4):330–42.

    PubMed  Google Scholar 

  199. Gerdes G. Rift valley fever. Rev Sci Tech. 2004;23(2):613–24.

    CAS  PubMed  Google Scholar 

  200. Smithburn K, Mahaffy A, Haddow A, Kitchen S, Smith J. Rift Valley fever accidental infections among laboratory workers. J Immunol. 1949;62(2):213–27.

    CAS  PubMed  Google Scholar 

  201. Mandell RB, Flick R. Rift Valley fever virus: an unrecognized emerging threat? Hum Vaccin. 2010;6(7):597–601.

    PubMed  Google Scholar 

  202. Fagbo SF. The evolving transmission pattern of Rift Valley fever in the Arabian Peninsula. Ann N Y Acad Sci. 2002;969:201–4.

    PubMed  Google Scholar 

  203. Abdo-Salem S, Tran A, Grosbois V, Gerbier G, Al-Qadasi M, Saeed K, et al. Can environmental and socioeconomic factors explain the recent emergence of Rift Valley fever in Yemen, 2000-2001? Vector Borne Zoonotic Dis. 2011;11(6):773–9.

    PubMed  Google Scholar 

  204. Schutze H, Mundt E, Mettenleiter T. Complete genomic sequence of viral hemorrhagic septicemia virus, a fish rhabdovirus. Virus Genes. 1999;19:59–65.

    CAS  PubMed  Google Scholar 

  205. Bearzotti M, Monnier A, Vende P, Grosclaude J, de Kinkelin P, Benmansour A. The glycoprotein of viral hemorrhagic septicemia virus (VHSV): antigenicity and role in virulence. Vet Res. 1995;26(506):413–22.

    CAS  PubMed  Google Scholar 

  206. Lorenzen N, Olesen N, Jorgensen P. Neutralization of Egtved virus pathogenicity to cell cultures and fish by monoclonal antibodies to the viral G protein. J Gen Virol. 1990;71:561–7.

    CAS  PubMed  Google Scholar 

  207. Lorenzen N, Lorenzen E, Einer-Jensen K, Heppell J, Davis H. Genetic vaccination of rainbow trout against viral haemorrhagic septicaemia virus: small amounts of plasmid DNA protect against a heterologous serotype. Virus Res. 1999;63:19–25.

    CAS  PubMed  Google Scholar 

  208. Schaperclaus W. The damage done to German fishery by fish parasites and fish diseases. Allg Fisch-Ztg. 1938;41:256–9. 67–70.

    Google Scholar 

  209. Jensen M. Preparation of fish tissue cultures for virus research. Bull Off Int Epizoot. 1963;59:131–4.

    Google Scholar 

  210. Jensen M. Research on the virus of Egtved disease. Ann N Y Acad Sci. 1965;126:422–6.

    CAS  PubMed  Google Scholar 

  211. Smail D. Viral haemorrhagic septicaemia. In: Woo P, Bruno DW, editors. Fish diseases and disorders: viral, bacterial, and fungal infections, vol. 3. Wallingford: CAB International; 1999. p. 123–46.

    Google Scholar 

  212. Meyers T, Winton J. Viral hemorrhagic septicemia virus in North America. Annu Rev Fish Dis. 1995;5:3–24.

    Google Scholar 

  213. Batts W, Arakawa C, Bernard J, Winton J. Isolates of viral hemorrhagic septicemia virus from North America and Europe can be detected and distinguished by DNA probe. Dis Aquat Organ. 1993;17:61–71.

    Google Scholar 

  214. Meyers T, Short S, Lipson K, Batts W, Winton J, Wilcock J, et al. Association of viral hemorrhagic septicemia virus with epizootic hemorrhages of the skin in Pacific herring Clupea harengus pallasi from Prince William Sound and Kodiak Island, Alaska, USA. Dis Aquat Organ. 1994;19:27–37.

    Google Scholar 

  215. Gagne N, Mackinnon AM, Boston L, Souter B, Cook-Versloot M, Griffiths S, et al. Isolation of viral haemorrhagic septicaemia virus from mummichog, stickleback, striped bass and brown trout in eastern Canada. J Fish Dis. 2007;30(4):213–23.

    CAS  PubMed  Google Scholar 

  216. Pierce L, Stepien C. Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish viral hemorrhagic septicemia virus (VHSv). Mol Phylogenet Evol. 2012;63:327–41.

    PubMed  Google Scholar 

  217. Thompson TM, Batts WN, Faisal M, Bowser P, Casey JW, Phillips K, et al. Emergence of Viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity. Dis Aquat Organ. 2011;96(1):29–43.

    CAS  PubMed  Google Scholar 

  218. Cornwell E, Eckerlin G, Getchell R, Groocock G, Thompson T, Batts W, et al. Detection of viral hemorrhagic septicemia virus by quantitative reverse transcription polymerase chain reaction from two fish species at two sites in Lake Superior. J Aquatic Anim Hlth. 2011;23(4):207–17.

    CAS  Google Scholar 

  219. Elsayed E, Faisal M, Thomas M, Whelan G, Batts W, Winton J. Isolation of viral haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), in Lake St Clair, Michigan, USA reveals a new sublineage of the North American genotype. J Fish Dis. 2006;29(10):611–9.

    CAS  PubMed  Google Scholar 

  220. Lumsden JS, Morrison B, Yason C, Russell S, Young K, Yazdanpanah A, et al. Mortality event in freshwater drum Aplodinotus grunniens from Lake Ontario, Canada, associated with viral haemorrhagic septicemia virus, type IV. Dis Aquat Organ. 2007;76(2):99–111.

    CAS  PubMed  Google Scholar 

  221. Einer-Jensen K, Winton J, Lorenzen N. Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms. Vet Microbiol. 2005;106(3–4):167–78.

    CAS  PubMed  Google Scholar 

  222. Snow M, Bain N, Black J, Taupin V, Cunningham CO, King JA, et al. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Dis Aquat Organ. 2004;61(1–2):11–21.

    CAS  PubMed  Google Scholar 

  223. Dopaz CP, Bandin I, Lopez-Vazquez C, Lamas J, Noya M, Barja JL. Isolation of viral hemorrhagic septicemia virus from Greenland halibut Reinhardtius hippoglossoides caught at the Flemish Cap. Dis Aquat Organ. 2002;50(3):171–9.

    CAS  PubMed  Google Scholar 

  224. Groocock G, Getchell R, Wooster G, Britt K, Batts W, Winton J, et al. Detection of viral hemorrhagic septicemia in round gobies in New York State (USA) waters of Lake Ontario and the St. Lawrence River. Dis Aquat Organ. 2007;76:187–92.

    CAS  PubMed  Google Scholar 

  225. Bain M, Cornwell E, Hope K, Eckerlin G, Casey R, Groocock G, et al. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping. PLoS One. 2010;5(4):e10156.

    PubMed Central  PubMed  Google Scholar 

  226. Einer-Jensen K, Ahrens P, Forsberg R, Lorenzen N. Evolution of the fish rhabdovirus viral haemorrhagic septicemia virus. J Gen Virol. 2004;85:1167–79.

    CAS  PubMed  Google Scholar 

  227. Thiery R, de Boisseson C, Jeffroy J, Castric J, de Kinkelin P, Benmansour A. Phylogenetic analysis of viral haemorrhagic septicaemia virus (VHSv) isolates from France (1971–1999). Dis Aquat Organ. 2002;52:29–37.

    CAS  PubMed  Google Scholar 

  228. Kahns S, Skall H, Kaas R, Korsholm H, Bang J, Jonstrup S, et al. European freshwater VHSV genotype Ia isolates divide into two distinct subpopulations. Dis Aquat Organ. 2012;99:23–35.

    CAS  PubMed  Google Scholar 

  229. Jensen N, Bloch B, Larsen J. The ulcus syndrome in cod (Gadus morhua). 111. A preliminary virological report. Nord Vet Med. 1979;31:436–42.

    CAS  PubMed  Google Scholar 

  230. Jorgensen P, Olesen N. Cod ulcus syndrome rhabdovirus is indistinguishable from the Egtved (VHS) virus. Bull Eur Ass Fish Pathol. 1987;7:73–4.

    Google Scholar 

  231. Nishizawa T, Savas H, Ishidan H, Üstündag C, Iwamoto H, Yoshimizu M. Genotyping and pathogenicity of viral hemorrhagic septicemia virus from free-living turbot (Psetta maxima) in a Turkish coastal area of the Black Sea. Appl Environ Microbiol. 2006;72:2373–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Studer J, Janies D. Global spread and evolution of viral haemorrhagic septicaemia virus. J Fish Dis. 2011;34:741–7.

    CAS  PubMed  Google Scholar 

  233. Ito T, Olesen N, Skall H, Sano M, Kurita J, Nakajima K, et al. Development of a monoclonal antibody against viral haemorrhagic septicaemia virus (VHSV) genotype IVa. Dis Aquat Organ. 2010;89:17–27.

    CAS  PubMed  Google Scholar 

  234. OIE. Viral haemorrhagic septicaemia. Manual of diagnostic tests for aquatic animals. Paris: World Organisation for Animal Health; 2012.

    Google Scholar 

  235. López-Vázquez C, Raynard R, Bain N, Snow M, Bandín I, Dopazo C. Genotyping of marine viral haemorrhagic septicaemia virus isolated from the Flemish Cap by nucleotide sequence analysis and restriction fragment length polymorphism patterns. Dis Aquat Organ. 2006;73:23–31.

    PubMed  Google Scholar 

  236. Dale O, Ørpetveit I, Lyngstad T, Kahns S, Skall H, Olesen N, et al. Outbreak of viral haemorrhagic septicaemia (VHS) in seawater-farmed rainbow trout in Norway caused by VHS virus Genotype III. Dis Aquat Organ. 2009;85:93–103.

    CAS  PubMed  Google Scholar 

  237. Brunson R, True K, Yancey J. VHS virus isolated at Makah National Fish Hatchery. Am Fish Soc Fish Health Sect Newsl. 1989;17:3.

    Google Scholar 

  238. Hopper K. The isolation of VHSV from Chinook salmon at Glenwood Springs, Orcas Island, Washington. Am Fish Soc Fish Health Sect Newsl. 1989;17:1.

    Google Scholar 

  239. Hedrick R, Batts W, Yun S, Traxler G, Kaufman J, Winton J. Host and geographic range extensions of the North American strain of viral hemorrhagic septicemia virus. Dis Aquat Organ. 2003;55:211–20.

    CAS  PubMed  Google Scholar 

  240. Meyers T, Short S, Lipson K. Isolation of the North American strain of viral hemorrhagic septicemia virus (VHSV) associated with epizootic mortality in two new host species of Alaskan marine fish. Dis Aquat Organ. 1999;38:81–6.

    CAS  PubMed  Google Scholar 

  241. Takano R, Mori K, Nishizawa T, Arimoto M, Muroga K. Isolation of viruses from wild Japanese flounder Paralichthys olivaceus. Fish Pathol. 2001;36:153–60.

    Google Scholar 

  242. Isshiki T, Nishizawa T, Kobayashi T, Nagano T, Miyazaki T. An outbreak of VHSV (viral hemorrhagic septicemia virus) infection in farmed Japanese flounder Paralichthys olivaceus in Japan. Dis Aquat Organ. 2001;47:87–99.

    Google Scholar 

  243. Kim S, Parks S. Detection of viral hemorrhagic septicemia virus (VHSV) in wild marine fishes in the coastal region of Korea. J Fish Path. 2004;17:1–10.

    CAS  Google Scholar 

  244. Lee W, Yun H, Kim S, Jung S, Oh M. Detection of viral hemorrhagic septicemia virus (VHSV) from marine fish in the South Western Coastal Area and East China Sea. J Fish Path. 2007;20:201–9.

    Google Scholar 

  245. Faisal M, Schulz C. Detection of viral hemorrhagic septicemia virus (VHSV) from the leech Myzobdella lugubris Leidy, 1851. Parasit Vectors. 2009;2:45–9.

    PubMed Central  PubMed  Google Scholar 

  246. Faisal M, Winters A. Detection of viral hemorrhagic septicemia virus (VHSV) from Diporeia spp. (Pontoporeiidae, Amphipoda) in the Laurentian Great Lakes, USA. Parasit Vectors. 2011;4:2.

    PubMed Central  PubMed  Google Scholar 

  247. Goodwin A, Merry G. Replication and persistence of VHSV IVb in freshwater turtles. Dis Aquat Organ. 2011;94:173–7.

    PubMed  Google Scholar 

  248. Kankainen M, Vennerström P, Setälä J. Economical impact and risk management effects of VHS (Viral haemorrhagic septicemia) on fish farming in Finland. Finland: Ministry of Agriculture and Forestry; 2010. http://www.rktl.fi/www/uploads/pdf/uudet%20julkaisut/Posterit/vhs_economical_impact_risk_management.pdf.

  249. Skall H, Olesen N, Mellergaard S. Viral hemorrhagic septicemia virus in marine fish and its implications for fish farming: a review. J Fish Dis. 2005;28:509–29.

    CAS  PubMed  Google Scholar 

  250. Marty G, Freiberg E, Meyers T, Wilcock J, Farver T, Hinton D. Viral hemorrhagic septicemia virus, Ichthyophonus hoferi, and other causes of morbidity in Pacific herring Clupea pallasi spawning in Prince William Sound, Alaska, USA. Dis Aquat Organ. 1998;32:15–40.

    CAS  PubMed  Google Scholar 

  251. Elston RA, Meyers TR. Effect of viral hemorrhagic septicemia virus on Pacific herring in Prince William Sound, Alaska, from 1989 to 2005. Dis Aquat Organ. 2009;83(3):223–46.

    PubMed  Google Scholar 

  252. Johnson C. Viral hemorrhagic septicemia in the Great Lakes. In: Agriculture USDo, editor. July 2006 Emerging disease notice. Fort Collins, CO: USDA: APHIS: VS: CEAH: CEI; 2006.

    Google Scholar 

  253. Pham P, Jung J, Lumsden J, Dixon B, Bols N. The potential of waste items in aquatic environments to act as fomites for viral haemorrhagic septicaemia virus. J Fish Dis. 2012;35:73–7.

    CAS  PubMed  Google Scholar 

  254. Hawley L, Garver K. Stability of viral hemorrhagic septicemia virus (VHSV) in freshwater and seawater at various temperatures. Dis Aquat Organ. 2008;82:171–8.

    PubMed  Google Scholar 

  255. Kocan R, Hershberger P, Elder N, Winton J. Epidemiology of viral hemorrhagic septicemia (VHS) among juvenile Pacific herring and Pacific sand lances in Puget Sound, Washington. J Aquat Anim Health. 2001;13:77–85.

    Google Scholar 

  256. Arkush K, Mendonca H, McBride A, Yun S, McDowell T, Hedrick R. Effects of temperature on infectivity and of commercial freezing on survival of the North American strain of viral hemorrhagic septicemia virus (VHSV). Dis Aquat Organ. 2006;69(2–3):145–51.

    PubMed  Google Scholar 

  257. Hershberger P, Gregg J, Pacheco C, Winton J, Richard J, Traxler G. Larval Pacific herring, Clupea pallasii (Valenciennes), are highly susceptible to viral haemorrhagic septicaemia and survivors are partially protected after their metamorphosis to juveniles. J Fish Dis. 2007;30(8):445–58.

    CAS  PubMed  Google Scholar 

  258. Vestergard-Jorgensen P. The survival of viral hemorrhagic septicemia (VHS) virus associated with trout eggs. Riv Ital Piscicolt Ittiopatol. 1970;5:13–4.

    Google Scholar 

  259. Schonherz A, Hansen M, Jorgensen H, Berg P, Lorenzen N, Einer-Jensen K. Oral transmission as a route of infection for viral haemorrhagic septicaemia virus in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis. 2012;35:395–406.

    CAS  PubMed  Google Scholar 

  260. Lovy J, Lewis N, Hershberger P, Bennett W, Meyers T, Garver K. Viral tropism and pathology associated with viral hemorrhagic septicemia in larval and juvenile Pacific herring. Vet Microbiol. 2012;161:66–76.

    CAS  PubMed  Google Scholar 

  261. Peters F, Neukirch M. Transmission of some fish pathogenic viruses by the heron, Ardea cinerea. J Fish Dis. 1986;9:539–44.

    Google Scholar 

  262. Kim R, Faisal M. Comparative susceptibility of representative Great Lakes fish species to the North American viral hemorrhagic septicemia virus sublineage IVb. Dis Aquat Organ. 2010;91:23–34.

    PubMed  Google Scholar 

  263. Kim R, Faisal M. The Laurentian Great Lakes strain (M103) of the viral haemorrhagic septicemia virus is highly pathogenic for juvenile muskellunge, Esox masquinongy (Mitchill). J Fish Dis. 2010;33:513–27.

    CAS  PubMed  Google Scholar 

  264. Ross K, McCarthy U, Huntly P, Wood B, Stuart D, Rough E, et al. An outbreak of viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus) in Scotland. Bull Eur Ass Fish Pathol. 1994;14:213–4.

    Google Scholar 

  265. de Kinkelin P, Chilmonczyk S, Dorson M, Le Berre M, Baudaouy AM. Some pathogenic facets of rhabdoviral infection of salmonid fish. In: Bachmann PA, editor. Proceedings of the 4th Munich Symposium on Microbiology: mechanisms of viral pathogenesis and virulence. Munich, Germany: WHO; 1979. p. 357–75.

    Google Scholar 

  266. Olesen N, Lorenzen N, Jorgensen P. Serological differences among isolates of viral haemorrhagic septicemia virus detected by neutralizing monoclonal and polyclonal antibodies. Dis Aquat Organ. 1993;16:163–70.

    Google Scholar 

  267. Kocan R, Bradley M, Elder N, Meyers T, Batts W, Winton J. Larval Pacific herring, Clupea pallasii (Valenciennes), are highly susceptible to viral haemorrhagic septicaemia and survivors are partially protected after their metamorphosis to juveniles. J Fish Dis. 1997;30(8):445–58.

    Google Scholar 

  268. Hershberger P, Gregg J, Grady C, Collins R, Winton J. Susceptibility of three stocks of Pacific herring to viral hemorrhagic septicemia. J Aquatic Anim Hlth. 2010;22:1–7.

    CAS  Google Scholar 

  269. Hart L, Lorenzen N, LaPatra S, Grady C, Roon S, O’Reilly J, et al. Efficacy of a glycoprotein DNA vaccine against viral haemorrhagic septicaemia (VHS) in Pacific herring, Clupea pallasi Valenciennes. J Fish Dis. 2012;35:775–9.

    CAS  PubMed  Google Scholar 

  270. Hershberger P, Gregg J, Grady C, LaPatra S, Winton J. Passive immunization of Pacific herring against viral hemorrhagic septicemia. J Aquat Anim Health. 2011;23:140–7.

    CAS  PubMed  Google Scholar 

  271. Millard E, Faisal M. Development of neutralizing antibody responses in muskellunge, Esox masquinongy (Mitchill), experimentally exposed to viral haemorrhagic septicaemia virus (genotype IVb). J Fish Dis. 2012;35:11–8.

    CAS  PubMed  Google Scholar 

  272. Rehulka J. Haematological analyses in rainbow trout Oncorhynchus mykiss affected by viral haemorrhagic septicemia (VHS). Dis Aquat Organ. 2003;56:185–93.

    CAS  PubMed  Google Scholar 

  273. Snow M, King J, Garden A, Raynard R. Experimental susceptibility of Atlantic cod, Gadus morhua (L.), and Atlantic halibut, Hippoglossus hippoglossus (L.), to different genotypes of viral haemorrhagic septicaemia virus. J Fish Dis. 2005;28:737–42.

    CAS  PubMed  Google Scholar 

  274. Snow M, Cunningham CO, Bricknell IR. Susceptibility of juvenile Atlantic cod Gadus morhua to viral haemorrhagic septicaemia virus isolated from wild-caught Atlantic cod. Dis Aquat Organ. 2000;41(3):225–9.

    CAS  PubMed  Google Scholar 

  275. Lorenzen N, Olesen N, Vestergard JP. Production and characterization of monoclonal antibodies to four Egtved virus structural proteins. Dis Aquat Organ. 1988;4:35–42.

    CAS  Google Scholar 

  276. World Organisation of Animal Health. Infectious hematopoietic necrosis virus. In: Aquatic Animal Health Standards Commission, editor. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 7th Edition ed. Paris, FR. http://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/2.3.04_IHN.pdf. Accessed April 7, 2014. World Organisation of Animal Health; 2013.

  277. Hope K, Casey R, Groocock G, Getchell R, Bowser P, Casey J. Comparison of quantitative RT-PCR with cell culture to detect viral hemorrhagic septicemia virus (VHSV) IVb infections in the Great Lakes. J Aquat Anim Health. 2010;22:50–61.

    PubMed  Google Scholar 

  278. Traxler G, Kieser D, Richard J. Mass mortality of pilchard and herring associated with viral hemorrhagic septicemia virus in British Columbia, Canada. Am Fish Soc Fish Health Sect Newsl. 1999;27:3–4.

    Google Scholar 

  279. Hershberger PK, Kocan RM, Elder NE, Meyers TR, Winton JR. Epizootiology of viral hemorrhagic septicemia virus in Pacific herring from the spawn-on-kelp fishery in Prince William Sound, Alaska, USA. Dis Aquat Organ. 1999;37(1):23–31.

    CAS  PubMed  Google Scholar 

  280. Hershberger P, Gregg J, Grady C, Collins R, Winton J. Kinetics of viral shedding provide insights into the epidemiology of viral hemorrhagic septicemia in Pacific herring. Mar Ecol Prog Ser. 2010;400:187–93.

    Google Scholar 

  281. Hershberger P, Gregg J, Grady C, Hart L, Roon S, Winton J. Factors controlling the early stages of viral haemorrhagic septicaemia epizootics: low exposure levels, virus amplification and fish-to-fish transmission. J Fish Dis. 2011;34:893–9.

    CAS  PubMed  Google Scholar 

  282. Lorenzen E, Einer-Jensen K, Martinussen T, LaPatra S, Lorenzen N. DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus: a dose-response and time-course study. J Aquat Anim Health. 2000;12:167–80.

    Google Scholar 

  283. Einer-Jensen K, Delgado L, Lorenzen E, Bovo G, Evensen O, Lapatra S, et al. Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection. Vaccine. 2009;27(8):1248–53.

    CAS  PubMed  Google Scholar 

  284. Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra S. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev Comp Immunol. 2002;26:173–9.

    CAS  PubMed  Google Scholar 

  285. McLauchlan P, Collet B, Ingerslev E, Secombes C, Lorenzen N, Ellis A. DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection–early protection correlates with Mx expression. Fish Shellfish Immunol. 2003;15:39–50.

    CAS  PubMed  Google Scholar 

  286. Lorenzen N, Lorenzen E, Einer-Jensen K. Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life-stage. Fish Shellfish Immunol. 2001;11:585–91.

    CAS  PubMed  Google Scholar 

  287. Cornwell E, Groocock G, Getchell R, Bowser P. Residual tannic acid destroys virucidal properties of iodophor. N Am J Aquacult. 2011;73:8–12.

    Google Scholar 

  288. Ord W, Le Berre M, de Kinkelin P. Viral hemorrhagic septicemia: comparative susceptibility of rainbow trout (Salmo gairdneri) and hybrids (S. gairdneri X Oncorhynchus kisutch) to experimental infection. J Fish Res Board Can. 1976;33:1205–8.

    Google Scholar 

  289. Dorson M, Chevassus B, Torhy C. Comparative susceptibility of three species of char and of rainbow trout X char triploid hybrids to several pathogenic salmonid viruses. Dis Aquat Organ. 1991;11:217–24.

    Google Scholar 

  290. Zambon MC. Epidemiology and pathogenesis of influenza. J Antimicrob Chemother. 1999;44(Suppl B):3–9.

    CAS  PubMed  Google Scholar 

  291. Association CoFaEDotUSAH. Foreign animal diseases. 7th ed. Boca Raton, FL: Boca Publications Group, Inc.; 2008.

    Google Scholar 

  292. Nandi S, Negi BS. Bovine ephemeral fever: a review. Comp Immunol Microbiol Infect Dis. 1999;22(2):81–91.

    CAS  PubMed  Google Scholar 

  293. Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, et al. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses. 2014;6(6):2287–327.

    PubMed Central  PubMed  Google Scholar 

  294. Ahne W, Bjorklund HV, Essbauer S, Fijan N, Kurath G, Winton JR. Spring viremia of carp (SVC). Dis Aquat Organ. 2002;52(3):261–72.

    CAS  PubMed  Google Scholar 

  295. Polinski MP, Fehringer TR, Johnson KA, Snekvik KR, Lapatra SE, Lafrentz BR, et al. Characterization of susceptibility and carrier status of burbot, Lota lota (L.), to IHNV, IPNV, Flavobacterium psychrophilum, Aeromonas salmonicida and Renibacterium salmoninarum. J Fish Dis. 2010;33(7):559–70.

    CAS  PubMed  Google Scholar 

  296. Dorson M, de Kinkelin P, Torhy C, Monge D. Susceptibility of pike (Esox-lucius) to different salmonid viruses (IPN, VHS, IHN) and to the perch rhabdovirus. Bull Fr Peche Piscic. 1987;307:91–101.

    Google Scholar 

  297. Kent M, Traxler G, Kieser D, Richard J, Dawe S, Shaw R, et al. Survey of salmonid pathogens in ocean-caught fishes in British Columbia, Canada. J Aquatic Anim Hlth. 1998;10(2):211–9.

    Google Scholar 

  298. Nichol, S., Rowe, J., and Winton, J. Molecular epizootiology and evolution of the glycoprotein and non-virion protein genes of infectious hematopoietic necrosis virus, a fish rhabdovirus. Virus Res 1995;38:159–73.

    Google Scholar 

  299. Jia P, Zhu X, Zheng W, Zheng XC, Shi XJ, Lan WS, Kan SF, Hua QY, Liu H, Chen XX. Isolation and genetic typing of infectious hematopoietic necrosis virus from cultured brook trout (Salvelinus fontinalis) in China. Bull Eur Assoc Fish Pathol. 2013;33:150–157.

    Google Scholar 

Download references

Acknowledgments

The authors have no conflict of interests. We thank Laura Bollinger (IRF-Frederick) and Jennifer Muller (NCAH) for technical writing services. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, the US Department of Agriculture and/or of the institutions and companies affiliated with the authors. JHK performed this work as an employee of Tunnell Government Services, Inc., a subcontractor to Battelle Memorial Institute under its prime contract with NIAID, under Contract No. HHSN272200700016I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David White D.V.M., Ph.D., D.A.C.V.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Falk, K. et al. (2015). Viral Hemorrhagic Fevers of Animals Caused by Negative-Strand RNA Viruses. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_11

Download citation

Publish with us

Policies and ethics