Skip to main content

Family Bunyaviridae

  • Chapter

Abstract

The family Bunyaviridae is one of the largest and most diverse of all viral families. It is comprised of viruses with negative-sense RNA genomes that produce enveloped spherical virions measuring 80–120 nm in diameter. All bunyavirus genomes consist of three segments (S, M, L), but they differ in their coding strategies to generate structural and nonstructural proteins. Virus replication occurs in the cytoplasm of infected cells, and virus particles mature inside the cell by budding primarily at the membranes of the Golgi apparatus. The family has over 400 member viruses that are classified predominantly into five genera: Hantavirus, Nairovirus, Orthobunyavirus, Phlebovirus, and Tospovirus. Bunyaviruses are distributed worldwide and infect vertebrate and invertebrate animals and plants. Viruses are transmitted by infected vectors, including mosquitoes, ticks, sandflies, thrips, rodents, eulipotyphla, and bats. Infections in humans lead to a variety of illnesses ranging from mild febrile syndromes to severe respiratory illnesses or fatal hemorrhagic fevers and encephalitides. Some bunyaviruses cause disease in domestic animals and plants that result in significant economic losses. In many areas of the world, new disease syndromes caused by bunyaviruses are being characterized. In addition, with the use of new technologies for virus discovery, new bunyaviruses are continuing to be identified in new arthropod vectors and reservoir hosts, and it is likely this trend will continue into the future.

Keywords

  • Bunyaviridae
  • bunyavirus
  • hantavirus
  • nairovirus
  • orthobunyavirus
  • phlebovirus
  • tospovirus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee HW. Hemorrhagic fever with renal syndrome (HFRS). Scand J Infect Dis Suppl. 1982;36:82–5.

    CAS  PubMed  Google Scholar 

  2. Lee HW. Korean hemorrhagic fever. Prog Med Virol. 1982;28:96–113.

    CAS  PubMed  Google Scholar 

  3. Verani P, Nicoletti L. Phlebovirus infections. In: Porterfield JS, editor. Exotic viral infections. London, UK: Chapman & Hall; 1995. p. 295–318.

    Google Scholar 

  4. Pick A. Zur Pathologie und Therapie einer eigenthümlichen endemischen Krankheitsform. Wiener Klin Wochenschr. 1886;36(1141–1145):1168–71.

    Google Scholar 

  5. Smithburn KC, Haddow AJ, Mahaffy AF. A neurotropic virus isolated from Aedes mosquitoes caught in the Semliki forest. Am J Trop Med Hyg. 1946;26:189–208.

    CAS  PubMed  Google Scholar 

  6. Casals J, Whitman L. Group C, a new serological group of hitherto undescribed arthropod-borne viruses. Immunological studies. Am J Trop Med Hyg. 1961;10:250–8.

    CAS  PubMed  Google Scholar 

  7. Fenner F. Classification and nomenclature of viruses—second report of the International Committee on Taxonomy of Viruses. Intervirology. 1976;7:1–115.

    CAS  PubMed  Google Scholar 

  8. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, et al. Bunyaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Ninth report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier Academic; 2012. p. 725–41.

    Google Scholar 

  9. Elliott RM, Schmaljohn CS. Bunyaviridae. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia, PA: Lippincott Williams & Wilkins; 2013. p. 1244–82.

    Google Scholar 

  10. Martin ML, Lindsey-Regnery H, Sasso DR, McCormick JB, Palmer E. Distinction between Bunyaviridae genera by surface structure and comparison with Hantaan virus using negative stain electron microscopy. Arch Virol. 1985;86:17–28.

    CAS  PubMed  Google Scholar 

  11. Obijeski JF, Murphy FA. Bunyaviridae: recent biochemical developments. J Gen Virol. 1977;37:1–14.

    CAS  PubMed  Google Scholar 

  12. Resende Rde O, de Haan P, de Avila AC, Kitajima EW, Kormelink R, et al. Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J Gen Virol. 1991;72(Pt 10):2375–83.

    PubMed  Google Scholar 

  13. Hewlett MJ, Pettersson RF, Baltimore D. Circular forms of Uukuniemi virion RNA: an electron microscopic study. J Virol. 1977;21:1085–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Vera-Otarola J, Solis L, Soto-Rifo R, Ricci EP, Pino K, et al. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism. J Virol. 2012;86:2176–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Jaaskelainen KM, Kaukinen P, Minskaya ES, Plyusnina A, Vapalahti O, et al. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol. 2007;79:1527–36.

    CAS  PubMed  Google Scholar 

  16. Elliott RM. Molecular biology of the Bunyaviridae. J Gen Virol. 1990;71(Pt 3):501–22.

    CAS  PubMed  Google Scholar 

  17. Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST. Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by Furin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. J Virol. 2006;80:514–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Altamura LA, Bertolotti-Ciarlet A, Teigler J, Paragas J, Schmaljohn CS, et al. Identification of a novel C-terminal cleavage of Crimean-Congo hemorrhagic fever virus PreGN that leads to generation of an NSM protein. J Virol. 2007;81:6632–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Novoa RR, Calderita G, Cabezas P, Elliott RM, Risco C. Key Golgi factors for structural and functional maturation of bunyamwera virus. J Virol. 2005;79:10852–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Taylor SL, Altamura LA, Schmaljohn CS. Bunyaviridae. Encyclopedia of life sciences. Chichester, UK: Wiley; 2009.

    Google Scholar 

  21. Elliott RM, Blakqori G. Molecular biology of orthobunyaviruses. In: Plyusnin A, Elliott RM, editors. Bunyaviridae: molecular and cellular biology. Norfolk, UK: Caister Academic; 2011. p. 1–39.

    Google Scholar 

  22. Pantuwatana S, Thompson WH, Watts DM, Yuill TM, Hanson RP. Isolation of La Crosse virus from field collected Aedes triseriatus larvae. Am J Trop Med Hyg. 1974;23:246–50.

    CAS  PubMed  Google Scholar 

  23. Watts DM, Pantuwatana S, DeFoliart GR, Yuill TM, Thompson WH. Transovarial transmission of LaCrosse virus (California encephalitis group) in the mosquito, Aedes triseriatus. Science. 1973;182:1140–1.

    CAS  PubMed  Google Scholar 

  24. Yuill TM. The role of mammals in the maintenance and dissemination of La Crosse virus. In: Calisher CH, Thompson WH, editors. California serogroup viruses. New York, NY: Alan R. Liss; 1983. p. 77–88.

    Google Scholar 

  25. Anderson CR, Spence L, Downs WG, Aitken TH. Oropouche virus: a new human disease agent from Trinidad, West Indies. Am J Trop Med Hyg. 1961;10:574–8.

    CAS  PubMed  Google Scholar 

  26. Azevedo RS, Nunes MR, Chiang JO, Bensabath G, Vasconcelos HB, et al. Reemergence of Oropouche fever, northern Brazil. Emerg Infect Dis. 2007;13:912–5.

    PubMed  Google Scholar 

  27. Bernardes-Terzian AC, de-Moraes-Bronzoni RV, Drumond BP, DaSilva-Nunes M, da-Silva NS, et al. Sporadic oropouche virus infection, acre, Brazil. Emerg Infect Dis. 2009;15:348–50.

    PubMed  Google Scholar 

  28. Pinheiro FP, Hoch AL, Gomes ML, Roberts DR. Oropouche virus. IV. Laboratory transmission by Culicoides paraensis. Am J Trop Med Hyg. 1981;30:172–6.

    CAS  PubMed  Google Scholar 

  29. Pinheiro FP, Travassos da Rosa AP, Gomes ML, LeDuc JW, Hoch AL. Transmission of Oropouche virus from man to hamster by the midge Culicoides paraensis. Science. 1982;215:1251–3.

    CAS  PubMed  Google Scholar 

  30. Hoffmann B, Scheuch M, Hoper D, Jungblut R, Holsteg M, et al. Novel orthobunyavirus in cattle, Europe, 2011. Emerg Infect Dis. 2012;18:469–72.

    PubMed Central  PubMed  Google Scholar 

  31. Beer M, Conraths FJ, van der Poel WH. ‘Schmallenberg virus’—a novel orthobunyavirus emerging in Europe. Epidemiol Infect. 2013;141:1–8.

    CAS  PubMed  Google Scholar 

  32. Garigliany MM, Bayrou C, Kleijnen D, Cassart D, Jolly S, et al. Schmallenberg virus: a new Shamonda/Sathuperi-like virus on the rise in Europe. Antiviral Res. 2012;95:82–7.

    CAS  PubMed  Google Scholar 

  33. De Regge N, Deblauwe I, De Deken R, Vantieghem P, Madder M, et al. Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR. Transbound Emerg Dis. 2012;59:471–5.

    PubMed  Google Scholar 

  34. Elbers AR, Meiswinkel R, van Weezep E, Sloet van Oldruitenborgh-Oosterbaan MM, Kooi EA. Schmallenberg virus in Culicoides spp. biting midges, the Netherlands, 2011. Emerg Infect Dis. 2013;19:106–9.

    PubMed Central  PubMed  Google Scholar 

  35. Larska M, Polak MP, Grochowska M, Lechowski L, Zwiazek JS, et al. First report of Schmallenberg virus infection in cattle and midges in Poland. Transbound Emerg Dis. 2013;60:97–101.

    CAS  PubMed  Google Scholar 

  36. Rasmussen LD, Kristensen B, Kirkeby C, Rasmussen TB, Belsham GJ, et al. Culicoids as vectors of Schmallenberg virus. Emerg Infect Dis. 2012;18:1204–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Veronesi E, Henstock M, Gubbins S, Batten C, Manley R, et al. Implicating Culicoides biting midges as vectors of Schmallenberg virus using semi-quantitative RT-PCR. PLoS One. 2013;8:e57747.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yanase T, Kato T, Aizawa M, Shuto Y, Shirafuji H, et al. Genetic reassortment between Sathuperi and Shamonda viruses of the genus Orthobunyavirus in nature: implications for their genetic relationship to Schmallenberg virus. Arch Virol. 2012;157:1611–6.

    CAS  PubMed  Google Scholar 

  39. Frias-Staheli N, Medina RA, Bridgen A. Nairovirus molecular biology and interaction with host cells. In: Plyusnin A, Elliott RM, editors. Bunyaviridae: molecular and cellular biology. Norfolk, UK: Caister Academic; 2011. p. 129–61.

    Google Scholar 

  40. Whitehouse CA. Crimean-Congo hemorrhagic fever virus and other nairoviruses. In: Mahy BW, van Regenmortel MHV, editors. Encyclopedia of virology. 3rd ed. Amsterdam, Netherlands: Academic; 2008. p. 596–603.

    Google Scholar 

  41. Marczinke BI, Nichol ST. Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology. 2002;303:146–51.

    CAS  PubMed  Google Scholar 

  42. Whitehouse CA. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64:145–60.

    CAS  PubMed  Google Scholar 

  43. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, et al. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–89.

    CAS  PubMed  Google Scholar 

  44. Dacheux L, Cervantes-Gonzalez M, Guigon G, Thiberge JM, Vandenbogaert M, et al. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. PLoS One. 2014;9:e87194.

    PubMed Central  PubMed  Google Scholar 

  45. Sironen T, Plyusnin A. Genetics and evolution of hantaviruses. In: Plyusnin A, Elliott RM, editors. Bunyaviridae: molecular and cellular biology. Norfolk, UK: Caister Academic; 2011. p. 61–94.

    Google Scholar 

  46. Plyusnin A, Morzunov SP. Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol. 2001;256:47–75.

    CAS  PubMed  Google Scholar 

  47. Guo WP, Lin XD, Wang W, Tian JH, Cong ML, et al. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog. 2013;9:e1003159.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Lee HW, Lee PW, Johnson KM. Isolation of the etiologic agent of Korean Hemorrhagic fever. J Infect Dis. 1978;137:298–308.

    CAS  PubMed  Google Scholar 

  49. Brummer-Korvenkontio M, Vaheri A, Hovi T, von Bonsdorff CH, Vuorimies J, et al. Nephropathia epidemica: detection of antigen in bank voles and serologic diagnosis of human infection. J Infect Dis. 1980;141:131–4.

    CAS  PubMed  Google Scholar 

  50. Elwell MR, Ward GS, Tingpalapong M, LeDuc JW. Serologic evidence of Hantaan-like virus in rodents and man in Thailand. Southeast Asian J Trop Med Public Health. 1985;16:349–54.

    CAS  PubMed  Google Scholar 

  51. Avsic-Zupanc T, Xiao SY, Stojanovic R, Gligic A, van der Groen G, et al. Characterization of Dobrava virus: a Hantavirus from Slovenia, Yugoslavia. J Med Virol. 1992;38:132–7.

    CAS  PubMed  Google Scholar 

  52. Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek TG, et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science. 1993;262:914–7.

    CAS  PubMed  Google Scholar 

  53. Childs JE, Ksiazek TG, Spiropoulou CF, Krebs JW, Morzunov S, et al. Serologic and genetic identification of Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the southwestern United States. J Infect Dis. 1994;169:1271–80.

    CAS  PubMed  Google Scholar 

  54. Hjelle B, Torres-Perez F. Hantaviruses in the Americas and their role as emerging pathogens. Viruses. 2010;2:2559–86.

    PubMed Central  PubMed  Google Scholar 

  55. Carey DE, Reuben R, Panicker KN, Shope RE, Myers RM. Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India. Indian J Med Res. 1971;59:1758–60.

    CAS  PubMed  Google Scholar 

  56. Zeller HG, Karabatsos N, Calisher CH, Digoutte JP, Cropp CB, et al. Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the family Bunyaviridae. Arch Virol. 1989;108:211–27.

    CAS  PubMed  Google Scholar 

  57. Yanagihara R, Gu SH, Arai S, Kang HJ, Song JW. Hantaviruses: rediscovery and new beginnings. Virus Res. 2014;187:6–14.

    CAS  PubMed  Google Scholar 

  58. Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, et al. Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Cote d’Ivoire. Virol J. 2012;9:34.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Weiss S, Witkowski PT, Auste B, Nowak K, Weber N, et al. Hantavirus in bat, Sierra Leone. Emerg Infect Dis. 2012;18:159–61.

    PubMed Central  PubMed  Google Scholar 

  60. Arai S, Nguyen ST, Boldgiv B, Fukui D, Araki K, et al. Novel bat-borne hantavirus, Vietnam. Emerg Infect Dis. 2013;19:1159–61.

    PubMed Central  PubMed  Google Scholar 

  61. Tesh RB. Phlebotomus fevers. In: Monath TP, editor. The arboviruses: epidemiology and ecology. Boca Raton, FL: CRC Press; 1988. p. 15–27.

    Google Scholar 

  62. Tesh RB, Lubroth J, Guzman H. Simulation of arbovirus overwintering: survival of Toscana virus (Bunyaviridae: Phlebovirus) in its natural sand fly vector Phlebotomus perniciosus. Am J Trop Med Hyg. 1992;47:574–81.

    CAS  PubMed  Google Scholar 

  63. Tesh RB, Modi GB. Maintenance of Toscana virus in Phlebotomus perniciosus by vertical transmission. Am J Trop Med Hyg. 1987;36:189–93.

    CAS  PubMed  Google Scholar 

  64. Alkan C, Bichaud L, de Lamballerie X, Alten B, Gould EA, et al. Sandfly-borne phleboviruses of Eurasia and Africa: epidemiology, genetic diversity, geographic range, control measures. Antiviral Res. 2013;100:54–74.

    CAS  PubMed  Google Scholar 

  65. Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro Surveill. 2010;15:19507.

    CAS  PubMed  Google Scholar 

  66. Major L, Linn ML, Slade RW, Schroder WA, Hyatt AD, et al. Ticks associated with macquarie island penguins carry arboviruses from four genera. PLoS One. 2009;4:e4375.

    PubMed Central  PubMed  Google Scholar 

  67. Elliott RM. Bunyaviruses and climate change. Clin Microbiol Infect. 2009;15:510–7.

    CAS  PubMed  Google Scholar 

  68. Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17:279–89.

    CAS  PubMed  Google Scholar 

  69. Tesh R. Sandfly fever, Oropouche fever, and other bunyavirus infections. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens, and practice. Philadelphia, PA: Elsevier Churchill Livingstone; 2006. p. 781–3.

    Google Scholar 

  70. Travassos da Rosa JF, Travassos da Rosa AP, Vasconcelos PF, Pinheiro FP, Rodrigues SG, et al. Arboviruses isolated in Evandro Chagas Institute, including some described for the first time in the Brazilian Amazon Region, their known host, and their pathology for man. In: Travassos da Rosa AP, Vasconcelos PF, Travassos da Rosa JF, editors. An overview of arbovirology in Brazil and neighboring countries. Belem, Brazil: Grafica e Editora Santo Antonia; 1998. p. 19–31.

    Google Scholar 

  71. Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–47.

    CAS  PubMed  Google Scholar 

  72. Verani P, Nicoletti L, Ciufolini MG. Antigenic and biological characterization of Toscana virus, a new Phlebotomus fever group virus isolated in Italy. Acta Virol. 1984;28:39–47.

    CAS  PubMed  Google Scholar 

  73. Daubney R, Hudson JR, Garnham PC. Enzootic hepatitis or Rift Valley fever—an undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol. 1931;XXXIV:545–79.

    Google Scholar 

  74. Balkhy HH, Memish ZA. Rift Valley fever: an uninvited zoonosis in the Arabian peninsula. Int J Antimicrob Agents. 2003;21:153–7.

    CAS  PubMed  Google Scholar 

  75. Sissoko D, Giry C, Gabrie P, Tarantola A, Pettinelli F, et al. Rift Valley fever, Mayotte, 2007–2008. Emerg Infect Dis. 2009;15:568–70.

    PubMed Central  PubMed  Google Scholar 

  76. Ikegami T. Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Res. 2012;95:293–310.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res. 2010;41:61.

    PubMed Central  PubMed  Google Scholar 

  78. Olive MM, Goodman SM, Reynes JM. The role of wild mammals in the maintenance of Rift Valley fever virus. J Wildl Dis. 2012;48:241–66.

    PubMed  Google Scholar 

  79. Oelofsen MJ, Van der Ryst E. Could bats act as reservoir hosts for Rift Valley fever virus? Onderstepoort J Vet Res. 1999;66:51–4.

    CAS  PubMed  Google Scholar 

  80. Davies FG, Highton RB. Possible vectors of Rift Valley fever in Kenya. Trans R Soc Trop Med Hyg. 1980;74:815–6.

    CAS  PubMed  Google Scholar 

  81. Fontenille D, Traore-Lamizana M, Diallo M, Thonnon J, Digoutte JP, et al. New vectors of Rift Valley fever in West Africa. Emerg Infect Dis. 1998;4:289–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Turell MJ, Presley SM, Gad AM, Cope SE, Dohm DJ, et al. Vector competence of Egyptian mosquitoes for Rift Valley fever virus. Am J Trop Med Hyg. 1996;54:136–9.

    CAS  PubMed  Google Scholar 

  83. Chambers PG, Swanepoel R. Rift valley fever in abattoir workers. Cent Afr J Med. 1980;26:122–6.

    CAS  PubMed  Google Scholar 

  84. Ahmed J, Bouloy M, Ergonul O, Fooks A, Paweska J, et al. International network for capacity building for the control of emerging viral vector-borne zoonotic diseases: ARBO-ZOONET. Euro Surveill 2009;14: pii: 19160.

    Google Scholar 

  85. Saikku P, Brummer-Korvenkontio M. Arboviruses in Finland. II. Isolation and characterization of Uukuniemi virus, a virus associated with ticks and birds. Am J Trop Med Hyg. 1973;22:390–9.

    CAS  PubMed  Google Scholar 

  86. Hubalek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. 2012;111:9–36.

    PubMed  Google Scholar 

  87. Palacios G, Savji N, Travassos da Rosa A, Guzman H, Yu X, et al. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J Virol. 2013;87:3187–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367:834–41.

    CAS  PubMed  Google Scholar 

  89. Xu B, Liu L, Huang X, Ma H, Zhang Y, et al. Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus. PLoS Pathog. 2011;7:e1002369.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364:1523–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhang YZ, Zhou DJ, Xiong Y, Chen XP, He YW, et al. Hemorrhagic fever caused by a novel tick-borne Bunyavirus in Huaiyangshan, China. Zhonghua Liu Xing Bing Xue Za Zhi. 2011;32:209–20.

    PubMed  Google Scholar 

  92. Kim KH, Yi J, Kim G, Choi SJ, Jun KI, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis. 2013;19:1892–4.

    PubMed Central  PubMed  Google Scholar 

  93. Liu S, Chai C, Wang C, Amer S, Lv H, et al. Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol. 2014;24:90–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Niu G, Li J, Liang M, Jiang X, Jiang M, et al. Severe fever with thrombocytopenia syndrome virus among domesticated animals, China. Emerg Infect Dis. 2013;19:756–63.

    PubMed Central  PubMed  Google Scholar 

  95. Savage HM, Godsey Jr MS, Lambert A, Panella NA, Burkhalter KL, et al. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am J Trop Med Hyg. 2013;89:445–52.

    PubMed Central  PubMed  Google Scholar 

  96. Xing Z, Schefers J, Schwabenlander M, Jiao Y, Liang M, et al. Novel bunyavirus in domestic and captive farmed animals, Minnesota, USA. Emerg Infect Dis. 2013;19:1487–9.

    PubMed  Google Scholar 

  97. Mertz GJ. Bunyaviridae: Bunyaviruses, Phleboviruses, Nairoviruses, and Hantaviruses. In: Richman DD, Whitley RJ, Haydem FG, editors. Clinical virology. 2nd ed. Washington, DC: ASM Press; 2002. p. 921–47.

    Google Scholar 

  98. Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6:203–14.

    PubMed  Google Scholar 

  99. Ergonul O, Celikbas A, Baykam N, Eren S, Dokuzoguz B. Analysis of risk-factors among patients with Crimean-Congo haemorrhagic fever virus infection: severity criteria revisited. Clin Microbiol Infect. 2006;12:551–4.

    CAS  PubMed  Google Scholar 

  100. Krautkramer E, Zeier M, Plyusnin A. Hantavirus infection: an emerging infectious disease causing acute renal failure. Kidney Int. 2013;83:23–7.

    PubMed  Google Scholar 

  101. Jonsson CB, Figueiredo LT, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev. 2010;23:412–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Peters CJ, Simpson GL, Levy H. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Annu Rev Med. 1999;50:531–45.

    CAS  PubMed  Google Scholar 

  103. Lee HW, Vaheri A, Schmaljohn CS. Discovery of hantaviruses and of the Hantavirus genus: personal and historical perspectives of the Presidents of the International Society of Hantaviruses. Virus Res. 2014;187:2–5.

    CAS  PubMed  Google Scholar 

  104. MacNeil A, Ksiazek TG, Rollin PE. Hantavirus pulmonary syndrome, United States, 1993–2009. Emerg Infect Dis. 2011;17:1195–201.

    PubMed Central  PubMed  Google Scholar 

  105. Rasmuson J, Andersson C, Norrman E, Haney M, Evander M, et al. Time to revise the paradigm of hantavirus syndromes? Hantavirus pulmonary syndrome caused by European hantavirus. Eur J Clin Microbiol Infect Dis. 2011;30:685–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Du H, Li J, Jiang W, Yu H, Zhang Y, et al. Clinical study of critical patients with hemorrhagic fever with renal syndrome complicated by acute respiratory distress syndrome. PLoS One. 2014;9:e89740.

    PubMed Central  PubMed  Google Scholar 

  107. Eitrem R, Niklasson B, Weiland O. Sandfly fever among Swedish tourists. Scand J Infect Dis. 1991;23:451–7.

    CAS  PubMed  Google Scholar 

  108. Ellis SB, Appenzeller G, Lee H, Mullen K, Swenness R, et al. Outbreak of sandfly fever in central Iraq, September 2007. Mil Med. 2008;173:949–53.

    PubMed  Google Scholar 

  109. Schultze D, Korte W, Rafeiner P, Niedrig M. First report of sandfly fever virus infection imported from Malta into Switzerland, October 2011. Euro Surveill. 2012;17: pii: 20209.

    Google Scholar 

  110. Dionisio D, Esperti F, Vivarelli A, Valassina M. Epidemiological, clinical and laboratory aspects of sandfly fever. Curr Opin Infect Dis. 2003;16:383–8.

    PubMed  Google Scholar 

  111. Bartelloni PJ, Tesh RB. Clinical and serologic responses of volunteers infected with phlebotomus fever virus (Sicilian type). Am J Trop Med Hyg. 1976;25:456–62.

    CAS  PubMed  Google Scholar 

  112. Carhan A, Uyar Y, Ozkaya E, Ertek M, Dobler G, et al. Characterization of a sandfly fever Sicilian virus isolated during a sandfly fever epidemic in Turkey. J Clin Virol. 2010;48:264–9.

    CAS  PubMed  Google Scholar 

  113. Kocak Tufan Z, Weidmann M, Bulut C, Kinikli S, Hufert FT, et al. Clinical and laboratory findings of a sandfly fever Turkey Virus outbreak in Ankara. J Infect. 2011;63:375–81.

    PubMed  Google Scholar 

  114. Papa A, Konstantinou G, Pavlidou V, Antoniadis A. Sandfly fever virus outbreak in Cyprus. Clin Microbiol Infect. 2006;12:192–4.

    CAS  PubMed  Google Scholar 

  115. Charrel RN, Bichaud L, de Lamballerie X. Emergence of Toscana virus in the Mediterranean area. World J Virol. 2012;1:135–41.

    PubMed Central  PubMed  Google Scholar 

  116. Baldelli F, Ciufolini MG, Francisci D, Marchi A, Venturi G, et al. Unusual presentation of life-threatening Toscana virus meningoencephalitis. Clin Infect Dis. 2004;38:515–20.

    PubMed  Google Scholar 

  117. Mosnier E, Charrel R, Vidal B, Ninove L, Schleinitz N, et al. Toscana virus myositis and fasciitis. Med Mal Infect. 2013;43:208–10.

    CAS  PubMed  Google Scholar 

  118. Oechtering J, Petzold GC. Acute hydrocephalus due to impaired CSF resorption in Toscana virus meningoencephalitis. Neurology. 2012;79:829–31.

    PubMed  Google Scholar 

  119. Sanbonmatsu-Gamez S, Perez-Ruiz M, Palop-Borras B, Navarro-Mari JM. Unusual manifestation of Toscana virus infection, Spain. Emerg Infect Dis. 2009;15:347–8.

    PubMed Central  PubMed  Google Scholar 

  120. Zanelli G, Bianco C, Cusi MG. Testicular involvement during Toscana virus infection: an unusual manifestation? Infection. 2013;41:735–6.

    CAS  PubMed  Google Scholar 

  121. Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, et al. Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis. 2003;37:1084–92.

    PubMed  Google Scholar 

  122. Deng B, Zhou B, Zhang S, Zhu Y, Han L, et al. Clinical features and factors associated with severity and fatality among patients with severe fever with thrombocytopenia syndrome Bunyavirus infection in Northeast China. PLoS One. 2013;8:e80802.

    PubMed Central  PubMed  Google Scholar 

  123. Gai ZT, Zhang Y, Liang MF, Jin C, Zhang S, et al. Clinical progress and risk factors for death in severe fever with thrombocytopenia syndrome patients. J Infect Dis. 2012;206:1095–102.

    CAS  PubMed  Google Scholar 

  124. Liu Y, Wu B, Paessler S, Walker DH, Tesh RB, et al. The pathogenesis of severe fever with thrombocytopenia syndrome virus infection in alpha/beta interferon knockout mice: insights into the pathologic mechanisms of a new viral hemorrhagic fever. J Virol. 2014;88:1781–6.

    PubMed Central  PubMed  Google Scholar 

  125. Samuel G, Bald JG, Pittman HA. Investigations on “spotted wilt” of tomatoes. Aust Council Sci Ind Res Bull. 1930;44:8–11.

    Google Scholar 

  126. Goldbach R, Peters D. Possible causes of the emergence of tospovirus diseases. Semin Virol. 1994;5:113–20.

    Google Scholar 

  127. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, et al. Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 2011;12:938–54.

    CAS  PubMed  Google Scholar 

  128. Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL. Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res. 2011;162:184–202.

    CAS  PubMed  Google Scholar 

  129. Kormelink R, de Haan P, Peters D, Goldbach R. Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. J Gen Virol. 1992;73(Pt 3):687–93.

    CAS  PubMed  Google Scholar 

  130. van de Wetering F, Goldbach R, Peters D. Tomato spotted wilt tospovirus ingestion by first instar larvae of Frankliniella occidentalis is a prerequisite for transmission. Phytopathology. 1996;86:900–5.

    Google Scholar 

  131. Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ. Plasmodesmata: gateways to local and systemic virus infection. Mol Plant Microbe Interact. 2010;23:1403–12.

    CAS  PubMed  Google Scholar 

  132. Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology. 1994;200:56–65.

    CAS  PubMed  Google Scholar 

  133. Storms MM, Kormelink R, Peters D, Van Lent JW, Goldbach RW. The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology. 1995;214:485–93.

    CAS  PubMed  Google Scholar 

  134. Lewandowski DJ, Adkins S. The tubule-forming NSm protein from tomato spotted wilt virus complements cell-to-cell and long-distance movement of tobacco mosaic virus hybrids. Virology. 2005;342:26–37.

    CAS  PubMed  Google Scholar 

  135. Yanagihara R, Daum CA, Lee PW, Baek LJ, Amyx HL, et al. Serological survey of Prospect Hill virus infection in indigenous wild rodents in the USA. Trans R Soc Trop Med Hyg. 1987;81:42–5.

    CAS  PubMed  Google Scholar 

  136. Lin XD, Guo WP, Wang W, Zou Y, Hao ZY, et al. Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today. J Virol. 2012;86:972–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Song JW, Baek LJ, Schmaljohn CS, Yanagihara R. Thottapalayam virus, a prototype shrewborne hantavirus. Emerg Infect Dis. 2007;13:980–5.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors have no conflict of interests. We thank Laura Bollinger (IRF-Frederick) for technical writing services. The content of this publication does not necessarily reflect the views or policies of the US Department of Defense, the US Department of the Army, the US Department of Health and Human Services, or of the institutions and companies affiliated with the authors. J.H.K. performed this work as an employee of Tunnell Government Services, Inc., a subcontractor to Battelle Memorial Institute, and J.W. as an employee of Battelle Memorial Institute, both under Battelle’s prime contract with NIAID, under Contract No. HHSN272200700016I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Whitehouse Ph.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whitehouse, C.A., Kuhn, J.H., Wada, J., Ergunay, K. (2015). Family Bunyaviridae . In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_10

Download citation