Skip to main content

Somatic Embryogenesis for Potato (Solanum tuberosum L.) Improvement

Abstract

Improvement of potato has been attained using conventional breeding and less conventional techniques including various tissue culture procedures. Somatic embryogenesis, which is a developmental process involving one or more somatic cells that undergo morphological development similar to zygotic embryogenesis, produces a complete plant. This somatic plant (somaclone) may vary in attributes from the original source plant, known as somaclonal variation. This document compiles available data on potato somatic embryogenesis including explant types, media components, effect of various growth regulators on the initiation and production of somatic embryos, molecular aspects of potato somatic embryogenesis, and describes somaclonal variation reported among somatic embryo-derived potato lines. Genes that control various somatic embryogenesis stages are reviewed and discussed explicitly for potato. It is clear that somatic embryogenesis has an important potential role in potato improvement programmes.

Keywords

  • Breeding
  • Somaclonal variation
  • Somaclone
  • Somatic embryo
  • Tissue culture

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2389-2_8
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2389-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1

References

  • Adang MJ, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, McBride KE (1993) The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21:1131–1145

    CAS  PubMed  Google Scholar 

  • Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant biology (vol 3). Plant tissue and cell culture. Alan R. Liss, Co., New York, pp 57–81

    Google Scholar 

  • Bajaj YPS (1995) Cryopreservation of somatic embryos. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Somatic embryogenesis and synthetic seed I (vol 30). Springer, Berlin, pp 221–229

    Google Scholar 

  • Berridge MV, Ralph RK (1970) On the significance of cytokinin binding to plant ribosomes. In: Carr DJ (ed) Plant growth substances. pp 248–255

    Google Scholar 

  • Beukema HP, Zaag DE (1990) Introduction to potato production. Pudoc Wageningen, Netherlands, pp 186–199

    Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition (chapter 9). Elsevier, Amsterdam, p 235

    Google Scholar 

  • Bordallo PN, Silva DH, Maria J, Cruz CD, Fontes EP (2004) Somaclonal variation on in vitro callus culture potato cultivars. Hortic Bras Brasília 22:300–304

    Google Scholar 

  • Bradshaw JE, Mackay GR (1994) Breeding strategies for clonally propagated potatoes. In: Bradshaw JE, GR Mackay (eds) Potato genetics (chapter 21). CAB International, Oxon, pp 471–473

    Google Scholar 

  • Bradshow JE (2007a) The canon of potato science: 4. Tetrasomic inheritance. Potato Res 50:219–222

    Google Scholar 

  • Bradshow JE (2007b) Potato-breeding strategy. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives (chapter 8). Elsevier BV, Amsterdam

    Google Scholar 

  • Bragd-Aas M (1977) Regeneration of plants from callus of potato tubers. Acta Hortic 78:133–137

    Google Scholar 

  • Broglie KI, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    CAS  PubMed  Google Scholar 

  • Brown CR (2008) Breeding for phytonutrient enhancement of potato. Am J Potato Res 85:298–307

    CAS  Google Scholar 

  • Brown DCW, Finstad KI, Watson EM (1995) Somatic embryogenesis in herbaceous dicots. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 345–415

    Google Scholar 

  • Calleberg EK, Johansson LB (1993) The effect of starch and incubation temperature in anther culture of potato. Plant Cell Tissue Organ Cult 32:27–34

    CAS  Google Scholar 

  • Camire ME, Kubow S, Donnelly DJ (2009) Potatoes and human health. Crit Rev Food Sci 49:823–840

    CAS  Google Scholar 

  • Carman JG (1990) Embryogenic cells in plant tissue cultures: occurrence and behavior. In Vitro Cell Dev Biol 26:746–753

    Google Scholar 

  • Caromel B, Mugniery D, Kerlan M-C, Andrzejewski S, Palloix A, Ellisseche D, Rousselle-Bourgeois F, Lefebvre V (2005) Resistance quantitative trait loci originating from Solanum sparsipilum act independently on the sex ratio of Globodera pallida and together for developing a necrotic reaction. Mol Plant-Microbe Interact 18:1186–1194

    CAS  PubMed  Google Scholar 

  • Carputo D, Barone A, Cardi T, Sebastiano A, Frusciante L, Peloquin SJ (1997) Endosperm balance number manipulation for direct in vivo germplasm introgression to potato from a sexual isolated relative (Solanum commerconii Dunn.). Proc Nat Acad Sci U S A 94:12013–12017

    CAS  Google Scholar 

  • Carroll CP (1982) A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agric Sci (Cambridge) 99:631–640

    Google Scholar 

  • Carroll CP, De Maine MJ (1989) The agronomic value of tetraploid F1 hybrids between potatoes of group Tuberosum and group Phureja/Stenotomum. Potato Res 32:447–456

    Google Scholar 

  • Cassells AC, Gotez EM, Austin S (1983) Phenotypic variation in plants produced from lateral buds, stem explants and single-cell-derived callus of potato. Potato Res 26:367–372

    Google Scholar 

  • CFIA (Canadian Food Inspection Agency) (2013) Potato varieties. Russet Burbank. http://www.inspection.gc.ca/english/plaveg/potpom/var/russetburbank/russetbe.html. Accessed May 2013

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Nat Acad Sci U S A 97:3724–3729

    CAS  Google Scholar 

  • CIP (International Potato Center) (2013) True potato seed. http://cipotato.org/publications/pdf/002591.pdf. Accessed Aug 2013

  • Cooke TJ, Racusen RH, Cohen JD (1993) The role of auxin in plant embryogenesis. Plant Cell 5:1494–1495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cornelissen B, Melchers L (1993) Strategies for control of fungal diseases with transgenic plants. Plant Phys 101:709–712

    CAS  Google Scholar 

  • Cotes JM, Nustez CE, Martinez R, Estrada N (2002) Analyzing genotype by environment interaction in potato using yield-stability index. Am J Potato Res 79:211–218

    Google Scholar 

  • Darmo E, Peloquin SJ (1991) Use of 2x tuberosum haploid-wild species hybrids to improve yield and quality in 4x cultivated potato. Euphytica 53:1–9

    Google Scholar 

  • Davidson MM, Jacobs JM, Reader JK, Butler RC, Frater CM, Markwick NP, Wratten SD, Conner AJ (2002) Development and evaluation of potatoes transgenic for a cry1Ac9 gene conferring resistance to potato tuber moth. J Am Soc Hortic Sci 127:590–596

    CAS  Google Scholar 

  • Davies HV (2002) Commercial developments with transgenic potato. In: Valpuesta V (ed) Fruit and vegetable biotechnology (chapter 9). Woodhead Publishing Limited, Abington Hall, pp 222–244

    Google Scholar 

  • De Garcia E, Martinez S (1995) Somatic embryogenesis in Solanum tuberosum L. cv. Desiree from stem nodal sections. J Plant Phys 145:526–530

    Google Scholar 

  • De Maine MJ (1995) The effects of inbreeding value of potato di-haploids. Ann Appl Biol 127:151–156

    Google Scholar 

  • Douches DS, Maas D, Jastrzebski K, Chase RW (1996) Assessment of potato breeding progress in the USA over the last century. Crop Sci 36:1544–1552

    Google Scholar 

  • Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56:81–89

    CAS  PubMed  Google Scholar 

  • Dunwell JM, Sunderland N (1973) Anther culture of Solanum tuberosum L. Euphytica 22:317–323

    Google Scholar 

  • During K, Porsch P, Fladung M, Lorz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotova. Plant J 3:587–598

    Google Scholar 

  • Dykes A, Melton M (2013) GMO potatoes: coming soon to a McDonald’s near you? Truststream Media. http://truthstreammedia.com/gmo-potatoes-coming-soon-to-a-mcdonalds-near-you-2/. Accessed Aug 2013

  • Engels C, Bedewy REl, Sattelmacher B (1993) Seed tuber production from true potato seed (TPS) in Egypt and the influence of environmental conditions in different growing periods. Potato Res 36:195–203

    Google Scholar 

  • Evans D, Sharp W, Flick C 1981. Growth and behavior of cell cultures-embryogenesis and organogenesis. In: Thorpe TA (ed) Plant tissue culture. Academic, New York, pp 45–113

    Google Scholar 

  • FAO (2013) FAO STAT. http://faostat3.fao.org/home/index.html#DOWNLOAD

  • Fiegert A, Mix-Wagner G, Vorlop K (2000) Regeneration of Solanum tuberosum L., cv. Tomensa: induction of somatic embryogenesis in liquid culture for the production of “artificial seeds”. Landbauforschung Volkenrode 50:199–202

    CAS  Google Scholar 

  • Figueroa FQ, Mendez-Zeel M, Teyer FS, Rojas-Herrera R, Loyola-Vargas VM (2002) Differential gene expression in embryogenic and non-embryogenic cell clusters from cell suspension cultures of Coffea arabica. J Plant Phys 159:1267–1270

    Google Scholar 

  • Gardner EJ, Snustad P (1986) Genética. Rio de Janeiro, Guanabara, p 497

    Google Scholar 

  • Gary DJ, Purohit A, Triglano RN (1991) Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci 10:33–61

    Google Scholar 

  • Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in potato. Ann Rev Phytopathol 39:79–102

    CAS  Google Scholar 

  • Geisler M, Murphy A (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    CAS  PubMed  Google Scholar 

  • Giorgetti L, Vergara MR, Evangelista M, Lo Schiavo F, Terzi M, Ronchi VN (1995) On the occurrence of somatic meiosis in embryogenic carrot cell cultures. Mol Gen Genet 246:657–662

    CAS  PubMed  Google Scholar 

  • Glendinning DR (1987) Neo-tuberosum. Scottish Crop Research Institute Annual Report. pp 77–78

    Google Scholar 

  • Guo WW, Cai XD, Grosser JW (2004) Somatic cell cybrids and hybrids in plant improvement. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. pp 635–659

    Google Scholar 

  • Haberlach GT, Cohen BA, Reichert NA, Baer MA, Towill LE, Helgeson JP (1985) Isolation, culture and regeneration of protoplasts from potato and several related Solanum species. Plant Sci 39: 67–74

    Google Scholar 

  • Harris PM (ed) (1992) The potato crop: the scientific basis for improvement (2nd edn). Chapman and Hall, London, pp 13, 41–46

    Google Scholar 

  • Hassairi AK, Masmoudi J, Albouy C, Robaglia MJ, Ellouz R (1998) Transformation of two potato cultivars Spuntia and Claustar (Solanum tuberosum) with lettuce mosaic virus coat protein gene and heterologous immunity to potato virus Y. Plant Sci 136:31–42

    CAS  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity, and genetic resources. Belhaven, London

    Google Scholar 

  • Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Nat Acad Sci U S A 97:8699–8704

    CAS  Google Scholar 

  • Hermsen JGTH, Ramanna MS (1973) Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica 22:457–466

    Google Scholar 

  • Hickman M, Roberts G (2013) Fury as EU approves GM potato. The independent. http://www.independent.co.uk/environment/green-living/fury-as-eu-approves-gm-potato-1915833.html. Accessed Aug 2013

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance—a critical review. Crop Prot 18:177–191

    Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The defective in anther ehiscence1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed Central  CAS  PubMed  Google Scholar 

  • IYP (International Year of Potato) (2008) Potato and biodiversity. www.potato2008.org

  • Jacobsen E, Schouten HJ (2008) Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step-by-step approach. Potato Res 51:75–88

    Google Scholar 

  • Jacobsen E, Sopory SK (1978) The influence and possible recombination of genotypes on the production of microspore embryoids in anther cultures of Solanum tuberosum and dihaploid hybrids. Theor Appl Genet 52:119–123

    CAS  PubMed  Google Scholar 

  • Jansky SH, Yerk GL, Peloquin SJ (1990) The use of potato haploids to put 2x wild species germplasm into a usable form. Plant Breed 104:290–294

    Google Scholar 

  • JayaSree T, Pavan U, Ramesh M, Rao AV, Reddy KJM, Sadanandam A (2001) Somatic embryogenesis from cultures of potato. Plant Cell Tissue Org Cult 64:13–17

    CAS  Google Scholar 

  • Johansson L (1986) Improved methods for induction of embryogenesis in anther cultures of Solanum tuberosum. Potato Res 29:179–190

    Google Scholar 

  • Johansson L (1988) Increased induction of embryogenesis and regeneration in anther cultures of Solanum tuberosum L. Potato Res 31:145–149

    Google Scholar 

  • Johnston GR, Rowberry RG (1981) Yukon gold: a new yellow fleshed, medium early, high quality table and French fry cultivar. Am Potato J 58:241–244

    Google Scholar 

  • Jones PW, Cassells AC (1995) Criteria for decision making in crop improvement programmes—Technical considerations. Euphytica 85:465–476

    Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    CAS  PubMed  Google Scholar 

  • Kaniewski W, Thomas P (2004) The potato story. AgBioForum 7:41–46

    Google Scholar 

  • Khourgami A, Rafiee M, Jafari H, Bitrafan Z (2012) Effect of transplant preparation method on yield and agronomic traits of true potato seed (TPS) progenies in Sahneh region. World Acad Sci EngTechnol 67:1–3

    Google Scholar 

  • Knight TA (1814) On raising new and early varieties of the potato (Solanum tuberosum). Belf Mon Mag 12:137–138

    Google Scholar 

  • Kohlenbach HW (1978) Regulation of embryogenesis in vitro. In: Schutte HR, Gross D (eds) Regulation of developmental processes in plants. VEB Kongress-und Werbedruck, Oberlungwitz

    Google Scholar 

  • Komamine A, Murata N, Nomura K (2005) Mechanisms of somatic embryogenesis in carrot suspension cultures—morphology, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol-Plant 41:6–10

    CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Nat Acad Sci U S A 97:2940–2945

    CAS  Google Scholar 

  • Lam S-L (1975) Shoot formation in potato tuber discs in tissue culture. Am Potato J 52:103–106

    Google Scholar 

  • Lam S-L (1977a) Plantlet formation from potato tuber discs in vitro. Am Potato J 54:465–468

    Google Scholar 

  • Lam S-L (1977b) Regeneration of plantlets from single cells in potatoes. Am Potato J 54:575–580

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Appl Genet 60:197–214

    CAS  Google Scholar 

  • Lauer F, Miller JC, Anderson N Jr, Banttari E, Kallio A, Munson S, Orr P, Preston D, Smallwood DG, Sowokinos J, Titrud G, Wenkel R, Weirsma J, Wildung D (1988) Krantz: a russet cultivar for the irrigated sands. Am Potato J 65:387–391

    Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotechnol 11:416–425

    PubMed  Google Scholar 

  • Loomis RS, Torrey JG (1964) Chemical control of vascular cambium initiation in isolated radish roots. Proc Nat Acad Sci U S A 52:3

    CAS  Google Scholar 

  • Lucier G, Budge A, Plummer C, Spurgeon C (1990) US Potato Statistics, 1949–1989. USDA, Economic Research Service 829: 1–8. US Gov. Print Office, Washington, DC

    Google Scholar 

  • Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52:1526–1533

    CAS  PubMed  Google Scholar 

  • Maris B (1989) Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigenaclones of potato (Solanum tuberosum L.). Euphytica 41:163–182

    Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103

    CAS  Google Scholar 

  • Monnier M (1978) Culture of zygotic embryos. In: Thorpe TA (ed). Frontiers of plant tissue culture. Proceeding 4th International Congress of Plant tissue and cell culture. University of Calgary, Alberta, Canada, International Association for Plant Tissue Culture 277–286

    Google Scholar 

  • Mullins E, Milbourne D, Petti C, Doyle-Prestwich BM, Meade C (2006) Potato in the age of biotechnology. Trends Plant Sci 11:254–260

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nagy JJ, Maliga P (1976) Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Zeitschrift fiir Pflanzenphysiologie 78:453–455

    Google Scholar 

  • Nassar AMK, Ortez E, Leclerc Y, Donnelly DJ (2008) Periclinal chimeral status of NB ‘Russet Burbank’ potato. Am J Potato Res 85:432–437

    Google Scholar 

  • Nassar AMK, Abdulnour J, Leclerc Y, Li X-Q, Donnelly DJ (2011) Intraclonal selection for improved processing of NB ‘Russet Burbank’ potato. Am J Potato Res 88:387–397

    Google Scholar 

  • Nassar AMK, Kubow S, Leclerc YN, Donnelly DJ (2014) Somatic mining for phytonutrient improvement of ‘Russet Burbank’ potato. Am J Potato Res 91:89–100

    CAS  Google Scholar 

  • Neele AEF, Barten JHM, Louwes KM (1988) Effects of plot size and selection intensity on efficiency of selection in the first clonal generation of potato. Euphytica S:27–34

    Google Scholar 

  • Neumann K-H, Kumar A, Imani J (2009) Plant propagation-meristem cultures, somatic embryogenesis. In: Plant cell and tissue culture—a tool in biotechnology, basics and applications, Springer-Verlag, Berlin pp 75–137

    Google Scholar 

  • Nickle TC, Yeung EC (1994) Further evidence of a role for abscisic acid in conversion of somatic embryos of Daucus carota. In Vitro Cell Dev Biol Plant 30P:96–103

    CAS  Google Scholar 

  • Novy RG (2007) Industry highlights: the use of the wild potato species, Solanum etuberosum in developing virus—and insect-resistant potato varieties. In: Acquaah G (ed) Principles of plant genetics and breeding. Blackwell Publishing, MA, pp 174–177

    Google Scholar 

  • Novy RG, Helgeson JP (1994) Resistance to potato virus Y in somatic hybrids between Solanum etuberosum and S. tuberosum x S. berthaultii hybrid. Theor Appl Genet 89:783–786

    CAS  PubMed  Google Scholar 

  • Nyende AB, Schittenhelm S, Mix-Wagner G, Greef JM (2002) Synthetic potato seeds offer the potential to improve Kenyan seed system. Landbauforsch Volk 42:141–8

    Google Scholar 

  • Ortiz R (1998) Potato breeding via ploidy manipulations. Plant Breed Rev 16:14–87

    Google Scholar 

  • Oryczyk W, Przetakiewicz J, Nadolska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum—application to genetics and breeding. Plant Cell Tissue Organ Cult 74:1–13

    Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190

    CAS  PubMed  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou K, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    CAS  PubMed  Google Scholar 

  • Parry G, Marchant A, May S, Swarup R, Swarup K, James N (2001) Quick on the uptake: characterization of a family of plant auxin influx carriers. J Plant Growth Regul 20:217–225

    CAS  Google Scholar 

  • Pelletier JR, Fry WE (1989) Characterization of resistance to early blight in three potato cultivars: incubation period, lesion expansion rate, and spore production. Phytopathology 79:511–517

    Google Scholar 

  • Peloquin SJ, Gabert AC, Ortiz R (1996) Nature of “pollinator” effect in potato haploid production. Ann Bot 77:539–542

    Google Scholar 

  • Perl A, Aviv D, Galun E (1990) Protoplast-fusion-derived CMS potato cybrids: potential seed parents for hybrid, true-potato-seeds. J Heredity 81:438–442

    Google Scholar 

  • Perlak F, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    CAS  PubMed  Google Scholar 

  • Plaisted RL (1987) Advances and limitations in the utilization of Neotuberosum in potato breeding. In: Jellis GJ, Richardson DE (eds) The production of new potato varieties. Cambridge University Press, Cambridge, pp 186–196

    Google Scholar 

  • Pond S, Cameron S (2003). Artificial seeds, tissue culture. Elsevier Ltd., 1379–1388.

    Google Scholar 

  • Powell W, Uhrig H (1987) Anther culture of Solanum tuberosum genotypes. Plant Cell Tissue Organ Cult 11:13–24

    Google Scholar 

  • Pretova A, Dedicova B (1992) Somatic embryogenesis in Solanum tuberosum L. cv. Désirée from unripe zygotic embryos. J Plant Physiol 139:539–542

    Google Scholar 

  • Pretova A, Obert B. (2006) Some aspects of embryo development in vitro. Proc. Vth IS on In Vitro Culture and Hort Breeding. Fári, M.G., I. Holb, and Gy. D. Bisztray (eds). Acta Horticulture 725: 83–88.

    Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens: a review of progress and future prospects. Canadian J Plant Pathol 23:216–235

    CAS  Google Scholar 

  • Reinert J (1958) Morphogenese und ihre knotrolle an gewebekulturen aus carotten. Naturwiss 45:344–345

    CAS  Google Scholar 

  • Reynolds T (1986) Somatic embryogenesis and organogenesis from callus cultures of Solanum carolinense. Am J Botany 73:914–918

    Google Scholar 

  • Rokka VM, Ishimaru CA, Lapitan NLV, Pehu E (1998) Production of androgenic dihaploid lines of the disomic tetraploid potato species Solanum acaule ssp. acaule. Plant Cell Rep 18:89–93

    CAS  Google Scholar 

  • Romer S, Lubeck J, Kauder F, Steiger S, Adamat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metabol Eng 4:263–272

    CAS  Google Scholar 

  • Sabeti M, Zarghami R, Ebrahim ZM (2013) Effects of explants and growth regulators on callogenesis and somatic embryogenesis of Agria potato cultivar. Int J AgriSci 3:213–221

    CAS  Google Scholar 

  • Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579:5399–5406

    CAS  PubMed  Google Scholar 

  • Schafer-Menuhr A, Mix-Wagner G, Vorlop KD (2003) Regeneration of plants from cell suspensions cultures and encapsulated cell suspension cultures of Solanum tuberosum L. Clarissa. Landbauforsch Volk 53:53–59

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Seabrook JEA, Douglass LK (2001) Somatic embryogenesis on various potato tissues from a range of genotypes and ploidy levels. Plant Cell Rep 20:175–182

    CAS  Google Scholar 

  • Seabrook JEA, Douglass LK, Tai GCC (2001) Segregation for somatic embryogenesis on stem-internode explants from potato seedlings. Plant Cell Tissue Organ Cult 65:69–73

    Google Scholar 

  • Sharma SK (2006) The development of an efficient somatic embryogenesis system for the production of synthetic seed in potato. PhD Thesis, University of Dundee, Dundee, United Kingdom

    Google Scholar 

  • Sharma SK, Millam S (2004) Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key developmental stages. Plant Cell Rep 23:115–119

    CAS  PubMed  Google Scholar 

  • Sharma SK, Bryan GJ, Winfield MO, Millam S (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226:1449–1458

    CAS  PubMed  Google Scholar 

  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008a) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201

    CAS  PubMed  Google Scholar 

  • Sharma SK, Millam S, Hein I, Bryan G (2008b) Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330

    CAS  PubMed  Google Scholar 

  • Sharma S, Sarkar D, Pandey SK (2010) Phenotypic characterization and nuclear microsatellite analysis reveal genomic changes and rearrangements underlying androgenesis in tetraploid potatoes (Solanum tuberosum L.). Euphytica 171:313–326

    CAS  Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS, Maraffa SB (1980) The physiology of in vitro asexual embryogenesis. Hortic Rev 2:268–310

    CAS  Google Scholar 

  • Sharp WR, Evans DA, Sondahl MR (1982) Application of somatic embryogenesis to crop improvement. In Fujiwara A (ed) Plant tissue culture. Maruzen, Japan, pp 759–762

    Google Scholar 

  • Shepard JF (1981) Protoplasts as sources of disease resistance in plants. Annl Rev Phytopathol 19:145–155

    CAS  Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Potato protoplasts in crop improvement. Science 208:17–24

    CAS  PubMed  Google Scholar 

  • Simmonds NW (1969) Prospects of potato improvement. Scott Plant Breed Stn Annl Rep 48:18–38

    Google Scholar 

  • Smith MAL (1995) Machine vision analysis of plant cells and somatic embryos. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry (vol 30). Somatic embryogenesis and synthetic seed. Springer, Berlin, pp 87–101

    Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100:9128–9133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sopory SK, Jacobsen E, Wenzel G (1978) Production of monohaploid embryoids and plantlets in cultured anthers of Solanum tuberosum. Plant Sci Lett 12:47–54

    Google Scholar 

  • SreeRamulu K, Dijkhuis P, Roest S (1983) Phenotypic variation and ploidy level of plants regenerated from protoplasts of tetraploid potato Solanum tuberosum L. cv. Bintje. Theor Appl Genet 65:329–388

    CAS  Google Scholar 

  • Steward FC (1958) Growth and development of cultivated cells. III. Interpretations of the growth from free cell to carrot plant. Am J Bot 45:709–713

    Google Scholar 

  • Suprasanna P, Bapat VA (2005) Differential gene expression during somatic embryogenesis. Plant cell monogram 2. Springer, Berlin

    Google Scholar 

  • Tai GCC (2005) Haploids in the improvement of Solanaceous species. In Palmer CE, WA Keller, KJ Kasha (eds) Biotechnology in agriculture and forestry (vol 56). Springer, Berlin, pp 173–190.

    Google Scholar 

  • Tarn TR, Tai TCC (1983) Tuberosum X Tuberosum and Tuberosum X Andigena potato hybrids: comparisons of families and parents, and breeding strategies for Andigena potatoes in long-day temperate environments. Theor Appl Genet 66:87–91

    CAS  PubMed  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terzi M, LoSchiavo F (1990) Somatic embryogenesis. In: Bhojwani SS (ed) Plant cell culture: applications and limitations. Elsevier, Amsterdam, pp 54–66

    Google Scholar 

  • The European Cultivated Potato Database (2009) Cv. Shelagh. http://www.europotato.org/display_description.php?variety_name=Shelagh. Accessed May 2013

  • Thompson AJ, Gunn RE, Jellis GI, Boulton RE, Lacey CND (1986) The evaluation of potato somaclones. In Semal J (ed) Somaclonal variations and crop improvement. Martinus Nijhoff, Dordrecht, pp 236–243

    Google Scholar 

  • Tisserat B, Esan EB, Murashige T (1979) Somatic embryogenesis in angiosperms. Hortic Rev 1:1–78

    Google Scholar 

  • Trabelsi S, Gargouri-Bouzid R, Vedel F, Nato A, Lakhoua L, Drira N (2005) Somatic hybrids between potato Solanum tuberosum and wild species Solanum vernei exhibit a recombination in the plastome. Plant Cell Tissue Organ Cult 83:1–11

    CAS  Google Scholar 

  • Tulecke W (1987) Somatic embryogenesis in woody perennials. In Bongs JM, Durzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff Publication, Dordrecht, pp 61–91

    Google Scholar 

  • Uhrig H, Salamini F (1987) Dihaploid plant production from 4X-genotypes of potato by the use of efficient anther plants producing tetraploid strains (4X EAPP-clones)—proposal of a breedingmethodology. Zeitgeschichte Pflanzenzücht 98:228–235

    Google Scholar 

  • Uzogara SG (2000) The impact of genetic modification of human foods in the 21st century: a review. Biotechnol Adv 18:179–206

    CAS  PubMed  Google Scholar 

  • Van der Vossen EAG, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    PubMed  Google Scholar 

  • Van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • Vargas ET, De Garcia E, Oropeza M (2005) Somatic embryogenesis in Solanum tuberosum from cell suspension cultures: histological analysis and extracellular protein patterns. J Plant Physiol 162:449–456

    CAS  PubMed  Google Scholar 

  • Vargas TE, Xena N, Vidal MC, Oropeza M, De Garcia E (2008) Genetic stability of Solanum tuberosum L. cv. Desiree plantlets obtained from embryogenic cell suspension cultures. Interciencia 33:213–218

    Google Scholar 

  • Visser RGF (2009) Future prospects for potato genome technology. 7th World Potato Congress Proceedings. Christchurch, New Zealand. http://www.potatocongress.org/wpc2009.cfm. Accessed May 2013

  • Walker RI (1955) Cytological and embryological studies in Solanum, section Tuberarium. Bull Torrey Bot Club 82:87–101

    Google Scholar 

  • Waris H (1957) A chemical-induced change in the morphogenesis of a flowering plant. In: Simola, LK. 2000. Harry Waris, a pioneer in somatic embryogenesis. In: Jain SM, PK Gupta, RJ Newton (eds) Somatic embryogenesis in woody plants, vol 6, Embryogenesis. Kluwer, Dordrecht, pp 1–16

    Google Scholar 

  • Wenzel G (1994) Tissue culture. In: Bradshaw E, GR Mackay (eds) Potato genetics. CAB International, Wallingford, pp 173–195

    Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Zeh M, Casazza AP, Kreft O, Roessner U, Bieberich K, Willmitzer L, Hoefgen R, Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content intransgenic potato plants. Plant Physiol 127:792–802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Donnelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nassar, A., Kubow, S., Donnelly, D. (2015). Somatic Embryogenesis for Potato (Solanum tuberosum L.) Improvement. In: Li, XQ., Donnelly, D., Jensen, T. (eds) Somatic Genome Manipulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2389-2_8

Download citation