Skip to main content

Nuclear Bodies and Responses to the Environments

  • Chapter
  • First Online:
Nuclear Functions in Plant Transcription, Signaling and Development
  • 859 Accesses

Abstract

The nucleus is a highly complicated organelle in structure and function with much genomic materials folded into chromosomes to regulate gene expression and structure integrity. At the cellular level, there are numerous distinct subnuclear compartments in the nucleus, called nuclear bodies (NBs), which are nonmembranous structures containing protein–protein or protein–RNA complexes, exerting multiple functions in signaling transduction. NBs may be reaction sites, storage sites, or modification sites for components to cooperate with each other to regulate different pathways. Tethering system reveals that NBs can be assembled in a stochastic fashion or are initiated by a seeding component such as a related protein or RNA. In addition, the size, number, and morphology of NBs are regulated by numerous internal or external cues, and usually there exists much cross talk between other NBs to respond to the change of surrounding environment. In plants, many NBs have been characterized, and accumulating components in NBs are discovered, and the assembly mechanisms and precise functions of plant NBs are still poorly understood. To find out new members and the connectors linking different NBs using genetic approaches, cell biology, biochemistry, and proteomics are of great importance to elucidate the biogenesis and functions of plant NBs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a003889.

    PubMed Central  PubMed  Google Scholar 

  2. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S. Chromosome territories–a functional nuclear landscape. Curr Opin Cell Biol. 2006 Jun;18(3):307–16.

    CAS  PubMed  Google Scholar 

  3. Tiang CL, He Y, Pawlowski WP. Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol. 2012 Jan;158(1):26–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Handwerger KE, Gall JG. Subnuclear organelles: new insights into form and function. Trends Cell Biol. 2006 Jan;16(1):19–26.

    CAS  PubMed  Google Scholar 

  5. Meldi L, Brickner JH. Compartmentalization of the nucleus. Trends Cell Biol. 2011 Dec;21(12):701–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell. 2010 Oct 22;40(2):216–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR, et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol. 2011 Apr 4;193(1):97–108.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Kepkay R, Attwood KM, Ziv Y, Shiloh Y, Dellaire G. KAP1 depletion increases PML nuclear body number in concert with ultrastructural changes in chromatin. Cell Cycle. 2011 Jan 15;10(2):308–22.

    CAS  PubMed  Google Scholar 

  9. Dundr M. Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol. 2012 Jun;24(3):415–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene. 2003 Dec 8;22(56):9048–57.

    CAS  PubMed  Google Scholar 

  11. Shaw PJ, Brown JW. Plant nuclear bodies. Curr Opin Plant Biol. 2004 Dec;7(6):614–20.

    CAS  PubMed  Google Scholar 

  12. Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet. 2011 Aug;27(8):295–306.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol. 2013 Mar 1;10(3):456–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Shevtsov SP, Dundr M. Nucleation of nuclear bodies by RNA. Nat Cell Biol. 2011 Feb;13(2):167–73.

    CAS  PubMed  Google Scholar 

  15. Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA. 2009 Feb 24;106(8):2525–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Kaiser TE, Intine RV, Dundr M. De novo formation of a subnuclear body. Science. 2008 Dec 12;322(5908):1713–7.

    CAS  PubMed  Google Scholar 

  17. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP. The mechanisms of PML-nuclear body formation. Mol Cell. 2006 Nov 3;24(3):331–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Dundr M, Misteli T. Biogenesis of nuclear bodies. Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a000711.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK. Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell. 2009 Nov;17(5):639–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007 Jul;8(7):574–85.

    CAS  PubMed  Google Scholar 

  21. Novotny I, Blazikova M, Stanek D, Herman P, Malinsky J. In vivo kinetics of U4/U6.U5 tri-snRNP formation in Cajal bodies. Mol Biol Cell. 2011 Feb 15;22(4):513–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Klingauf M, Stanek D, Neugebauer KM. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell. 2006 Dec;17(12):4972–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G. RNAi components are required for nuclear clustering of polycomb group response elements. Cell. 2006 Mar 10;124(5):957–71.

    CAS  PubMed  Google Scholar 

  24. Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol. 2007 Oct;9(10):1167–74.

    CAS  PubMed  Google Scholar 

  25. MacPherson MJ, Beatty LG, Zhou W, Du M, Sadowski PD. The CTCF insulator protein is posttranslationally modified by SUMO. Mol Cell Biol. 2009 Feb;29(3):714–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell. 2003 Apr 4;113(1):127–37.

    CAS  PubMed  Google Scholar 

  27. Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, et al. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell. 2010 Apr 23;38(2):191–201.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Spector DL, Lamond AI. Nuclear speckles. Cold Spring Harb Perspect Biol. 2011 Feb;3(2):a000646.

    PubMed Central  PubMed  Google Scholar 

  29. Pederson T. The nucleolus. Cold Spring Harb Perspect Biol. 2011 Mar;3(3):a000638.

    PubMed Central  PubMed  Google Scholar 

  30. Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol Biol Cell. 2000 Aug;11(8):2705–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Leung E, Brown JD. Biogenesis of the signal recognition particle. Biochem Soc Trans. 2010 Aug;38(4):1093–8.

    CAS  PubMed  Google Scholar 

  32. Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):55–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998 Sep 1;26(17):3871–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Shaw PJ, Highett MI, Beven AF, Jordan EG. The nucleolar architecture of polymerase I transcription and processing. EMBO J. 1995 Jun 15;14(12):2896–906.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Shaw P, Brown J. Nucleoli: composition, function, and dynamics. Plant Physiol. 2012 Jan;158(1):44–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Gerbi SA, Borovjagin AV, Lange TS. The nucleolus: a site of ribonucleoprotein maturation. Curr Opin Cell Biol. 2003 Jun;15(3):318–25.

    CAS  PubMed  Google Scholar 

  37. Hiscox JA. RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol. 2007 Feb;5(2):119–27.

    CAS  PubMed  Google Scholar 

  38. Hiscox JA, Whitehouse A, Matthews DA. Nucleolar proteomics and viral infection. Proteomics. 2010 Nov;10(22):4077–86.

    CAS  PubMed  Google Scholar 

  39. Taliansky ME, Brown JW, Rajamaki ML, Valkonen JP, Kalinina NO. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res. 2010;77:119–58.

    CAS  PubMed  Google Scholar 

  40. Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, et al. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA. 2007 Jun 26;104(26):11115–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Canetta E, Kim SH, Kalinina NO, Shaw J, Adya AK, Gillespie T, et al. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J Mol Biol. 2008 Feb 29;376(4):932–7.

    CAS  PubMed  Google Scholar 

  42. Haupt S, Stroganova T, Ryabov E, Kim SH, Fraser G, Duncan G, et al. Nucleolar localization of potato leafroll virus capsid proteins. J Gen Virol. 2005 Oct; 86(Pt 10):2891–6.

    CAS  PubMed  Google Scholar 

  43. Rajamaki ML, Valkonen JP. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like potato virus A in Nicotiana species. Plant Cell. 2009 Aug;21(8):2485–502.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Miliani de Marval PL, Zhang Y. The RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget. 2011 Mar;2(3):234–8.

    PubMed Central  PubMed  Google Scholar 

  45. Savchenko A, Yurchenko M, Snopok B, Kashuba E. Study on the spatial architecture of p53, MDM2, and p14ARF containing complexes. Mol Biotechnol. 2009 Mar;41(3):270–7.

    CAS  PubMed  Google Scholar 

  46. Ivanchuk SM, Mondal S, Rutka JT. p14ARF interacts with DAXX: effects on HDM2 and p53. Cell Cycle. 2008 Jun 15;7(12):1836–50.

    CAS  PubMed  Google Scholar 

  47. van Leeuwen IM, Higgins M, Campbell J, McCarthy AR, Sachweh MC, Navarro AM, et al. Modulation of p53 C-terminal acetylation by mdm2, p14ARF, and cytoplasmic SirT2. Mol Cancer Ther. 2013 Apr;12(4):471–80.

    CAS  PubMed  Google Scholar 

  48. Chakraborty A, Uechi T, Kenmochi N. Guarding the ‘translation apparatus’: defective ribosome biogenesis and the p53 signaling pathway. Wiley Interdiscip Rev RNA. 2011 Jul–Aug;2(4):507–22.

    CAS  PubMed  Google Scholar 

  49. Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003 Feb;46(1):48–50.

    CAS  PubMed  Google Scholar 

  50. Mozgova I, Mokros P, Fajkus J. Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell. 2010 Aug;22(8):2768–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhao R, Bodnar MS, Spector DL. Nuclear neighborhoods and gene expression. Curr Opin Genet Dev. 2009 Apr;19(2):172–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Morimoto M, Boerkoel CF. The role of nuclear bodies in gene expression and disease. Biology (Basel). 2013 Jul 9;2(3):976–1033.

    Google Scholar 

  53. Nizami Z, Deryusheva S, Gall JG. The cajal body and histone locus body. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000653.

    PubMed Central  PubMed  Google Scholar 

  54. Zhu Y, Tomlinson RL, Lukowiak AA, Terns RM, Terns MP. Telomerase RNA accumulates in cajal bodies in human cancer cells. Mol Biol Cell. 2004 Jan;15(1):81–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Jady BE, Bertrand E, Kiss T. Human telomerase RNA and box H/ACA scaRNAs share a common cajal body-specific localization signal. J Cell Biol. 2004 Mar 1;164(5):647–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007 Mar;8(3):209–20.

    CAS  PubMed  Google Scholar 

  57. Cauchi RJ. SMN and Gemins: ‘we are family’… or are we?: insights into the partnership between gemins and the spinal muscular atrophy disease protein SMN. Bioessays. 2010 Dec;32(12):1077–89.

    CAS  PubMed  Google Scholar 

  58. Buhler D, Raker V, Luhrmann R, Fischer U. Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet. 1999 Dec;8(13):2351–7.

    CAS  PubMed  Google Scholar 

  59. Blackburn EH, Collins K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. 2011 May;3(5):a003558.

    PubMed Central  PubMed  Google Scholar 

  60. Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, et al. A human telomerase holoenzyme protein required for cajal body localization and telomere synthesis. Science. 2009 Jan 30;323(5914):644–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S, et al. WRAP53 is essential for cajal body formation and for targeting the survival of motor neuron complex to cajal bodies. PLoS Biol. 2010;8(11):e1000521.

    PubMed Central  PubMed  Google Scholar 

  62. Toyota CG, Davis MD, Cosman AM, Hebert MD. Coilin phosphorylation mediates interaction with SMN and SmB’. Chromosoma. 2010 Apr;119(2):205–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Hearst SM, Gilder AS, Negi SS, Davis MD, George EM, Whittom AA, et al. Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci. 2009 Jun 1; 122(Pt 11):1872–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Boudonck K, Dolan L, Shaw PJ. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell. 1999 Jul;10(7):2297–307.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Platani M, Goldberg I, Swedlow JR, Lamond AI. In vivo analysis of cajal body movement, separation, and joining in live human cells. J Cell Biol. 2000 Dec 25;151(7):1561–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Boudonck K, Dolan L, Shaw PJ. Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters. J Cell Sci. 1998 Dec 18; 111(Pt 24):3687–94.

    CAS  PubMed  Google Scholar 

  67. Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw P. A distant coilin homologue is required for the formation of cajal bodies in Arabidopsis. Mol Biol Cell. 2006 Jul;17(7):2942–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Strzelecka M, Trowitzsch S, Weber G, Luhrmann R, Oates AC, Neugebauer KM. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat Struct Mol Biol. 2010 Apr;17(4):403–9.

    CAS  PubMed  Google Scholar 

  69. Liu JL, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ, et al. Coilin is essential for cajal body organization in Drosophila melanogaster. Mol Biol Cell. 2009 Mar;20(6):1661–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Labadorf A, Link A, Rogers MF, Thomas J, Reddy AS, Ben-Hur A. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii. BMC Genomics. 2010;11:114.

    PubMed Central  PubMed  Google Scholar 

  71. Reddy AS, Day IS, Gohring J, Barta A. Localization and dynamics of nuclear speckles in plants. Plant Physiol. 2012 Jan;158(1):67–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Reddy AS, Shad Ali G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA. 2011 Nov–Dec;2(6):875–89.

    CAS  PubMed  Google Scholar 

  73. Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009 Feb 20;136(4):701–18.

    CAS  PubMed  Google Scholar 

  74. Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics. 2010 Nov;10(22):4128–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Lorkovic ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci. 2009 Apr;14(4):229–36.

    CAS  PubMed  Google Scholar 

  76. Richardson DN, Rogers MF, Labadorf A, Ben-Hur A, Guo H, Paterson AH, et al. Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing. PLoS One. 2011;6(9):e24542.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Reddy AS. Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends Plant Sci. 2004 Nov;9(11):541–7.

    CAS  PubMed  Google Scholar 

  78. Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev. 2010 Jun 1;24(11):1073–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Barta A, Kalyna M, Reddy AS. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. Plant Cell. 2010 Sep;22(9):2926–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009 Jan 1;417(1):15–27.

    CAS  PubMed  Google Scholar 

  81. Shen H, Green MR. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev. 2006 Jul 1;20(13):1755–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Dauwalder B, Mattox W. Analysis of the functional specificity of RS domains in vivo. EMBO J. 1998 Oct 15;17(20):6049–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 1993 Dec 25;21(25):5803–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Twyffels L, Gueydan C, Kruys V. Shuttling SR proteins: more than splicing factors. FEBS J. 2011 Sep;278(18):3246–55.

    CAS  PubMed  Google Scholar 

  85. Barta A, Kalyna M, Lorkovic ZJ. Plant SR proteins and their functions. Curr Top Microbiol Immunol. 2008;326:83–102.

    CAS  PubMed  Google Scholar 

  86. Lamond AI, Spector DL. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol. 2003 Aug;4(8):605–12.

    CAS  PubMed  Google Scholar 

  87. Lorkovic ZJ, Hilscher J, Barta A. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei. Exp Cell Res. 2008 Oct 15;314(17):3175–86.

    CAS  PubMed  Google Scholar 

  88. Fang Y, Hearn S, Spector DL. Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis. Mol Biol Cell. 2004 Jun;15(6):2664–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiol. 2010 May;153(1):273–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Tillemans V, Leponce I, Rausin G, Dispa L, Motte P. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell. 2006 Nov;18(11):3218–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Ali GS, Golovkin M, Reddy AS. Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. Plant J. 2003 Dec;36(6):883–93.

    CAS  PubMed  Google Scholar 

  92. Docquier S, Tillemans V, Deltour R, Motte P. Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants. Chromosoma. 2004 Feb;112(5):255–66.

    CAS  PubMed  Google Scholar 

  93. Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, et al. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell. 2001 Dec;1(6):771–81.

    CAS  PubMed  Google Scholar 

  94. Xu S, Zhang Z, Jing B, Gannon P, Ding J, Xu F, et al. Transportin-SR is required for proper splicing of resistance genes and plant immunity. PLoS Genet. 2011 Jun;7(6):e1002159.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Ali GS, Palusa SG, Golovkin M, Prasad J, Manley JL, Reddy AS. Regulation of plant developmental processes by a novel splicing factor. PLoS One. 2007;2(5):e471.

    PubMed Central  PubMed  Google Scholar 

  96. Carvalho RF, Carvalho SD, Duque P. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol. 2010 Oct;154(2):772–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Zhang XN, Mount SM. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development. Plant Physiol. 2009 Jul;150(3):1450–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Palusa SG, Ali GS, Reddy AS. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J. 2007 Mar;49(6):1091–107.

    CAS  PubMed  Google Scholar 

  99. Golovkin M, Reddy AS. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1–70K protein. J Biol Chem. 1999 Dec 17;274(51):36428–38.

    CAS  PubMed  Google Scholar 

  100. Savaldi-Goldstein S, Sessa G, Fluhr R. The ethylene-inducible PK12 kinase mediates the phosphorylation of SR splicing factors. Plant J. 2000 Jan;21(1):91–6.

    CAS  PubMed  Google Scholar 

  101. Feilner T, Hultschig C, Lee J, Meyer S, Immink RG, Koenig A, et al. High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol Cell Proteomics. 2005 Oct;4(10):1558–68.

    CAS  PubMed  Google Scholar 

  102. Chen X. Plant microRNAs at a glance. Semin Cell Dev Biol. 2010 Oct;21(8):781.

    PubMed  Google Scholar 

  103. Tang G. Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol. 2010 Oct;21(8):782–9.

    CAS  PubMed  Google Scholar 

  104. Liu Q, Shi L, Fang Y. Dicing bodies. Plant Physiol. 2012 Jan;158(1):61–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004 Nov 11;432(7014):231–5.

    CAS  PubMed  Google Scholar 

  106. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006 Jun 2;125(5):887–901.

    CAS  PubMed  Google Scholar 

  107. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005 Jan 12;24(1):138–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004 Feb;10(2):185–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003 Dec 15;17(24):3011–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Benoit MP, Imbert L, Palencia A, Perard J, Ebel C, Boisbouvier J, et al. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic Acids Res. 2013 Apr;41(7):4241–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005 Aug 4;436(7051):740–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA. 2006 Feb;12(2):206–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Dong Z, Han MH, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA. 2008 Jul 22;105(29):9970–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Machida S, Chen HY, Adam Yuan Y. Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE. Nucleic Acids Res. 2011 Sep 1;39(17):7828–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Ratsch G, et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2008 Jun 24;105(25):8795–800.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Yang L, Liu Z, Lu F, Dong A, Huang H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 2006 Sep;47(6):841–50.

    CAS  PubMed  Google Scholar 

  117. Wang L, Song X, Gu L, Li X, Cao S, Chu C, et al. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell. 2013 Feb;25(2):715–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, et al. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell. 2012 Nov 9;151(4):859–70.

    CAS  PubMed  Google Scholar 

  119. Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA. 2008 Jul 22;105(29):10073–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA. 2012 Jul 31;109(31):12817–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Wu X, Shi Y, Li J, Xu L, Fang Y, Li X, et al. A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res. 2013 May;23(5):645–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Iwata Y, Takahashi M, Fedoroff NV, Hamdan SM. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing. Nucleic Acids Res. 2013 Oct;41(19):9129–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Zhang S, Xie M, Ren G, Yu B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci USA. 2013 Oct 22;110(43):17588–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012 Feb;1819(2):137–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol. 2010 Oct;21(8):805–11.

    CAS  PubMed  Google Scholar 

  126. Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012 Apr;17(4):196–203.

    CAS  PubMed  Google Scholar 

  127. Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta. 2008 Nov;1779(11):743–8.

    CAS  PubMed  Google Scholar 

  128. Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007 Jul;12(7):301–9.

    CAS  PubMed  Google Scholar 

  129. Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006 Aug;18(8):2051–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell. 2006 Feb;18(2):412–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Bari R, Datt Pant B, Stitt M, Scheible WR. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006 Jul;141(3):988–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Lappartient AG, Vidmar JJ, Leustek T, Glass AD, Touraine B. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J. 1999 Apr;18(1):89–95.

    CAS  PubMed  Google Scholar 

  133. He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. Plant Cell Rep. 2014:33(6):831–6.

    CAS  PubMed  Google Scholar 

  134. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004 Aug;16(8):2001–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell. 2005 May;17(5):1360–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Teotia PS, Mukherjee SK, Mishra NS. Fine tuning of auxin signaling by miRNAs. Physiol Mol Biol Plants. 2008 Apr;14(1–2):81–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008 May;14(5):836–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007 Oct;52(1):133–46.

    CAS  PubMed  Google Scholar 

  139. Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot. 2013 Aug;64(11):3077–86.

    CAS  PubMed  Google Scholar 

  140. Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell. 2000 Dec;12(12):2351–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Zhang JF, Yuan LJ, Shao Y, Du W, Yan DW, Lu YT. The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. Plant Cell Environ. 2008 Apr;31(4):562–74.

    CAS  PubMed  Google Scholar 

  142. Pelaez P, Sanchez F. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front Plant Sci. 2013;4:343.

    PubMed Central  PubMed  Google Scholar 

  143. Seo JK, Wu J, Lii Y, Li Y, Jin H. Contribution of small RNA pathway components in plant immunity. Mol Plant Microbe Interact. 2013 Jun;26(6):617–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Lopez A, Ramirez V, Garcia-Andrade J, Flors V, Vera P. The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet. 2011 Dec;7(12):e1002434.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, et al. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell. 2011 May 6;42(3):356–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, et al. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell. 2010 Feb;22(2):481–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Agorio A, Vera P. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell. 2007 Nov;19(11):3778–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science. 2006 Jul 7;313(5783):68–71.

    CAS  PubMed  Google Scholar 

  149. Navarro L, Jay F, Nomura K, He SY, Voinnet O. Suppression of the microRNA pathway by bacterial effector proteins. Science. 2008 Aug 15;321(5891):964–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 2007 Dec 1;21(23):3123–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA. 2006 Nov 21;103(47):18002–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Song L, Han MH, Lesicka J, Fedoroff N. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA. 2007 Mar 27;104(13):5437–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Fang Y, Spector DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol. 2007 May 1;17(9):818–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Liu Q, Yan Q, Liu Y, Hong F, Sun Z, Shi L, et al. Complementation of HYPONASTIC LEAVES1 by double-strand RNA-binding domains of DICER-LIKE1 in nuclear dicing bodies. Plant Physiol. 2013 Sep;163(1):108–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Rasia RM, Mateos J, Bologna NG, Burdisso P, Imbert L, Palatnik JF, et al. Structure and RNA interactions of the plant MicroRNA processing-associated protein HYL1. Biochemistry. 2010 Sep 28;49(38):8237–9.

    CAS  PubMed  Google Scholar 

  156. Wu F, Yu L, Cao W, Mao Y, Liu Z, He Y. The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell. 2007 Mar;19(3):914–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL. Photomorphogenesis. Arabidopsis Book. 2012;10:e0147.

    PubMed Central  PubMed  Google Scholar 

  158. Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol. 2010;91:29–66.

    CAS  PubMed  Google Scholar 

  159. Jiao Y, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants. Nat Rev Genet. 2007 Mar;8(3):217–30.

    CAS  PubMed  Google Scholar 

  160. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011 Apr 1;332(6025):103–6.

    CAS  PubMed  Google Scholar 

  161. Kaiserli E, Jenkins GI. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell. 2007 Aug;19(8):2662–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Quail PH. Phytochromes. Curr Biol. 2010 Jun 22;20(12):R504–7.

    Google Scholar 

  163. Yu X, Liu H, Klejnot J, Lin C. The cryptochrome blue light receptors. Arabidopsis Book. 2010 Sep 23;8:e0135.

    PubMed Central  PubMed  Google Scholar 

  164. Briggs WR, Christie JM. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 2002 May;7(5):204–10.

    CAS  PubMed  Google Scholar 

  165. Mizoguchi T, Coupland G. ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends Plant Sci. 2000 Oct;5(10):409–11.

    CAS  PubMed  Google Scholar 

  166. Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell. 2000 Apr 28;101(3):331–40.

    CAS  PubMed  Google Scholar 

  167. Somers DE, Schultz TF, Milnamow M, Kay SA. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell. 2000 Apr 28;101(3):319–29.

    CAS  PubMed  Google Scholar 

  168. Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell. 2001 Dec;13(12):2659–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Kevei E, Schafer E, Nagy F. Light-regulated nucleo-cytoplasmic partitioning of phytochromes. J Exp Bot. 2007;58(12):3113–24.

    CAS  PubMed  Google Scholar 

  170. Nagatani A. Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol. 2004 Dec;7(6):708–11.

    CAS  PubMed  Google Scholar 

  171. Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling. Plant Physiol. 2012 Jan;158(1):52–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, et al. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell. 1999 Aug;11(8):1445–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol. 1999 May 3;145(3):437–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V, Husselstein-Muller T, et al. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell. 2002 Jul;14(7):1541–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Chen M. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling. Curr Opin Plant Biol. 2008 Oct;11(5):503–8.

    CAS  PubMed  Google Scholar 

  176. Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009 Mar 4;28(5):591–601.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, et al. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell. 2009 Jan;21(1):118–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Gu NN, Zhang YC, Yang HQ. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response. Mol Plant. 2012 Jan;5(1):85–97.

    CAS  PubMed  Google Scholar 

  179. Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY, Jia KP, et al. Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev. 2011 May 15;25(10):1023–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Liu B, Zuo Z, Liu H, Liu X, Lin C. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev. 2011 May 15;25(10):1029–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Chen M, Schwab R, Chory J. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc Natl Acad Sci USA. 2003 Nov 25;100(24):14493–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 2011 Nov;21(11):664–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Rausenberger J, Hussong A, Kircher S, Kirchenbauer D, Timmer J, Nagy F, et al. An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. PLoS One. 2010;5(5):e10721.

    PubMed Central  PubMed  Google Scholar 

  184. Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, et al. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell. 2004 Jun;16(6):1433–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Feng CM, Qiu Y, Van Buskirk EK, Yang EJ, Chen M. Light-regulated gene repositioning in Arabidopsis. Nat Commun. 2014 Jan 6;5:3027.

    PubMed Central  PubMed  Google Scholar 

  186. Zhang X, Min JH, Huang P, Chung JS, Lee KH, Kim CS. AtSKIP functions as a mediator between cytokinin and light signaling pathway in Arabidopsis thaliana. Plant Cell Rep. 2013 Nov 22:33(3):401–9.

    PubMed  Google Scholar 

  187. Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C. Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta. 2013 Aug;238(2):381–95.

    CAS  PubMed  Google Scholar 

  188. Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. Protoplasma. 2012 Jun; 249(Suppl 2):S137–45.

    PubMed  Google Scholar 

  189. Weller JL, Hecht V, Vander Schoor JK, Davidson SE, Ross JJ. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell. 2009 Mar;21(3):800–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Hua J. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol. 2013 Aug;16(4):406–13.

    CAS  PubMed  Google Scholar 

  191. Kaur N, Li J, Hu J. Peroxisomes and photomorphogenesis. Subcell Biochem. 2013;69:195–211.

    CAS  PubMed  Google Scholar 

  192. Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J. A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science. 2002 Jul 19;297(5580):405–9.

    CAS  PubMed  Google Scholar 

  193. Carvalho RF, Campos ML, Azevedo RA. The role of phytochrome in stress tolerance. J Integr Plant Biol. 2011 Dec;53(12):920–9.

    CAS  PubMed  Google Scholar 

  194. Lau OS, Deng XW. Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol. 2010 Oct;13(5):571–7.

    CAS  PubMed  Google Scholar 

  195. Franklin KA. Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol. 2009 Feb;12(1):63–8.

    CAS  PubMed  Google Scholar 

  196. Bai S, Yao T, Li M, Guo X, Zhang Y, Zhu S, et al. PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. Mol Plant. 2014;7(4):616–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Jeong J, Choi G. Phytochrome-interacting factors have both shared and distinct biological roles. Mol Cells. 2013 May;35(5):371–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Leivar P, Quail PH. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 2011 Jan;16(1):19–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Quail PH. Phytochrome-interacting factors. Semin Cell Dev Biol. 2000 Dec;11(6):457–66.

    CAS  PubMed  Google Scholar 

  200. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature. 2008 Jan 24;451(7177):475–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  201. de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, et al. A molecular framework for light and gibberellin control of cell elongation. Nature. 2008 Jan 24;451(7177):480–4.

    CAS  PubMed  Google Scholar 

  202. Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol. 2009 Mar 10;19(5):408–13.

    CAS  PubMed  Google Scholar 

  203. Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, et al. A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol. 2012 Aug 21;22(16):1530–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  204. Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, et al. Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet. 2013 Dec;9(12):e1004025.

    Google Scholar 

  205. Ram H, Chattopadhyay S. Molecular interaction of bZIP domains of GBF1, HY5 and HYH in Arabidopsis seedling development. Plant Signal Behav. 2012 Nov 3;8(1):e22703.

    PubMed Central  PubMed  Google Scholar 

  206. Shi QM, Yang X, Song L, Xue HW. Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol Plant. 2011 Nov;4(6):1092–104.

    CAS  PubMed  Google Scholar 

  207. Zhang Y, Liu Z, Liu R, Hao H, Bi Y. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signal Behav. 2011 May;6(5):632–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Chen H, Xiong L. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation. Plant Signal Behav. 2011 Jan;6(1):123–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Chen H, Xiong L. Role of HY5 in abscisic acid response in seeds and seedlings. Plant Signal Behav. 2008 Nov;3(11):986–8.

    PubMed Central  PubMed  Google Scholar 

  210. Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J. 2007 Feb;49(3):428–41.

    CAS  PubMed  Google Scholar 

  211. Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS. Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet. 2006 Nov 24;2(11):e202.

    PubMed Central  PubMed  Google Scholar 

  212. Yi C, Deng XW. COP1– from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 2005 Nov;15(11):618–25.

    CAS  PubMed  Google Scholar 

  213. Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 2012 Oct;17(10):584–93.

    CAS  PubMed  Google Scholar 

  214. Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, et al. Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell. 2010 Dec 14;19(6):872–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF, Kachroo A, et al. Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13538–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature. 2003 Jul 31;424(6948):571–4.

    CAS  PubMed  Google Scholar 

  217. Palagyi A, Terecskei K, Adam E, Kevei E, Kircher S, Merai Z, et al. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. Plant Physiol. 2010 Aug;153(4):1834–45.

    PubMed Central  PubMed  Google Scholar 

  218. Zuo Z, Liu H, Liu B, Liu X, Lin C. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol. 2011 May 24;21(10):841–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Chang CS, Maloof JN, Wu SH. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol. 2011 May;156(1):228–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH. Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell. 2010 Jul;22(7):2370–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell. 2008 Dec 5;32(5):617–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, et al. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell. 2008 Feb;20(2):292–306.

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Jang IC, Yang JY, Seo HS, Chua NH. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev. 2005 Mar 1;19(5):593–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, et al. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 2003 Nov 1;17(21):2642–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Yang SW, Jang IC, Henriques R, Chua NH. FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell. 2009 May;21(5):1341–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Su YS, Lagarias JC. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. Plant Cell. 2007 Jul;19(7):2124–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  227. Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A. Cyclophilins: proteins in search of function. Plant Signal Behav. 2012 Nov 3;8(1):e22734.

    PubMed Central  PubMed  Google Scholar 

  228. Wang P, Heitman J. The cyclophilins. Genome Biol. 2005;6(7):226.

    PubMed Central  PubMed  Google Scholar 

  229. Schiene C, Fischer G. Enzymes that catalyse the restructuring of proteins. Curr Opin Struct Biol. 2000 Feb;10(1):40–5.

    CAS  PubMed  Google Scholar 

  230. Lorkovic ZJ, Lopato S, Pexa M, Lehner R, Barta A. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA Splicing. J Biol Chem. 2004 Aug 6;279(32):33890–8.

    CAS  PubMed  Google Scholar 

  231. Bannikova O, Zywicki M, Marquez Y, Skrahina T, Kalyna M, Barta A. Identification of RNA targets for the nuclear multidomain cyclophilin atCyp59 and their effect on PPIase activity. Nucleic Acids Res. 2013 Feb 1;41(3):1783–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Gullerova M, Barta A, Lorkovic ZJ. AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II. RNA. 2006 Apr;12(4):631–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14 (Suppl):S15–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  234. Lee SC, Lim CW, Lan W, He K, Luan S. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels. Mol Plant. 2013 Mar;6(2):528–38.

    CAS  PubMed  Google Scholar 

  235. Lesicka-Gorecka J, Szarzynska B, Sawczak M, Bagdiul I, Gorski P, Jarmolowski A, et al. Abscisic acid does not influence the subcellular distribution of the HYL1 protein from Arabidopsis thaliana. Acta Biochim Pol. 2008;55(3):517–24.

    CAS  PubMed  Google Scholar 

  236. Hugouvieux V, Kwak JM, Schroeder JI. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell. 2001 Aug 24;106(4):477–87.

    CAS  PubMed  Google Scholar 

  237. Ng CK, Kinoshita T, Pandey S, Shimazaki K, Assmann SM. Abscisic acid induces rapid subnuclear reorganization in guard cells. Plant Physiol. 2004 Apr;134(4):1327–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  238. Li J, Wang XQ, Watson MB, Assmann SM. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science. 2000 Jan 14;287(5451):300–3.

    CAS  PubMed  Google Scholar 

  239. Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell. 2005 Jan;16(1):260–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, et al. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell. 2009 May;21(5):1592–606.

    PubMed Central  CAS  PubMed  Google Scholar 

  241. Lorkovic ZJ, Barta A. Role of Cajal bodies and nucleolus in the maturation of the U1 snRNP in Arabidopsis. PLoS One. 2008;3(12):e3989.

    PubMed Central  PubMed  Google Scholar 

  242. Politz JC, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA. 2009 Sep;15(9):1705–15.

    CAS  PubMed  Google Scholar 

  243. Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol. 2010 Aug;17(8):1030–4.

    CAS  PubMed  Google Scholar 

  244. Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ. Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol. 2009 Sep;5(9):e1000507.

    PubMed Central  PubMed  Google Scholar 

  245. Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, et al. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell. 2009 Jul;21(7):2045–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Platani M, Goldberg I, Lamond AI, Swedlow JR. Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol. 2002 Jul;4(7):502–8.

    CAS  PubMed  Google Scholar 

  247. Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell. 2005 Mar 11;120(5):613–22.

    CAS  PubMed  Google Scholar 

  248. Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. RNA polymerase IV directs silencing of endogenous DNA. Science. 2005 Apr 1;308(5718):118–20.

    CAS  PubMed  Google Scholar 

  249. Pontes O, Vitins A, Ream TS, Hong E, Pikaard CS, Costa-Nunes P. Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains. PLoS One. 2013;8(6):e65652.

    PubMed Central  CAS  PubMed  Google Scholar 

  250. Dou K, Huang CF, Ma ZY, Zhang CJ, Zhou JX, Huang HW, et al. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Res. 2013 Oct;41(18):8489–502.

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, et al. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res. 2013 Feb 1;41(3):1984–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  252. Ausin I, Greenberg MV, Li CF, Jacobsen SE. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis. Epigenetics. 2012 Jan 1;7(1):29–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  253. Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, et al. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 2013 Oct 16;42(2):1224–44.

    PubMed Central  PubMed  Google Scholar 

  254. Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR, et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell. 2010 Apr 9;38(1):67–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  255. Shikata H, Nakashima M, Matsuoka K, Matsushita T. Deletion of the RS domain of RRC1 impairs phytochrome B signaling in Arabidopsis. Plant Signal Behav. 2012 Aug;7(8):933–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  256. Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, Matsuoka K, et al. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. Plant J. 2012 Jun;70(5):727–38.

    CAS  PubMed  Google Scholar 

  257. Dundr M. Nucleation of nuclear bodies. Methods Mol Biol. 2013;1042:351–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Carmo-Fonseca M, Rino J. RNA seeds nuclear bodies. Nat Cell Biol. 2011 Feb;13(2):110–2.

    CAS  PubMed  Google Scholar 

  259. Belaya K, St Johnston D. Using the mRNA-MS2/MS2CP-FP system to study mRNA transport during Drosophila oogenesis. Methods Mol Biol. 2011;714:265–83.

    CAS  PubMed  Google Scholar 

  260. Keryer-Bibens C, Barreau C, Osborne HB. Tethering of proteins to RNAs by bacteriophage proteins. Biol Cell. 2008 Feb;100(2):125–38.

    CAS  PubMed  Google Scholar 

  261. Querido E, Chartrand P. Using fluorescent proteins to study mRNA trafficking in living cells. Methods Cell Biol. 2008;85:273–92.

    CAS  PubMed  Google Scholar 

  262. Schonberger J, Hammes UZ, Dresselhaus T. In vivo visualization of RNA in plants cells using the lambdaN(2)(2) system and a GATEWAY-compatible vector series for candidate RNAs. Plant J. 2012 Jul;71(1):173–81.

    PubMed  Google Scholar 

  263. Liu Y, Liu Q, Yan Q, Shi L, Fang Y. Nucleolus-tethering system (NoTS) reveals that assembly of photobodies follows a self-organization model. Mol Biol Cell. 2014 Apr;25(8):1366–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  264. Mao YS, Sunwoo H, Zhang B, Spector DL. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol. 2011 Jan;13(1):95–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  265. Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007 Dec;8(12):1006–16.

    CAS  PubMed  Google Scholar 

  266. Lallemand-Breitenbach V, de The H. PML nuclear bodies. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000661.

    PubMed Central  PubMed  Google Scholar 

  267. Dundr M. Seed and grow: a two-step model for nuclear body biogenesis. J Cell Biol. 2011 May 16;193(4):605–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Galvao RM, Li M, Kothadia SM, Haskel JD, Decker PV, Van Buskirk EK, et al. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. Genes Dev. 2012 Aug 15;26(16):1851–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  269. Chen M, Galvao RM, Li M, Burger B, Bugea J, Bolado J, et al. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell. 2010 Jun 25;141(7):1230–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  270. Jacobsen SE, Running MP, Meyerowitz EM. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development. 1999 Dec;126(23):5231–43.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of Fang’s laboratory for insightful discussions. This work was supported by grants to Y. F. from National Natural Science Foundation of China (91319304 and 31171168), National Basic Research Program of China (973 Program, 2012CB910503).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, Y., Fang, Y. (2015). Nuclear Bodies and Responses to the Environments. In: Pontes, O., Jin, H. (eds) Nuclear Functions in Plant Transcription, Signaling and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2386-1_3

Download citation

Publish with us

Policies and ethics