Skip to main content

Advances in Process Analytical Technology in Freeze-Drying

  • Chapter
  • First Online:
Lyophilized Biologics and Vaccines

Abstract

Process analytical technology (PAT) is an integral part of quality by design (QbD), and it allows the online monitoring of critical process parameters to ensure acceptable product quality attributes. This chapter provides a systematic review of latest PAT tools for freeze-drying, with emphasis on suitability for large-scale manufacturing process. Common process monitoring devices such as product temperature sensors (including wireless sensors), Pirani gauge, manometric temperature measurement (MTM), tunable diode laser adsorption spectroscopy (TDLAS), plasma emission spectroscopy (Lyotrack), near-infrared (NIR), and Raman et al. are reviewed in terms of the operation mechanism, major applications, and limitations. These PAT tools are then compared based on their capabilities, practical advantages, and scalability to a large-scale freeze dryer. The criteria of an “ideal” future PAT tool for freeze-drying are then proposed in order to be compliant with the QbD requirements. Finally, the current status of PAT implementation in both development scale and manufacturing scale lyophilizer is discussed, and future implementation of promising PAT tools is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bedi S, Balabathula P, Mandal B, Mittal N, Bhattacharjee H. NIR applications for lyophilization of biopharmaceuticals. Am Pharm Rev. 2012;15(2):10–7.

    CAS  Google Scholar 

  2. De Beer TRM, Allesø M, Goethals F, Coppens A, Vander Heyden Y, Lopez De Diego H, Rantanen J, Verpoort F, Vervaet C, Remon JP, Baeyens WRG. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring. Anal Chem. 2007;79(21):7992–8003.

    Article  CAS  PubMed  Google Scholar 

  3. De Beer TRM, Vercruysse P, Burggraeve A, Quinten T, Ouyang J, Zhang X, Vervaet C, Remon JP, Baeyens WRG. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. J Pharm Sci. 2009a;98(9):3430–46.

    Article  CAS  PubMed  Google Scholar 

  4. De Beer TRM, Wiggenhorn M, Veillon R, Debacq C, Mayeresse Y, Moreau B, Burggraeve A, Quinten T, Friess W, Winter G, Vervaet C, Remon JP, Baeyens WRG. Importance of using complementary process analyzers for the process monitoring, analysis, and understanding of freeze drying. Anal Chem. 2009b;81(18):7639–49.

    Article  CAS  PubMed  Google Scholar 

  5. Gieseler H, Kessler WJ, Finson M, Davis SJ, Mulhall PA, Bons V, Debo DJ, Pikal MJ. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying. J Pharm Sci. 2007;96(7):1776–93.

    Article  CAS  PubMed  Google Scholar 

  6. Hottot A, Andrieu J, Vessot S, Shalaev E, Gatlin LA, Ricketts S. Experimental study and modeling of freeze-drying in syringe configuration. Part I: freezing step. Dry Technol. 2009;27(1):40–8.

    Article  CAS  Google Scholar 

  7. Kamat MS, Lodder RA, DeLuca PP. Near-infrared spectroscopic determination of residual moisture in lyophilized sucrose through intact glass vials. Pharm Res. 1989;6(11):961–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kauppinen A, Toiviainen M, Aaltonen J, Korhonen O, Järvinen K, Juuti M, Pellinen R, Ketolainen J. Microscale freeze-drying with Raman spectroscopy as a tool for process development. Anal Chem. 2013;85(4):2109–16.

    Article  CAS  PubMed  Google Scholar 

  9. Konstantinidis AK, Kuu W, Otten L, Nail SL, Sever RR. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate. J Pharm Sci. 2011;100(8):3453–70.

    Article  CAS  PubMed  Google Scholar 

  10. Kuu WY, Nail SL. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS). J Pharm Sci. 2009;98(9):3469–82.

    Article  CAS  PubMed  Google Scholar 

  11. Kuu WY, Nail SL, Sacha G. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying. J Pharm Sci. 2009;98(3):1136–54.

    Article  CAS  PubMed  Google Scholar 

  12. Kuu WY, Obryan KR, Hardwick LM, Paul TW. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model. Pharm Dev Technol. 2011;16(4):343–57.

    Article  CAS  PubMed  Google Scholar 

  13. Last IR, Prebble KA. Suitability of near-infrared methods for the determination of moisture in a freeze-dried injection product containing different amounts of the active ingredient. J Pharm Biomed Anal. 1993;11(11–12):1071–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lin TP, Hsu CC. Determination of residual moisture in lyophilized protein pharmaceuticals using a rapid and non-invasive method: near infrared spectroscopy. PDA J Pharm Sci Technol. 2002;56(4):196–205.

    PubMed  Google Scholar 

  15. MacKenzie AP. Factors affecting the mechanism of transformation of ice into water vapor in the freeze-drying process. Ann NY Acad Sci. 1965;125(2):522–47.

    Article  CAS  Google Scholar 

  16. Mayeresse Y, Veillon R, Sibille P, Nomine C. Freeze-drying process monitoring using a cold plasma ionization device. PDA J Pharm Sci Technol. 2007;61(3):160–74.

    CAS  PubMed  Google Scholar 

  17. Milton N, Pikal MJ, Roy MR, Nail SL. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization. PDA J Pharm Sci Technol. 1997;51(1):7–16.

    CAS  PubMed  Google Scholar 

  18. Nail SL, Johnson W. Methodology for in-process determination of residual water in freeze-dried products. Int Symposium Biol Prod Freeze-Dry Formul. 1992;74:137–51.

    CAS  Google Scholar 

  19. Patel SM, Pikal M. Process analytical technologies (PAT) in freeze-drying of parenteral products PAT in freeze-drying of parenteral products. Pharm Dev Technol. 2009;14(6):567–87.

    Article  CAS  PubMed  Google Scholar 

  20. Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech. 2010;11(1):73–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Pieters S, De Beer T, Kasper JC, Boulpaep D, Waszkiewicz O, Goodarzi M, Tistaert C, Friess W, Remon JP, Vervaet C, Vander Heyden Y. Near-infrared spectroscopy for in-line monitoring of protein unfolding and its interactions with lyoprotectants during freeze-drying. Anal Chem. 2012;84(2):947–55.

    Article  CAS  PubMed  Google Scholar 

  22. Pikal MJ. Heat and mass transfer in low pressure gases: applications to freeze drying. Drug Pharm Sci. 2000;102(Transport Processes in Pharmaceutical Systems):611–86.

    CAS  Google Scholar 

  23. Pikal MJ. Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state relaxation dynamics. Drug Pharm Sci. 2004;137(Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products):63–107.

    CAS  Google Scholar 

  24. Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci. 1984;73(9):1224–37.

    Article  CAS  PubMed  Google Scholar 

  25. Rathore AS, Low D. Managing raw materials in the QbD paradigm, part 1: understanding risks. Biopharm Int. 2010;23(11):34.

    Google Scholar 

  26. Read EK, Shah RB, Riley BS, Park JT, Brorson KA, Rathore AS. Process analytical technology (PAT) for biopharmaceutical products: part ii. Concepts and applications. Biotechnol Bioeng. 2010;105(2):285–95.

    Article  CAS  PubMed  Google Scholar 

  27. Roy ML, Pikal MJ. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. J Parenter Sci Technol. 1989;43(2):60–6

    CAS  PubMed  Google Scholar 

  28. Schneid S, Gieseler H. Evaluation of a new wireless temperature remote interrogation system (TEMPRIS) to measure product temperature during freeze drying. AAPS PharmSciTech. 2008;9(3):729–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schneid SC, Gieseler H, Kessler WJ, Pikal MJ. Non-Invasive Product Temperature Determination during Primary Drying using Tunable Diode Laser Absorption Spectroscopy. J Pharm Sci. 2009;98(9):3406–18. doi:10.1002/jps.21522.

    Article  CAS  PubMed  Google Scholar 

  30. Smith G, Polygalov E, Arshad MS, Page T, Taylor J, Ermolina I. An impedance-based process analytical technology for monitoring the lyophilisation process. Int J Pharm. 2013;449(1–2):72–83. doi:10.1016/j.ijpharm.2013.03.060.

    Article  CAS  PubMed  Google Scholar 

  31. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  32. Tang X, Nail SL, Pikal MJ. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Pharm Res. 2005;22(4):685–700.

    Article  CAS  PubMed  Google Scholar 

  33. Tang X, Nail SL, Pikal MJ. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement. AAPS PharmSciTech. 2006a;7(4):97.

    PubMed  Google Scholar 

  34. Tang X, Nail SL, Pikal MJ. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part 1, product temperature measurement. AAPS PharmSciTech. 2006b;7(1):E1–E9.

    Article  Google Scholar 

  35. Wang B, Pikal MJ. Stabilization of lyophilized pharmaceuticals by process optimization: challenges and opportunities. Am Pharm Rev. 2012;15(6):82–9.

    Google Scholar 

  36. Zheng Y, Lai X, Bruun SW, Ipsen H, Larsen JN, Løwenstein H, Søndergaard I, Jacobsen S. Determination of moisture content of lyophilized allergen vaccines by NIR spectroscopy. J Pharm Biomed Anal. 2008;46(3):592–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingquan (Stuart) Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, B., McCoy, T. (2015). Advances in Process Analytical Technology in Freeze-Drying. In: Varshney, D., Singh, M. (eds) Lyophilized Biologics and Vaccines. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2383-0_8

Download citation

Publish with us

Policies and ethics