Current Trends and Advances in Bulk Crystallization and Freeze-Drying of Biopharmaceuticals

Chapter

Abstract

Recombinant biotherapeutics are generally purified, stored, and shipped as frozen liquids and ultimately processed by fill-finish operations into marketable drug products. While most biopharmaceuticals are processed and stored as frozen liquid substances, bulk crystallization and freeze-drying can be successfully applied as a finishing step for biopharmaceutical processing in several instances. The choice of final processing and holdup step for biopharmaceutical drug substance is ultimately determined by several factors including protein storage stability, processing volumes, equipment scale, and processing time. Insulin, the first approved recombinant biopharmaceutical for human use is one such therapeutic protein wherein the drug substance is processed, stored, shipped, and also marketed as a freeze-dried solid. The present chapter discusses the potential of bulk crystallization and bulk freeze-drying as unit operations in biopharmaceutical development. Further, the chapter discusses several instrumentation, process, and scale-up-related developments in the area of bulk crystallization and freeze-drying for biopharmaceuticals.

Keywords

Bulk crystallization Protein crystallization Bulk freeze-drying Validation Scale-up Vapor diffusion Batch crystallization Moisture Powder bags GORE® LYOGUARD® 

References

  1. 1.
    Abdul-Fattah AM, Kalonia DS, et al. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci. 2007;96(8):1886–916.CrossRefPubMedGoogle Scholar
  2. 2.
    Anand K, Mathur D, et al. Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66(Pt 5):490–7.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Anderson WF. Structural genomics and drug discovery for infectious diseases. Infect Disord Drug Targets. 2009;9(5):507–17.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Bahetia A, Kumar L, Bansal AK. Excipients used in lyophilization of small molecules. J Excip Food Chem. 2010;1(1):41–54.Google Scholar
  5. 5.
    Bowen M, Turok R, et al. Spray drying of monoclonal antibodies: investigating powder-based biologic drug substance bulk storage. Dry Technol. 2013;31(13–14):1441–50.CrossRefGoogle Scholar
  6. 6.
    Buckel P. Recombinant proteins for therapy. Trends Pharmacol Sci. 1996;17(12):450–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Chang L L, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009;98(9):2886–908.CrossRefPubMedGoogle Scholar
  8. 8.
    Chayen NE. Turning protein crystallisation from an art into a science. Curr Opin Struct Biol. 2004;14(5):577–83.CrossRefPubMedGoogle Scholar
  9. 9.
    Chayen NE, Saridakis E. Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods. 2008;5(2):147–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Chim N, McMath LM, et al. Advances in Mycobacterium tuberculosis structural genomics: investigating potential chinks in the armor of a deadly pathogen. Infect Disord Drug Targets. 2009;9(5):475–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Chim N, Habel JE, et al. The TB Structural Genomics Consortium: a decade of progress. Tuberculosis. (Edinb) 2011;91(2):155–72.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Fogg MJ, Wilkinson AJ. Higher-throughput approaches to crystallization and crystal structure determination. Biochem Soc Trans. 2008;36(Pt 4):771–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Gassler M, Rey L. Development of a new concept for bulk freeze-drying: LYOGUARD® Freeze-Dry Packaging. New York, Marcel Dekker, Inc.; 2004.CrossRefGoogle Scholar
  14. 14.
    Goddard P. Therapeutic proteins—a pharmaceutical perspective. Adv Drug Deliv Rev. 1991;6(2):103–131.CrossRefGoogle Scholar
  15. 15.
    Goulding CW, Apostol M, et al. The TB structural genomics consortium: providing a structural foundation for drug discovery. Curr Drug Targets Infect Disord. 2002;2(2):121–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Gutka HJ, Franzblau SG, et al. Crystallization and preliminary X-ray characterization of the glpX-encoded class II fructose-1,6-bisphosphatase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67(Pt 6):710–3.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hebel D, Huber S, et al. Stirred batch crystallization of a therapeutic antibody fragment. J Biotechnol. 2013;166(4):206–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Hebel D, Ürdingen M, Hekmat D, Weuster-Botz D. Development and scale up of high-yield crystallization processes of lysozyme and lipase using additives. Cryst Growth Des. 2013;13(6):2499–506.CrossRefGoogle Scholar
  19. 19.
    Hekmat D, Hebel D, et al. Crystallization of lysozyme: from vapor diffusion experiments to batch crystallization in agitated ml-scale vessels. Process Biochem. 2007;42(12):1649–54.CrossRefGoogle Scholar
  20. 20.
    Joachimiak A. High-throughput crystallography for structural genomics. Curr Opin Struct Biol. 2009;19(5):573–84.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Jovanovic N, Bouchard A, et al. Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm Res. 2004;21(11):1955–69.CrossRefPubMedGoogle Scholar
  22. 22.
    Jovanovic N, Bouchard A, et al. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Eur J Pharm Sci. 2006;27(4):336–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Jovanovic N, Bouchard A, et al. Stabilization of IgG by supercritical fluid drying: optimization of formulation and process parameters. Eur J Pharm Biopharm. 2008;68(2):183–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Judge RA. Investigating the bulk crystallization of proteins School of Chemical Engineering, The University of Queensland. PhD Thesis; 1995.Google Scholar
  25. 25.
    Judge RA, Forsythe EL, et al. The effect of protein impurities on lysozyme crystal growth. Biotechnol Bioeng. 1998;59(6):776–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Kendrew JC, Bodo G, et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958;181(4610):662–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Kolhe P, Holding E, Lary E, Chico S, Singh SK. Large-scale freezing of biologics: understanding protein and solute concentration changes in a cryovessel—Part 2. BioPharm Int. 2010;23(7).Google Scholar
  28. 28.
    Kolhe P, Holding E, Lary E, Chico S, Singh SK. Large-scale freezing of biologics: understanding protein and solute concentration changes in a cryovessel—Part I. BioPharm Int. 2010;23(6).Google Scholar
  29. 29.
    Lashmar UT, Vanderburgh M, Little SJ. Bulk freeze–thawing of macromolecules effects of cryoconcentration on their formulation and stability. BioProcess Int. 2007;5(6):44–54.Google Scholar
  30. 30.
    Manning MC, Patel K, et al. Stability of protein pharmaceuticals. Pharm Res. 1989;6(11):903–18.CrossRefPubMedGoogle Scholar
  31. 31.
    Manning MC, Chou DK, et al. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Mathur D, Anand K, et al. Crystallization and preliminary X-ray characterization of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 4):353–5.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Maury M, Murphy K, et al. Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. Eur J Pharm Biopharm. 2005;59(2):251–61.CrossRefPubMedGoogle Scholar
  34. 34.
    Mayeresse Y, de Cupere V, Veillon R, Brendle J. Considerations for transferring a bulk freeze-drying process from a glass container to a tray. Pharm Eng. 2009;29:1–8.Google Scholar
  35. 35.
    McPherson A. Current approaches to macromolecular crystallization. Eur J Biochem. 1990;189(1):1–23.CrossRefPubMedGoogle Scholar
  36. 36.
    McPherson A. editor. An overview of macromolecular crystallography. Introduction to macromolecular crystallography. Hoboken, Wiley; 2008.Google Scholar
  37. 37.
    McPherson A, Cudney B. Searching for silver bullets: an alternative strategy for crystallizing macromolecules. J Struct Biol. 2006;156(3):387–406.CrossRefPubMedGoogle Scholar
  38. 38.
    Murillo AC, Li HY, et al. High throughput crystallography of TB drug targets. Infect Disord Drug Targets. 2007;7(2):127–39.CrossRefPubMedGoogle Scholar
  39. 39.
    Neergaard MS, Kalonia DS, et al. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - prediction of viscosity through protein-protein interaction measurements. Eur J Pharm Sci. 2013;49(3):400–10.CrossRefPubMedGoogle Scholar
  40. 40.
    Norvell JC, Berg JM. Update on the protein structure initiative. Structure. 2007;15(12):1519–22.CrossRefPubMedGoogle Scholar
  41. 41.
    Patel S, Pikal M. Emerging freeze-drying process development and scale-up issues. AAPS PharmSciTech. 2011;12(1):372–8.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Peters J, Minuth T, et al. Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr Purif. 2005;39(1):43–53.CrossRefPubMedGoogle Scholar
  43. 43.
    Przybycien TM, Pujar NS, et al. Alternative bioseparation operations: life beyond packed-bed chromatography. Curr Opin Biotechnol. 2004;15(5):469–78.CrossRefPubMedGoogle Scholar
  44. 44.
    Pusey ML, Liu ZJ, et al. Life in the fast lane for protein crystallization and X-ray crystallography. Prog Biophys Mol Biol. 2005;88(3):359–86.CrossRefPubMedGoogle Scholar
  45. 45.
    Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–14.CrossRefPubMedGoogle Scholar
  46. 46.
    Rayment I. Small-scale batch crystallization of proteins revisited: an underutilized way to grow large protein crystals. Structure. 2002;10(2):147–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Sauder MJ, Rutter ME, et al. High throughput protein production and crystallization at NYSGXRC. Methods Mol Biol. 2008;426:561–75.CrossRefPubMedGoogle Scholar
  48. 48.
    Schule S, Friess W, et al. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur J Pharm Biopharm. 2007;65(1):1–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Shire SJ, Shahrokh Z, et al. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402.CrossRefPubMedGoogle Scholar
  50. 50.
    Singh SK, Kolhe P, Wang W, Nema S. Large-scale freezing of biologics a practitioner’s review, part one: fundamental aspects. BioProcess Int. 2009;7(9):32–44.Google Scholar
  51. 51.
    Singh SK, Kolhe P, Wang W, Nema S. large-scale freezing of biologics a practitioner’s review, Part 2: practical advice. BioProcess Int. 2009;7(10):34–42.Google Scholar
  52. 52.
    Smejkal, B, Agrawal NJ, et al. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol Bioeng. 2013a;110(9):2452–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Smejkal B, Helk B, et al. Protein crystallization in stirred systems–scale-up via the maximum local energy dissipation. Biotechnol Bioeng. 2013b;110(7):1956–63.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang W, Singh S, et al. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Xiao R, Anderson S, et al. The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol. 2010;172(1):21–33.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Yadav S, Liu J, et al. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99(3):1152–68.CrossRefPubMedGoogle Scholar
  59. 59.
    Yadav S, Shire SJ, et al. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101(3):998–1011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Thermalin Diabetes LLCClevelandUSA
  2. 2.Julphar PharmaceuticalsRas Al KhaimahUAE

Personalised recommendations