Managing the Mississippi River Floodplain: Achieving Ecological Benefits Requires More Than Hydrological Connection to the River

  • Harold L. Schramm
  • William B. Richardson
  • Brent C. Knights


Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the longitudinal gradient of the Mississippi River and provide informative contrasts to guide floodplain management. Prediction of the effects of climate change on this system will be complicated by the magnitude of the watershed that encompasses 41 % of the continental USA and multiple climatic regions.


Floodplain Mississippi River Fish Nutrients Flood pulse Management 



J.C. Nelson and Robert Kratt provided assistance with graphics. James Rogala provided unpublished hydrology data. Barry Johnson and Jeff Janvrin provided useful reviews of earlier versions of this manuscript.


  1. Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47, 761–776.CrossRefGoogle Scholar
  2. Anfinson, J. O. (2003). The river we have wrought: A history of the Upper Mississippi. Minneapolis: University of Minnesota Press.Google Scholar
  3. Arts, M. T., Ackman, R. G., & Holub, B. J. (2001). “Essential fatty acids” in aquatic ecosystems: A crucial link between diet and human health and evolution. Canadian Journal of Fisheries and Aquatic Sciences, 58, 122–137.CrossRefGoogle Scholar
  4. Baker, J. A., Killgore, K. J., & Kasul, R. L. (1991). Aquatic habitats and fish communities in the lower Mississippi River. Reviews in Aquatic Sciences, 3, 313–356.Google Scholar
  5. Barko, V. A., Herzog, D. P., & O’Connell, M. T. (2006). Response of fishes to floodplain connectivity during and following a 500-year flood event in the unimpounded upper Mississippi River. Wetlands, 26(1), 244–257.CrossRefGoogle Scholar
  6. Becker, G. C. (1983). Fishes of Wisconsin. Madison: University of Wisconsin Press.Google Scholar
  7. Belby, C. S. (2009). Human impacts on sedimentation and nutrient sequestration in the Upper Mississippi River floodplain. Ph. D. Dissertation, University Wisconsin, Madison, WI. p. 331.Google Scholar
  8. Brauman, K. A., Daily, G. C., Duarte, T. K., & Mooney, H. A. (2007). The nature and value of ecosystem services: An overview highlighting hydrologic services. Annual Review of Environmental Resources, 32, 67–98.CrossRefGoogle Scholar
  9. Buijse, A. D., Coops, H., Staras, M., Jans, L. H., Van Geest, G. J., Grift, R. E., Ibelings, B. W., Oosterberg, W., & Roozen, F. C. J. M. (2002). Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology, 47, 889–907.CrossRefGoogle Scholar
  10. Carlson, B. D., Propst, D. B., Stynes, D. J., & Jackson, R. S. (1995). Economic impact of recreation on the Upper Mississippi River system. U.S. Army Corps of Engineers, Headquarters, Washington, DC, April 1995. Technical Report EL-95-16. 64 pp. Accessed 17 April 2012.
  11. Cavanaugh, J. C., Richardson, W. B., Strauss, E. A., & Bartsch, L. A. (2006). Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River. River Research and Application, 22, 651–666.CrossRefGoogle Scholar
  12. Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310.CrossRefGoogle Scholar
  13. De Jager, N. R. & Rohweder, J. J. (2012). Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA. Ecological Indicators, 13, 275–283.CrossRefGoogle Scholar
  14. Donner, S. D. & Scavia, D. (2007). How climate controls the flux of nitrogen by the Mississippi River and the development of hypoxia in the Gulf of Mexico. Limnology and Oceanography, 52, 856–861.CrossRefGoogle Scholar
  15. Driscoll, M. T., Davis, W. R., & Schramm, H. L., Jr. (1999). Relative abundance of catfishes in main channel and secondary channel habitats in the Lower Mississippi River. In E. R. Irwin, W. A. Hubert, C. F. Rabeni, H. L. Schramm, Jr., & T. Coon, (Eds.), Catfish 2000: Proceedings of the first international ictalurid symposium (pp. 231–238). American Fisheries Society, Symposium 24, Bethesda, Maryland.Google Scholar
  16. Eggleton, M. A., & Schramm, H. L., Jr. (2004). Feeding ecology and energetic relationships with habitat of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictus olivaris, in the lower Mississippi River, U.S.A. Environmental Biology of Fishes, 70, 107–121.CrossRefGoogle Scholar
  17. Fremling, C. R. (2005). Immortal river. The Upper Mississippi in ancient and modern times. Madison: University of Wisconsin Press.Google Scholar
  18. Fremling, C. R., & Claflin, T. O. (1984). Ecological history of the Upper Mississippi River. In J. G. Wiener, R. V. Anderson, & D. R. McConville (Eds.), Contaminants in the Upper Mississippi River. Proceedings of the 15th Annual Meeting of the Mississippi River Research Consortium, Butterworth Publishers, Boston, Massachusetts. pp. 5–24.Google Scholar
  19. Fremling, C. R., Rasmussen, J. L., Sparks, R. E., Cobb, S. P., Bryan, C. F., & Claflin, T. O. (1989). Mississippi river fisheries: A case history. 1989. In D. P. Dodge (Ed.), Proceedings of the International Large River Symposium (Vol. 106, pp. 309–351). Canadian Special Publication of Fisheries and Aquatic Sciences.Google Scholar
  20. Galat, D. L., Fredrickson, L. H., Humburg, D. D., Bataille, K. J., Bodie, J. R., Dohrenwend, J., et al. (1998). Flooding to restore connectivity of regulated, large-river wetlands. BioScience, 48, 721–733.CrossRefGoogle Scholar
  21. Galat, D. L., Barko, J. W., Bartell, S. M., Davis, M., Johnson, B. L., Lubinski, K. S., Nestler, J. M., & Wilcox, D. B. (2007). Environmental science panel report: establishing system-wide goals and objectives for the Upper Mississippi River System. Upper Mississippi River System Navigation and Ecosystem Sustainability Program Environmental Report 6. U.S. Army Corps of Engineers, Rock Island, St. Louis, and St. Paul Districts. Accessed 17 April 2012.
  22. Garvey, V., Ickes, B., & Zigler, S. (2010). Challenges in merging fisheries research and management: The Upper Mississippi river experience. Hydrobiologia, 640, 125–144.CrossRefGoogle Scholar
  23. Gelwicks, G. T. (1995). Fish movement between the lower Missouri River and a managed floodplain wetland in Missouri. Master’s thesis. University of Missouri, Columbia.Google Scholar
  24. Gent, R., Pitlo, J., Jr., & Boland, T. (1995). Largemouth bass response to habitat and water quality rehabilitation in a backwater of the Upper Mississippi River, North American. Journal of Fisheries Management, 15(4), 784–793.CrossRefGoogle Scholar
  25. Goolsby, D. A., Battaglin, W. A., Lawrence, G. B., Artz, R. S., Aulenbach, B. T., Hooper, R. P., Keeney, D. R., & Stensland, G. J. (1999). Flux and sources of nutrients in the Mississippi-Atchafalaya River basin: Topic 3. Report for the Integrated Assessment on hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program. p. 130.Google Scholar
  26. Górski, K., De Leeuw, J. J., Winer, H. V., Vekhov, D. A., Minin, A. E., Buijse, A. D., & Nagelkerke, L. A. J. (2011). Fish recruitment in a large, temperate floodplain: The importance of annual flooding, temperature and habitat complexity. Freshwater Biology, 56, 1–16CrossRefGoogle Scholar
  27. Groffman, P. M., Holland, E. A., Myrold, D. D., Robertson, G. P., & Zou, X. (1999). Denitrification. In G. P. Robertson, C. S. Bloe, & P. Sollins (Eds.), Standard methods for long-term ecological research (pp. 272–288). Oxford: Oxford University Press.Google Scholar
  28. Gutreuter, S. (2004). Challenging the assumption of habitat limitation: An example from centrarchid fishes over an intermediate spatial scale. River Research and Applications, 20, 413–425.CrossRefGoogle Scholar
  29. Gutreuter S, Bartels, A. D., Irons, K., Sandheinrich, M. B. (1999). Evaluation of the flood-pulse concept based on statistical models of growth of selected fishes of the upper Mississippi River system. Canadian Journal of Fisheries and Aquatic Sciences, 56, 2282–2291.CrossRefGoogle Scholar
  30. Hein, T., Baranyi, C., Reckendorfer, W., & Schiemer, F. (2004). The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the River Danube, Austria. Science of the Total Environment, 328, 207–218.CrossRefGoogle Scholar
  31. Houser, J. N., & Richardson, W. B. (2010). Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing and effects on the river ecosystem. Hydrobiologia, 640, 71–88.CrossRefGoogle Scholar
  32. Ickes, B. S., Bowler, M. C., Bartels, A. D., Kirby, D. J., DeLain, S., Chick, J. H., Barko, V. A., Irons, K. S., & Pegg, M. A. (2005). Multi-year Synthesis of the Fish Component from 1993 to 2002 for the long term resource monitoring program. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. LTRMP 2005 T005. 60 p. + Appendixes A–E.Google Scholar
  33. James, W. F., Barko, J. W., & Eakin, H. L. (2004). Impacts of sediment dewatering and rehydration on sediment nitrogen concentrations and macrophyte growth. Canadian Journal of Fisheries and Aquatic Sciences, 61, 538–546.CrossRefGoogle Scholar
  34. James, W. F., Richardson, W. B., & Soballe, D. M. (2008a). Contribution of sediment fluxes and transformations to the summer nitrogen budget of an upper Mississippi River backwater system. Hydrobiologia, 598, 95–107.CrossRefGoogle Scholar
  35. James, W. F., Richardson, W. B. & Soballe, D. M. (2008b). Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters. River Research and Application, 24, 1206–1217.CrossRefGoogle Scholar
  36. Janáč, M. M., Ondračková, M., Jurajda, P., Valová, Z., & Reichard, M. (2010). Flood duration determines the reproduction success of fish in artificial oxbows in a floodplain of a potamal river. Ecology of Freshwater Fish, 19, 1–12.CrossRefGoogle Scholar
  37. Janvrin, J. A. (2005). A comparison of the pre- and post-impoundment fish assemblage of the Upper Mississippi River (Pools 4–13) with an emphasis on centrarchids. American Fishery Society Symposium, 45, 323–343.Google Scholar
  38. Johnson, B. L., & Hagerty, K. H. (Eds.). (2008). Status and trends of selected resources of the Upper Mississippi River System. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, December 2008. Technical Report LTRMP 2008-T002. 102 pp + Appendixes A–B.Google Scholar
  39. Johnson, B. L., Knights, B. C., Barko, J. W., Gaugush, R. F., Soballe, D. M., & James, W. F. (1998). Estimating flow rates to optimize winter habitat for centrarchid fishes in Mississippi River (USA) backwaters. Regulated Rivers, 14, 499–510.CrossRefGoogle Scholar
  40. Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110–127.Google Scholar
  41. Justic, D., Rabalais, N. R., & Turner, R. E. (2005). Coupling between climate variability and coastal eutrophication: Evidence and outlook for the northern Gulf of Mexico. Journal of Sea Research, 54, 25–35.CrossRefGoogle Scholar
  42. Kern, J., Darwich, A., Furch, K., & Junk, W. J. (1996). Seasonal denitrification in flooded and exposed sediments from the Amazon floodplain at Lago Camaleao. Microbial Ecology, 32, 47–57.CrossRefGoogle Scholar
  43. King, A. J., Humphries, P., & Lake, P. S. (2003). Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences, 60, 773–786.CrossRefGoogle Scholar
  44. Kleeberg, A., & Heidenreich, M. (2004). Release of nitrogen and phosphorus from macrophyte stands of summer dried out sediments of a eutrophic reservoir. Archives fur Hydrobiology, 159, 115–136.CrossRefGoogle Scholar
  45. Knights, B. C., Johnson, B. L., & Sandheinrich, M. B., (1995). Response of bluegill and black crappie to dissolved oxygen, temperature, and current in backwater lakes of the upper Mississippi River during winter. North American Journal of Fisheries Management, 15, 390–399.CrossRefGoogle Scholar
  46. Knox, J. C. (2000). Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews, 19, 439–457.CrossRefGoogle Scholar
  47. Knox, J. C. (2006). Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated. Geomorphology, 79, 286–310.CrossRefGoogle Scholar
  48. Koel, T. M. (2004). Spatial variation in fish species richness of the Upper Mississippi River System. Transactions of the American Fisheries Society, 133, 984–1003.CrossRefGoogle Scholar
  49. Kreiling, R. M., Richardson, W. B., Cavanaugh, J. C., & Bartsch, L. A. (2010). Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: The role of rooted aquatic vegetation. Biogeochemistry, 104, 267–274.Google Scholar
  50. Langrehr, H. A., Gray, B. R., & Janvrin, J. A. (2007). Evaluation of aquatic macrophyte community response to island construction in the Upper Mississippi River. Lake and Reservoir Management, 23, 313–320.CrossRefGoogle Scholar
  51. Lewis, W. M. Jr., Hamilton, S. K., Lasi, M. A., Rodríguez, M., & Saunders, J. F., III. (2000). Ecological determinism on the Orinoco floodplain. Bioscience, 50(8), 681–692.CrossRefGoogle Scholar
  52. Maurer, W. R., Claflin, T. O., Rada, R. G., & Rogala, J. T. (1995). Volume loss and mass balance for selected physicochemical constituents in Lake Pepin, Upper Mississippi River, USA. Regulated Rivers: Research and Management, 11, 175–184.CrossRefGoogle Scholar
  53. McClain, M. E., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.CrossRefGoogle Scholar
  54. McGuiness, D. (Ed.). (2000). A river that works and a working river. Upper Mississippi River Conservation Committee, Rock Island, Illinois, p. 40. Accessed 17 April 2012.
  55. Meade, R. H., & Moody, J. A. (2010). Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrological Processes, 24, 35–49.Google Scholar
  56. Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to the Anthropocene syndromes. Philosophical Transactions of the Royal Society of London B, 358, 1935–1955.CrossRefGoogle Scholar
  57. Minnesota Department of Natural Resources. (2011). Asian carp action plan. Report of the Ad Hoc Asian Carp Task Force. p. 16. Accessed 6 Feb 2015.
  58. Miranda, L. E. (2005). Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River. Transactions of the American Fisheries Society, 134, 1480–1489.CrossRefGoogle Scholar
  59. Mitsch, W. J., Day, J. W. Jr., Gilliam, J. W., Groffman, P. M., Hey, D. L., Randall, G. W., & Wang, N. (2001). Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. BioScience, 51, 373–388.CrossRefGoogle Scholar
  60. Mitsch, W. J., Day, J. W., Zhang, Li., & Lane, R. R. (2005). Nitrate-nitrogen retention in wetlands in the Mississippi River basin. Ecological Engineering, 24, 267–278.CrossRefGoogle Scholar
  61. Pflieger, W. L. (1975). The fishes of Missouri. Jefferson City: Missouri Department of Conservation.Google Scholar
  62. Pitlo, J., & Rasmussen, J. (Eds.). (2004). A compendium of fishery information on the Upper Mississippi River. Upper Mississippi River Conservation Committee, Rock Island, Illinois. p. 265. Accessed 17 April 2012.
  63. Poe, A. C., Piehler, M. F., Thompson, S. P., & Paerl, H. W. (2003). Denitrification in a constructed wetland receiving agricultural runoff. Wetlands, 23, 817–826.CrossRefGoogle Scholar
  64. Poff, N. L. (2002). Ecological response to and management of increased flooding caused by climate change. Philosophical Transactions of the Royal Society of London. A., 360, 1497–1510.CrossRefGoogle Scholar
  65. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The natural flow regime: A paradigm for river conservation and restoration. BioScience, 47, 769–784.CrossRefGoogle Scholar
  66. Poudevigne, I., Alard, D., Leuven, R. S. E. W., & Nienhuis, P. H. (2002). A systems approach to river restoration: A case study in the lower Seine Valley, France. River Research and Applications, 18, 239–247.CrossRefGoogle Scholar
  67. Rabalais, N. N., Turner, R. E., & Scavia, D. (2002). Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience, 52, 129–142.CrossRefGoogle Scholar
  68. Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Platon, E., & Parsons, M. L. (2007). Sediments tell the history of eutrophication in the northern Gulf of Mexico. Ecological Applications, 17, S129–S143.CrossRefGoogle Scholar
  69. Randall, G. W. & Mulla, D. J. (2001). Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. Journal of Environmental Quality, 30, 337–344.CrossRefGoogle Scholar
  70. Richardson, W. B., Strauss, E. A., Bartsch, L. A., Monroe, E. M., Cavanaugh, J. C., Vingum, L., & Soballe, D. M. (2004). Denitrification in the Upper Mississippi River: Rates, controls, and contribution to nitrate flux. Canadian Journal of Fisheries and Aquatic Science, 61, 1102–1112.CrossRefGoogle Scholar
  71. River Resources Forum. (2004). Environmental pool plans: Mississippi River, Pools 1–10. U.S. Army Corps of Engineers, St. Paul District, St. Paul, Minnesota. Accessed 17 April 2012.
  72. River Resources Forum. (2007). Summary of Results of the Pool 5 and Pool 8 Drawdowns on the Upper Mississippi River. Water Level Management Task Force Report, July 2007. Accessed 17 April 2012.
  73. Rodriguez, M. A., & Lewis, W. M. (1997). Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs, 67, 109–128.CrossRefGoogle Scholar
  74. Rogala, J. T. (1996). Surficial sediment characteristics in Pools 4 and 8, Upper Mississippi River. U.S. Geological Survey, Environmental Management Technical Center, Onalaska, Wisconsin. LTRMP 96-T006. 22 pp. (NTIS #PB97-129365).Rutherford, D. A., Kelso, W. E., Bryan, C. F., & Constant, G. C. (1995). Influence of physicochemical characteristics on annual growth increments of four fishes from the lower Mississippi River. Transactions of the American Fisheries Society, 134, 687–697.CrossRefGoogle Scholar
  75. Sass, G. G., Cook, T. R., Irons, K. S., McClelland, M. A., Michaels, N. N., O’Hara, T. M., & Stroub, M. R. (2010). A mark-recapture population estimate for invasive silver carp (Hypophthalmichthys molitrix) in the La Grange Reach, Illinois River. Biological Invasions, 12, 433–436.CrossRefGoogle Scholar
  76. Schramm, H. L., Jr. (2004). Status and management of fisheries in the Mississippi River. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries (Vol. 1), Welcomme R., T. Petr (eds). RAP Publication 2004/16. Bangkok, Thailand; pp. 301–333.Google Scholar
  77. Schramm, H. L., & Eggleton, M.A. (2006). Applicability of the flood-pulse concept in a temperate floodplain river ecosystem: Thermal and temporal components. River Research and Applications, 22, 543–553.CrossRefGoogle Scholar
  78. Schramm, H. L., Jr., Eggleton, M. A., & Minnis, R. B. (1999). Spatial analysis of floodplain habitat critical to lower Mississippi River fishes. U.S. Geological Survey, Mississippi Cooperative Fish and Wildlife Research Unit, Mississippi State, Mississippi.Google Scholar
  79. Schramm, H. L., Cox, M. S., Tietjen, T. E., & Ezell, A. W. (2009). Nutrient dynamics in the Lower Mississippi River floodplain: Comparing present and historic hydrologic conditions. Wetlands, 29, 476–487.CrossRefGoogle Scholar
  80. Sommer, T. R., Harrell, W. C., Kurth, R., Feyrer, F., Zeug, S. C., & O’Leary, G. (2004). Ecological patterns of early life stages of fishes in a large river-floodplain of the San Francisco estuary. American Fisheries Society Symposium, 39, 111–123.Google Scholar
  81. Sparks, R. E., Nelson, J. C., & Yin, Y. (1998). Naturalization of the flood regime in regulated rivers: The case of the upper Mississippi River. BioScience, 48, 706–720.CrossRefGoogle Scholar
  82. Stanford J. A., Ward, J. V., Liss, W. J., Frissell, C. A., Williams, R. N., Lichatowich, J. A., & Coutant, C.C. (1996). A general protocol for restoration of regulated rivers. Regulated Rivers: Research & Management, 12, 391–413.CrossRefGoogle Scholar
  83. Steuck, M.J., Yess, S., Pitlo, J., Van Vooren, A., & Rasmussen, J. (2010). Distribution and relative abundance of Upper Mississippi River Fishes. Upper Mississippi River Conservation Committee, Onalaska, Wisconsin. p. 21. Accessed 17 April 2012.
  84. Strauss, E. A., Richardson, W. B., Bartsch, L. A., Cavanaugh, J. C., Bruesewitz, D. A., Imker, H., Heinz, J., & Soballe, D. M. (2004). Nitrification in the Upper Mississippi River: Patterns, controls, and contribution to the NO3- budget. Journal of the North American Benthological Society, 23, 1–14.CrossRefGoogle Scholar
  85. Strauss, E. A., Richardson, W. B., Cavanaugh, J. C., Bartsch, L. A., Kreiling, R. M., & Standorf, A. J. (2006). Variability and regulation of denitrificaiton in an Upper Mississippi River backwater. Journal of the North American Benthological Society, 25, 596–606.CrossRefGoogle Scholar
  86. Strauss, E. A., Richardson, W. B., Bartsch, L. A., & Cavanaugh, J. C. (2011). Effect of habitat type on in-stream nitrogen loss in the Mississippi River. River Systems, 19, 261–269.CrossRefGoogle Scholar
  87. Theiling, C. H. (1995). Habitat rehabilitation on the Upper Mississippi River. Regulated Rivers: Research and Management, 11, 227–238.CrossRefGoogle Scholar
  88. Theiling, C. H., & Nestler, J. M. (2010). River stage response to alteration of Upper Mississippi River channels, floodplains, and watersheds. Hydrobiologia, 640, 17–47.CrossRefGoogle Scholar
  89. Theis, L.J., & Knox, J.C. (2003). Spatial and temporal variability in floodplain backwater sedimentation, Pool Ten, Upper Mississippi River. Physical Geography, 24, 337–353.CrossRefGoogle Scholar
  90. Turner, R. E., & Rabalais, N. N. (2003). Linking landscape and water quality in the Mississippi River basin for 200 years. BioScience, 53, 563–572.CrossRefGoogle Scholar
  91. Turner, R. E., Rabalais, N. N., Alexander, R. B., McIsaac, G., & Howarth, R. W. (2007). Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the Northern Gulf of Mexico. Estuaries and Coasts, 30, 773–790.CrossRefGoogle Scholar
  92. UMRR EMP (Upper Mississippi River Restoration—Environmental Management Program). (1989). 1989 Land Cover/Land Use: Upper Mississippi River System [computer file]. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. Accessed 6 April 2012.
  93. UMRR_EMP. (1999). 1890 Land Cover/Land Use: Upper Mississippi River System [computer file]. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. Accessed 6 April 2012.
  94. UMRR EMP. (2006). Environmental Design Handbook. U.S. Army Corps of Engineers, Mississippi Valley Division, Vicksburg, Mississippi. Accessed 17 April 2012.
  95. UMRR EMP. (2010). Upper Mississippi River Restoration Environmental Management Program: 2010 Report to Congress. U.S. Army Corps of Engineers, St. Paul, Rock Island, and St. Louis Districts. Accessed 17 Dec 2012.
  96. U.S. Army Corps of Engineers. 2012. Commercial Fisheries Baseline Economic Assessment—U.S. Waters of the Great Lakes, Upper Mississippi River, and Ohio River Basins. Online report of the U.S. Army Corps of Engineers’ Great Lakes and Mississippi River Interbasin Study Team. Accessed 17 Dec 2012.
  97. U.S. Fish and Wildlife Service. 2006. Upper Mississippi River National Wildlife and Fish Refuge comprehensive conservation plan. U.S. Fish and Wildlife Service Midwest Region. Bloomington, Minnesota. 228 p. Accessed 28 Dec 2012.
  98. U. S. Geological Survey. 1999. Ecological Status and Trends of the Upper Mississippi River System 1998: A Report of the Long Term Resource Monitoring Program. Report LTRMP 99-T001. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. 236 p. Accessed 17 April 2012.
  99. Ward, J. V. (1998). Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83(3), 269–278.CrossRefGoogle Scholar
  100. Wetzel, R. G. (2001). Limnology: Lake and river ecosystems (3rd ed., p. 855). San Diego: Academic Press.Google Scholar
  101. Weiner, J. G., Fremling, C. R., Korschgen, C. E., Kenow, K. P., Kirsch, E. M., Rogers, S.J., Yin, Y., & Sauer, J. S. (1998). Mississippi River. In M. J. Mac, P. A. Opler, C. E. Puckett Haecker, & P. D. Doran (Eds.), Status and trends of the nation’s biological resources (pp. 351–384) Reston: U.S. Geological Survey.Google Scholar
  102. Wiens, J. A. (2002). Riverine landscapes: Taking landscape ecology into the water. Freshwater Biology, 47, 501–515.CrossRefGoogle Scholar
  103. Winemiller, K. O., & Jepsen D. B. (1998). Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology, 53(Supplement A), 267–296.CrossRefGoogle Scholar
  104. Woltemade, C. J., & Woodward, J. 2008. Nitrate removal in a restored spring-fed wetland, Pennsylvania, USA. Journal of the American Water Resources Association, 44, 222–234.CrossRefGoogle Scholar

Copyright information

© Springer New York 2015

Authors and Affiliations

  • Harold L. Schramm
    • 1
  • William B. Richardson
    • 2
  • Brent C. Knights
    • 2
  1. 1.U.S. Geological Survey, Mississippi Cooperative Fish and Wildlife Research UnitMississippi StateUSA
  2. 2.U.S. Geological Survey, Upper Midwest Environmental Sciences CenterLa CrosseUSA

Personalised recommendations