Skip to main content

Pigments in Grape

  • Chapter
  • First Online:
Pigments in Fruits and Vegetables

Abstract

Grapevine is the most valuable horticultural crop in the world, and one in which the accumulation of berry pigments is critical for determining the quality of the fresh or processed fruit. The primary pigments in grapes are anthocyanins and show many similarities with anthocyanins studied in other plant species. The distribution and classification of anthocyanins within grape berries have been extensively studied. While variation is observed between and among wild grape species, most pigment diversity is derived from the primary cultivated species Vitis vinifera. Anthocyanins are specific to red cultivars and are predominantly localized in the berry skin of most cultivars during fruit maturation. Substantial variation exists in the structure and type of anthocyanins in cultivated grape. Considering the importance of berry color to the overall quality of the fruit and processed products such as wine and nonfermented juice, substantial research has been conducted to examine factors effecting the accumulation, stability, transport and processing of grapevine anthocyanins, as well as the utility for producing grape pigments in cell culture. Many factors are known to effect anthocyanin accumulation in grapevine, including numerous physiological and cultural factors, environmental factors, and significantly genetic factors, including variations between cultivars and species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wen J (2007) Vitaceae. In: Kubitzki K (ed) Flowering plants-eudicots, vol 9. Springer-Verlag, Berlin, pp 467–479

    Google Scholar 

  2. Walker MA, Lider LA, Goheen AC, Olmo HP (1991) VR 039-16 grape rootstock. Hortscience 26(9):1224–1225. PubMed PMID: WOS:A1991GH45000049

    Google Scholar 

  3. Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103(8):1201–1210. PubMed PMID: WOS:000173261300011

    CAS  Google Scholar 

  4. Mazza G (1995) Anthocyanins in grapes and grape products. Crit Rev Food Sci Nutr 35(4):341–371. PubMed PMID: WOS:A1995RM36300003

    CAS  PubMed  Google Scholar 

  5. Liang Z, Owens CL, Zhong G-Y, Cheng L (2011) Polyphenolic profiles detected in the ripe berries of Vitis vinifera germplasm. Food Chem 129(3):940–950. PubMed PMID: WOS:000293726500034

    CAS  PubMed  Google Scholar 

  6. Pomar F, Novo M, Masa A (2005) Varietal differences among the anthocyanin profiles of 50 red table grape cultivars studied by high performance liquid chromatography. J Chromatogr A 1094(1–2):34–41. PubMed PMID: WOS:000233150600005

    CAS  PubMed  Google Scholar 

  7. Dai ZW, Ollat N, Gomes E, Decroocq S, Tandonnet J-P, Bordenave L et al (2011) Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am J Enol Vitic 62(4):413–425. PubMed PMID: WOS:000298125500001

    CAS  Google Scholar 

  8. Goldy RG, Maness EP, Stiles HD, Clark JR, Wilson MA (1989) Pigment quantity and quality characteristics of some native vitis-rotundifolia michx. Am J Enol Viti 40(4):253–258. PubMed PMID: WOS:A1989CC66100005

    CAS  Google Scholar 

  9. Pastrana-Bonilla E, Akoh CC, Sellappan S, Krewer G (2003) Phenolic content and antioxidant capacity of muscadine grapes. J Agr Food Chem 51(18):5497–5503. PubMed PMID: WOS:000184941500048

    CAS  Google Scholar 

  10. Liang Z, Yang Y, Cheng L, Zhong G-Y (2012) Polyphenolic composition and content in the ripe berries of wild Vitis species. Food Chem 132(2):730–738. PubMed PMID: WOS:000300475800008

    CAS  Google Scholar 

  11. Adams DO (2006) Phenolics and ripening in grape berries. Am J Enol Viti 57(3):249–256. PubMed PMID: WOS:000240934100002

    CAS  Google Scholar 

  12. Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agr Food Chem 54(20):7692–7702. PubMed PMID: WOS:000240795400041

    CAS  Google Scholar 

  13. Edelmann A, Diewok J, Schuster KC, Lendl B (2001) Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. J Agr Food Chem 49(3):1139–1145. PubMed PMID: WOS:000168967400011

    CAS  Google Scholar 

  14. Etievant P, Schlich P, Bertrand A, Symonds P, Bouvier JC (1988) Varietal and geographic classification of french red wines in terms of pigments and flavonoid compounds. J Sci Food Agr 42(1):39–54. PubMed PMID: WOS:A1988L932000005

    CAS  Google Scholar 

  15. Janvary L, Hoffmann T, Pfeiffer J, Hausmann L, Toepfer R, Fischer TC et al (2009) A double mutation in the anthocyanin 5-O-Glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L. J Agr Food Chem 57(9):3512–3518. PubMed PMID: WOS:000265896600018

    CAS  Google Scholar 

  16. Cheynier V, Prieur C, Guyot S, Rigaud J, Moutounet M (1997) The structures of tannins in grapes and wines and their interactions with proteins. In: Watkins TR (ed) Wine: nutritional and therapeutic benefits. ACS Symposium Series 661, pp 81–93

    Google Scholar 

  17. Salas E, Atanasova V, Poncet-Legrand C, Meudec E, Mazauric JP, Cheynier V (2004) Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Analytica Chimica Acta 513(1):325–332. PubMed PMID: WOS:000221718000043

    CAS  Google Scholar 

  18. Timberlake CF, Bridle P (1976) Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am J Enol Viti 27(3):97–105. PubMed PMID: WOS:A1976CM12400001

    CAS  Google Scholar 

  19. Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81(1):223S–229S. PubMed PMID: WOS:000226401200003

    Google Scholar 

  20. Salas E, Duenas M, Schwarz M, Winterhalter P, Cheynier W, Fulcrand H (2005) Characterization of pigments from different high speed countercurrent chromatography wine fractions. J Agr Food Chem 53(11):4536–4546. PubMed PMID: WOS:000229405000035

    CAS  Google Scholar 

  21. Vidal S, Meudec E, Cheynier V, Skouroumounis G, Hayasaka Y (2004) Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins. J Agr Food Chem 52(23):7144–7151. PubMed PMID: WOS:000225080100047

    CAS  Google Scholar 

  22. Fulcrand H, Benabdeljalil C, Rigaud J, Cheynier V, Moutounet M (1998) A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47(7):1401–1407. PubMed PMID: WOS:000073714200040

    CAS  PubMed  Google Scholar 

  23. Fulcrand H, Duenas M, Salas E, Cheynier V (2006) Phenolic reactions during winemaking and aging. Am J Enol Viti 57(3):289–297. PubMed PMID: WOS:000240934100006

    CAS  Google Scholar 

  24. Sarni-Manchado P, Cheynier V, Moutounet M (1997) Reactions of polyphenoloxidase generated caftaric acid o-quinone with malvidin 3-O-glucoside. Phytochemistry 45(7):1365–1369. PubMed PMID: WOS:A1997XL54600008

    CAS  Google Scholar 

  25. Benabdeljalil C, Cheynier V, Fulcrand H, Hakiki A, Mosaddak M, Moutounet M (2000) Evidence of new pigments resulting from reaction between anthocyanins and yeast metabolites. Sci Aliment 20(2):203–219. PubMed PMID: WOS:000088101400002

    CAS  Google Scholar 

  26. Sarni-Manchado P, Fulcrand H, Souquet JM, Cheynier V, Moutounet M (1996) Stability and color of unreported wine anthocyanin-derived pigments. J Food Sci 61(5):938–941. PubMed PMID: WOS:A1996VN17500018

    CAS  Google Scholar 

  27. Atanasova V, Fulcrand H, Le Guerneve C, Cheynier W, Moutounet M (2002) Structure of a new dimeric acetaldehyde malvidin 3-glucoside condensation product. Tetrahedron Lett 43(35):6151–6153. PubMed PMID: WOS:000177467500015

    CAS  Google Scholar 

  28. Mateus N, Silva AMS, Rivas-Gonzalo JC, Santos-Buelga C, De Freitas V (2003) A new class of blue anthocyanin-derived pigments isolated from red wines. J Agr Food Chem 51(7):1919–1923. PubMed PMID: WOS:000181706300027

    CAS  Google Scholar 

  29. Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Viti 52(2):67–87. PubMed PMID: WOS:000170693800001

    CAS  Google Scholar 

  30. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP et al (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    CAS  PubMed  Google Scholar 

  31. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108(5):864–872. PubMed PMID: ISI:000220424400012

    CAS  PubMed  Google Scholar 

  32. Madero E, Boubals D, Truel P (1986) Transmission hereditaire des principaux caracters des cepages Cabernet Franc, Cabernet Sauvignon et Merlot (V. vinifera L.). Vigne Vini 13(Suppl. 12):209–219

    Google Scholar 

  33. Barritt BH, Einset J (1969) Inheritance of 3 major fruit colors in grapes. J Amer Soc Hortic Sci 94(2):87–89. PubMed PMID: ISI:A1969D534400002

    Google Scholar 

  34. Hedrick UP, Anthony RD (1915) Inheritance of certain characters of grapes. New York State Agricultural College Technical Bulletin No 45, pp 3–19

    Google Scholar 

  35. Snyder E, Harmon FN (1939) Grape progenies of self-pollinated vinifera varieties. Proc Am Soc Hortic Sci 37:625–626

    Google Scholar 

  36. Snyder E, Harmon FN (1952) Grape breeding summary 1923–1951. Proc Am Soc Hortic Sci 60:243–246. PubMed PMID: ISI:A1952YB31100040

    Google Scholar 

  37. Wellington R (1939) The Ontario grape and its seedlings as parents. Proc Am Soc Hortic Sci 37:630–634

    Google Scholar 

  38. Liang Z, Sang M, Wu B, Ma A, Zhao S, Zhong G-Y et al (2012) Inheritance of anthocyanin content in the ripe berries of a tetraploid x diploid grape cross population. Euphytica 186(2):343–356. PubMed PMID: WOS:000304698100007

    CAS  Google Scholar 

  39. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C et al (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183(3):1127–1139. PubMed PMID: WOS:000272295800030

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Bayo-Canha A, Ignacio Fernandez-Fernandez J, Martinez-Cutillas A, Ruiz-Garcia L (2012) Phenotypic segregation and relationships of agronomic traits in Monastrell x Syrah wine grape progeny. Euphytica 186(2):393–407. PubMed PMID: WOS:000304698100011

    CAS  Google Scholar 

  41. Viana AP, Riaz S, Walker MA (2013) Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genet Mol Res 12(2):951–964. PubMed PMID: WOS:000320030100009

    CAS  PubMed  Google Scholar 

  42. Cardoso S, Lau W, Dias JE, Fevereiro P, Maniatis N (2012) A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L. Plos ONE 7(9):e46021. PubMed PMID: WOS:000309973900073

    PubMed Central  PubMed  Google Scholar 

  43. Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111(4):1059–1066. PubMed PMID: WOS:A1996VD68800012

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140(1):279–291. PubMed PMID: WOS:000234492100025

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32(3):565–569. PubMed PMID: WOS:A1996VY66300019

    CAS  PubMed  Google Scholar 

  46. Ford CM, Boss PK, Hoj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273(15):9224–9233. PubMed PMID: WOS:000072990800091

    CAS  PubMed  Google Scholar 

  47. Hall D, Yuan XX, Murata J, De Luca V (2012) Molecular cloning and biochemical characterization of the UDP-glucose: flavonoid 3-O-glucosyltransferase from Concord grape (Vitis labrusca). Phytochemistry 74:90–99. PubMed PMID: WOS:000300815700009

    CAS  PubMed  Google Scholar 

  48. Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon J-M et al (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147(4):2041–2053. PubMed PMID: WOS:000258184800051

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Hichri I, Heppel SC, Pillet J, Leon C, Czemmel S, Delrot S et al (2010) The basic helix-loop-helix transcription factor MYC1 Is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3(3):509–523. PubMed PMID: WOS:000278819900004

    CAS  PubMed  Google Scholar 

  50. Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215(6):924–933. PubMed PMID: WOS:000178995100005

    CAS  PubMed  Google Scholar 

  51. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982. PubMed PMID: WOS:000221383300039

    PubMed  Google Scholar 

  52. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    CAS  PubMed  Google Scholar 

  53. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730

    PubMed  Google Scholar 

  54. Kobayashi S, Yamamoto NG, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin—color mutants. J Jpn Soc Hortic Sci 74(3):196–203. PubMed PMID: WOS:000229191200003

    CAS  Google Scholar 

  55. Vezzulli S, Leonardelli L, Malossini U, Stefanini M, Velasco R, Moser C (2012) Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir. J Exp Bot 63(18):6359–6369. PubMed PMID: WOS:000311645700006

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    PubMed  Google Scholar 

  57. Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2006) Expression of the flavonoid 3†²-hydroxylase and flavonoid 3†²,5†²-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci 170(1):61–69. PubMed PMID: WOS:000233340800008

    CAS  Google Scholar 

  58. Cutanda-Perez M-C, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C et al (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69(6):633–648. PubMed PMID: WOS:000263899400001

    CAS  PubMed  Google Scholar 

  59. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49(5):772–785. PubMed PMID: WOS:000244280300001

    CAS  PubMed  Google Scholar 

  60. Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andres MT, Bravo G, Ibanez A et al (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genom 276:427–435

    CAS  Google Scholar 

  61. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C et al (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183(3):1127–1139. PubMed PMID: ISI:000272295800030

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y et al (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis xlabruscana grapes. Theor Appl Genet 122(7):1427–1438. PubMed PMID: WOS:000289478500015

    PubMed  Google Scholar 

  63. Huang Y-F, Bertrand Y, Guiraud J-L, Vialet S, Launay A, Cheynier V et al (2013) Expression QTL mapping in grapevine-revisiting the genetic determinism of grape skin colour. Plant Sci 207:18–24. PubMed PMID: WOS:000319488200004

    CAS  PubMed  Google Scholar 

  64. Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170(2):372–383. PubMed PMID: WOS:000234732700020

    CAS  Google Scholar 

  65. Conn S, Curtin C, Bezier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59(13):3621–3634. PubMed PMID: WOS:000259973800012

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verries C et al (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150(1):402–415. PubMed PMID: WOS:000265661700033

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67(6):960–970. PubMed PMID: WOS:000294866100002

    CAS  PubMed  Google Scholar 

  68. Bertolini A, Peresson C, Petrussa E, Braidot E, Passamonti S, Macri F et al (2009) Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening. J Exp Bot 60(13):3861–3871. PubMed PMID: WOS:000269609800021

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Braidot E, Petrussa E, Bertolini A, Peresson C, Ermacora P, Loi N et al (2008) Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta 228(1):203–213. PubMed PMID: WOS:000256083200017

    CAS  PubMed  Google Scholar 

  70. He F, Mu L, Yan G-L, Liang N-N, Pan Q-H, Wang J et al (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15(12):9057–9091. PubMed PMID: WOS:000285709000036

    CAS  PubMed  Google Scholar 

  71. Guidoni S, Ferrandino A, Novello V (2008) Effects of seasonal and agronomical practices on skin anthocyanin profile of Nebbiolo grapes. Am J Enol Viti 59(1):22–29. PubMed PMID: WOS:000253927900003

    CAS  Google Scholar 

  72. Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Viti 57(3):257–268. PubMed PMID: WOS:000240934100003

    CAS  Google Scholar 

  73. Fournand D, Vicens A, Sidhoum L, Souquet J-M, Moutounet M, Cheynier V (2006) Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J Agr Food Chem 54(19):7331–7338. PubMed PMID: WOS:000240465000056

    CAS  Google Scholar 

  74. Koundouras S, Hatzidimitriou E, Karamolegkou M, Dimopoulou E, Kallithraka S, Tsialtas JT et al (2009) Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. cabernet sauvignon grapes. J Agr Food Chem 57(17):7805–7813. PubMed PMID: WOS:000269376000028

    CAS  Google Scholar 

  75. Keller M, Arnink KJ, Hrazdina G (1998) Interaction of nitrogen availability during bloom and light intensity during veraison. I. Effects on grapevine growth, fruit development, and ripening. Am J Enol Viti 49(3):333–340. PubMed PMID: WOS:000076793300015

    CAS  Google Scholar 

  76. Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Viti 59(3):235–247. PubMed PMID: WOS:000259247500002

    CAS  Google Scholar 

  77. Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236(4):1067–1080. PubMed PMID: WOS:000309229300010

    CAS  PubMed  Google Scholar 

  78. Dokoozlian NK, Kliewer WM (1996) Influence of light on grape berry growth and composition varies during fruit development. J Am Soc Hortic Sci 121(5):869–874. PubMed PMID: WOS:A1996VF06300019

    Google Scholar 

  79. Chorti E, Guidoni S, Ferrandino A, Novello V (2010) Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in nebbiolo grapes. Am J Enol Viti 61(1):23–30. PubMed PMID: WOS:000275805400003

    CAS  Google Scholar 

  80. Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Viti 53(3):171–182. PubMed PMID: WOS:000178782800001

    CAS  Google Scholar 

  81. Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30(11):1381–1399. PubMed PMID: WOS:000249826400004

    CAS  PubMed  Google Scholar 

  82. Olle D, Guiraud JL, Souquet JM, Terrier N, Ageorges A, Cheynier V et al (2011) Effect of pre- and post-veraison water deficit on proanthocyanidin and anthocyanin accumulation during Shiraz berry development. Aust J Grape Wine Res 17(1):90–100. PubMed PMID: WOS:000286626100011

    CAS  Google Scholar 

  83. Esteban MA, Villanueva MJ, Lissarrague JR (2001) Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J Sci Food Agr 81(4):409–420. PubMed PMID: WOS:000167217000006

    CAS  Google Scholar 

  84. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58(8):1935–1945. PubMed PMID: WOS:000248447500003

    CAS  PubMed  Google Scholar 

  85. Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae 105(3):319–330. PubMed PMID: WOS:000229728500004

    CAS  Google Scholar 

  86. Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Viti 57(1):54–59. PubMed PMID: WOS:000236618800006

    CAS  Google Scholar 

  87. Romero I, Sanchez-Ballesta MT, Maldonado R, Escribano MI, Merodio C (2008) Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at tow temperature. J Plant Physiol 165(5):522–530. PubMed PMID: WOS:000254944100006

    CAS  PubMed  Google Scholar 

  88. Sanchez-Ballesta MT, Romero I, Bernardo Jimenez J, Orea JM, Gonzalez-Urena A, Isabel Escribano M et al (2007) Involvement of the phenylpropanoid pathway in the response of table grapes to low temperature and high CO2 levels. Postharvest Biol Technol 46(1):29–35. PubMed PMID: WOS:000250077000004

    CAS  Google Scholar 

  89. Petrie PR, Clingeleffer PR (2006) Crop thinning (hand versus mechanical), grape maturity and anthocyanin concentration: outcomes from irrigated Cabernet Sauvignon (Vitis vinifera L.) in a warm climate. Aust J Grape Wine Res 12(1):21–29. PubMed PMID: WOS:000236875800003

    CAS  Google Scholar 

  90. Pena-Neira A, Caceres A, Pastenes C (2007) Low molecular weight phenolic and anthocyanin composition of grape skins from cv. syrah (Vitis vinifera L.) in the maipo valley (Chile): effect of clusters thinning and vineyard yield. Food Sci Technol Int 13(2):153–158. PubMed PMID: WOS:000248730900009

    CAS  Google Scholar 

  91. Bindon K, Dry P, Loveys B (2008) Influence of partial rootzone drying on the composition and accumulation of anthocyanins in grape berries (Vitis vinifera cv. Cabernet Sauvignon). Aust J Grape Wine Res 14(2):91–103. PubMed PMID: WOS:000257632600004

    CAS  Google Scholar 

  92. Parrado J, Escudero-Gilete ML, Friaza V, Garcia-Martinez A, Gonzalez-Miret ML, Bautista JD et al (2007) Enzymatic vegetable extract with bio-active components: influence of fertiliser on the colour and anthocyanins of red grapes. J Sci Food Agr 87(12):2310–2318. PubMed PMID: WOS:000249177500018

    CAS  Google Scholar 

  93. Brar HS, Singh Z, Swinny E, Cameron I (2008) Girdling and grapevine leafroll associated viruses affect berry weight, colour development and accumulation of anthocyanins in ‘Crimson Seedless’ grapes during maturation and ripening. Plant Sci 175(6):885–897. PubMed PMID: WOS:000261081300019

    CAS  Google Scholar 

  94. Park J-S, Choung M-G, Kim J-B, Hahn B-S, Kim J-B, Bae S-C et al (2007) Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep 26(4):507–516. PubMed PMID: WOS:000245896300013

    CAS  PubMed  Google Scholar 

  95. Gollop R, Even S, Colova-Tsolova V, Perl A (2002) Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. J Exp Bot 53(373):1397–1409. PubMed PMID: WOS:000175955600003

    CAS  PubMed  Google Scholar 

  96. Gollop R, Farhi S, Perl A (2001) Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Sci 161(3):579–588. PubMed PMID: ISI:000170510400021

    CAS  Google Scholar 

  97. Kataoka I, Sugiyama A, Beppu K (2003) Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). J Jpn Soc Hortic Sci 72(1):1–6. PubMed PMID: WOS:000180482600001

    CAS  Google Scholar 

  98. Kataoka I, Sugiura A, Utsunomiya N, Tomana T (1982) Effect of abscisic-acid and defoliation on anthocyanin accumulation in kyoho grapes (vitis-vinifera l x v labruscana bailey). Vitis 21(4):325–332. PubMed PMID: WOS:A1982QA03500004

    CAS  Google Scholar 

  99. Hiratsuka S, Onodera H, Kawai Y, Kubo T, Itoh H, Wada R (2001) ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Sci Hortic 90(1–2):121–130. PubMed PMID: WOS:000172093200010

    CAS  Google Scholar 

  100. Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S (2003) Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J Hortic Sci Biotechnol 78(4):586–589. PubMed PMID: WOS:000184479900025

    CAS  Google Scholar 

  101. Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka A (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167(2):247–252. PubMed PMID: WOS:000222280600007

    CAS  Google Scholar 

  102. El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M et al (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plantarum 119(2):175–182. PubMed PMID: ISI:000185225200002

    CAS  Google Scholar 

  103. Bellincontro A, Fardelli A, De Santis D, Botondi R, Mencarelli F (2006) Postharvest ethylene and 1-MCP treatments both affect phenols, anthocyanins, and aromatic quality of Aleatico grapes and wine. Aust J Grape Wine Res 12(2):141–149. PubMed PMID: WOS:000239405400008

    CAS  Google Scholar 

  104. Zheng Y, Tian L, Liu H, Pan Q, Zhan J, Huang W (2009) Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regul Jul;58(3):251–260. PubMed PMID: WOS:000266455600004

    CAS  Google Scholar 

  105. Gonzalez-sanjose ML, Diez C (1992) Relationship between anthocyanins and sugars during the ripening of grape berries. Food Chem 43(3):193–197. PubMed PMID: WOS:A1992HF29800004

    Google Scholar 

  106. El Kereamy A, Chervin C, Souquet JM, Moutounet M, Monje MC, Nepveu F et al (2002) Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. Plant Sci 163(3):449–454. PubMed PMID: WOS:000178419800008

    CAS  Google Scholar 

  107. Afifi M, El-Kereamy A, Legrand V, Chervin C, Monje MC, Nepveu F et al (2003) Control of anthocyanin biosynthesis pathway gene expression by eutypine, a toxin from Eutypa lata, in grape cell tissue cultures. J Plant Physiol 160(8):971–975. PubMed PMID: WOS:000184874200016

    CAS  PubMed  Google Scholar 

  108. Camire ME, Chaovanalikit A, Dougherty MP, Briggs J (2002) Blueberry and grape anthocyanins as breakfast cereal colorants. J Food Sci 67(1):438–441. PubMed PMID: WOS:000173893100077

    CAS  Google Scholar 

  109. Deroles S (2009) Anthocyanin biosynthesis in plant cell cultures: a potential source of natural colourants. In: Winefield C, Davies K, Gould K (eds) The anthocyanins. Springer-Verlag, New York, pp 107–167

    Google Scholar 

  110. Cormier F, Crevier HA, Do CB (1990) Effects of sucrose concentration on the accumulation of anthocyanins in grape (vitis-vinifera) cell-suspension. Can J Bot-Revue Canadienne De Botanique 68(8):1822–1825. PubMed PMID: WOS:A1990DZ76000029

    CAS  Google Scholar 

  111. Do CB, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (vitis-vinifera l) cell-suspension. Plant Cell Rep 9(9):500–504. PubMed PMID: WOS:A1991EU30300008

    CAS  Google Scholar 

  112. Do CB, Cormier F (1991) Effects of high ammonium concentrations on growth and anthocyanin formation in grape (vitis-vinifera l) cell-suspension cultured in a production medium. Plant Cell Tissue Organ Cult 27(2):169–174. PubMed PMID: WOS:A1991GR32000008

    Google Scholar 

  113. Dedaldechamp F, Uhel C, Macheix JJ (1995) Enhancement of anthocyanin synthesis and dihydroflavonol reductase (dfr) activity in response to phosphate deprivation in grape cell-suspensions. Phytochemistry 40(5):1357–1360. PubMed PMID: WOS:A1995TE27500005

    CAS  Google Scholar 

  114. Cai Z, Kastell A, Mewis I, Knorr D, Smetanska I (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tissue Organ Cult 108(3):401–409. PubMed PMID: WOS:000301601600005

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Owens PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Owens, C. (2015). Pigments in Grape. In: Chen, C. (eds) Pigments in Fruits and Vegetables. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2356-4_9

Download citation

Publish with us

Policies and ethics