Skip to main content

Carotenoid Biosynthesis Genomics

  • Chapter
  • First Online:
Pigments in Fruits and Vegetables

Abstract

Carotenoids are an abundant group of isoprenoid pigments present in all photosynthetic organisms and responsible for the typical yellow, orange, or red coloration exhibited by many flowers, fruits, and vegetables. Besides their many functions in plants, these pigments are also essential components in human and animal diet. Within the past three decades, genes encoding all of the enzymes required for the biosynthesis of these indispensable pigments have been identified and characterized in higher plants, primarily as a result of integration of comparative genomics, biochemical genetics, and molecular approaches in the model plant Arabidopsis thaliana and cyanobacterium Synechocystis PCC6803. Mutant analysis and transgenic studies in these and other systems have established a foundation for understanding the function, regulation, and evolution of individual genes and enzymes. The aim of this chapter is to review advances in the structure, function, and evolution of these genes and enzymes, as well as the molecular mechanisms regulating carotenoid biosynthesis in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britton G (1995) Structure and properties of carotenoids in relation to function. Faseb J 9(15):1551–1558

    CAS  PubMed  Google Scholar 

  2. Goodwin TW (1986) Metabolism, nutrition, and function of carotenoids. Annu Rev Nutr 6:273–297

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  4. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Ann Rev of Plant Biol 56:165–185

    Article  CAS  Google Scholar 

  5. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200

    Article  CAS  PubMed  Google Scholar 

  6. Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4(6):232–235

    Article  PubMed  Google Scholar 

  7. Toomey MB, McGraw KJ (2012) Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation. BMC Evol Biol 12:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Butler MW, McGraw KJ (2012) Differential effects of early- and late-life access to carotenoids on adult immune function and ornamentation in mallard ducks (Anas platyrhynchos). PLoS One 7(5):e38043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  10. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265

    Article  CAS  PubMed  Google Scholar 

  11. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26(6):459–516

    Article  CAS  PubMed  Google Scholar 

  12. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Phys 49:557–583

    Article  CAS  Google Scholar 

  13. Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cunningham FX Jr, Gantt E (2007) A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Photosynth Res 92(2):245–259

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Concepcion M (2010) Supply of precursors for carotenoid biosynthesis in plants. Arch Biochem Biophys 504(1):118–122

    Article  CAS  PubMed  Google Scholar 

  16. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6(2):78–84

    Article  CAS  PubMed  Google Scholar 

  18. Kuzuyama T, Seto H (2012) Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Jpn Acad Ser B Phys Biol Sci 88(3):41–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44(6):357–429

    Article  CAS  PubMed  Google Scholar 

  20. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  21. Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282(30):21573–21577

    Article  CAS  PubMed  Google Scholar 

  22. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4(3):210–218

    Article  CAS  PubMed  Google Scholar 

  23. Fu Z, Yan J, Zheng Y, Warburton ML, Crouch JH, Li JS (2010) Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theor Appl Genet 120(4):709–720

    Article  CAS  PubMed  Google Scholar 

  24. Bartley GE, Scolnik PA (1993) cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268(34):25718–25721

    CAS  PubMed  Google Scholar 

  25. Fraser PD, Kiano JW, Truesdale MR, Schuch W, Bramley PM (1999) Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol Biol 40(4):687–698

    Article  CAS  PubMed  Google Scholar 

  26. Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51(6):925–948

    Article  CAS  PubMed  Google Scholar 

  27. Giorio G, Stigliani AL, D’Ambrosio C (2008) Phytoene synthase genes in tomato (Solanum lycopersicum L.)—new data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J 275(3):527–535

    Article  CAS  PubMed  Google Scholar 

  28. Li FQ, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146(3):1333–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147(1):367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Li FQ, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147(3):1334–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lopez AB, Yang Y, Thannhauser TW, Li L (2008) Phytoene desaturase is present in a large protein complex in the plastid membrane. Physiol Plant 133(2):190–198

    Article  CAS  PubMed  Google Scholar 

  32. Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8(9):1613–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Al-Babili S, von Lintig J, Haubruck H, Beyer P (1996) A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation. Plant J 9(5):601–612

    Article  CAS  PubMed  Google Scholar 

  34. Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E et al (1997) Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem 247(3):942–950

    Article  CAS  PubMed  Google Scholar 

  35. Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6(1):31–36

    Article  CAS  PubMed  Google Scholar 

  36. Romer S, Hugueney P, Bouvier F, Camara B, Kuntz M (1993) Expression of the genes encoding the early carotenoid biosynthetic enzymes in capsicum annuum. Biochem Biophys Res Commun 196(3):1414–1421

    Article  CAS  PubMed  Google Scholar 

  37. Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54(391):2215–2230

    Article  CAS  PubMed  Google Scholar 

  38. Chen CX, Costa MGC, Yu QB, Moore GA, Gmitter FG (2010) Identification of novel members in sweet orange carotenoid biosynthesis gene families. Tree Genet Genomes 6(6):905–914

    Article  Google Scholar 

  39. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14(2):333–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14(2):321–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cunningham FX Jr, Gantt E (2001) One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc Natl Acad Sci U S A 98(5):2905–2910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53(377):2107–2113

    Article  CAS  PubMed  Google Scholar 

  43. Hugueney P, Badillo A, Chen HC, Klein A, Hirschberg J, Camara B et al (1995) Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts. Plant J 8(3):417–424

    Article  CAS  PubMed  Google Scholar 

  44. Hornero-Mendez D, Britton G (2002) Involvement of NADPH in the cyclisation reaction of carotenoid biosynthesis. FEBS Lett 515(1–3):133–136

    Article  CAS  PubMed  Google Scholar 

  45. Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J 17(4):341–351

    Article  CAS  PubMed  Google Scholar 

  46. Pecker I, Gabbay R, Cunningham FX Jr, Hirschberg J (1996) Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30(4):807–819

    Article  CAS  PubMed  Google Scholar 

  47. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97(20):11102–11107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D et al (2005) Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem 53(8):3142–3148

    Article  CAS  PubMed  Google Scholar 

  49. Alquezar B, Zacarias L, Rodrigo MJ (2009) Molecular and functional characterization of a novel chromoplast-specific lycopene beta-cyclase from Citrus and its relation to lycopene accumulation. J Exp Bot 60(6):1783–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Mendes AF, Chen C, Gmitter FG Jr, Moore GA, Costa MG (2011) Expression and phylogenetic analysis of two new lycopene beta-cyclases from Citrus paradisi. Physiol Plant 141(1):1–10

    Article  CAS  PubMed  Google Scholar 

  51. Bouvier F, D’Harlingue A, Backhaus RA, Kumagai MH, Camara B (2000) Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem 267(21):6346–6352

    Article  CAS  PubMed  Google Scholar 

  52. Al-Babili S, Hugueney P, Schledz M, Welsch R, Frohnmeyer H, Laule O et al (2000) Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett 485(2/3):168–172

    Article  CAS  PubMed  Google Scholar 

  53. Bouvier F, Hugueney P, d’Harlingue A, Kuntz M, Camara B (1994) Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J 6(1):45–54

    Article  CAS  PubMed  Google Scholar 

  54. Bouvier F, D’Harlingue A, Backhaus RA, Kumagai MH, Camara B (2000) Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem 267(21):6346–6352

    Article  CAS  PubMed  Google Scholar 

  55. Sandmann G (2002) Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant 116(4):431–440

    Article  CAS  Google Scholar 

  56. Sun Z, Gantt E, Cunningham FX Jr (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271(40):24349–24352

    Article  CAS  PubMed  Google Scholar 

  57. Bouvier F, Keller Y, d’Harlingue A, Camara B (1998) Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta 1391(3):320–328

    Article  CAS  PubMed  Google Scholar 

  58. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids1. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  59. Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci U S A 101(1):402–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125(4):1558–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta 1482(1/2):84–91

    Article  CAS  PubMed  Google Scholar 

  63. Vallabhaneni R, Wurtzel ET (2009) Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol 150(2):562–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Young PR, Lashbrooke JG, Alexandersson E, Jacobson D, Moser C, Velasco R et al (2012) The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Genomics 13(1):243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L et al (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50(5):810–824

    Article  CAS  PubMed  Google Scholar 

  66. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274

    Article  CAS  PubMed  Google Scholar 

  67. Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22(6):503–513

    Article  CAS  PubMed  Google Scholar 

  68. Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276(25):22901–22909

    Article  CAS  PubMed  Google Scholar 

  69. Carretero-Paulet L, Cairo A, Botella-Pavia P, Besumbes O, Campos N, Boronat A et al (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62(4/5):683–695

    Article  CAS  PubMed  Google Scholar 

  70. Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL et al (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9(3):363–376

    Article  CAS  PubMed  Google Scholar 

  71. Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z et al (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17(5):471–482

    Article  CAS  PubMed  Google Scholar 

  72. Fang J, Chai C, Qian Q, Li C, Tang J, Sun L et al (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J 54(2):177–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kato M (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol 134(2):824–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rodrigo MJ, Marcos JF, Zacarias L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52(22):6724–6731

    Article  CAS  PubMed  Google Scholar 

  75. Costa MG, Moreira CD, Melton JR, Otoni WC, Moore GA (2012) Characterization and developmental expression of genes encoding the early carotenoid biosynthetic enzymes in Citrus paradisi macf. Mol Biol Rep 39(2):895–902

    Article  CAS  PubMed  Google Scholar 

  76. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319(5861):330–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M et al (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45(6):982–993

    Article  CAS  PubMed  Google Scholar 

  78. Garcia-Limones C, Schnabele K, Blanco-Portales R, Luz Bellido M, Caballero JL, Schwab W et al (2008) Functional characterization of FaCCD1: a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. J Agric Food Chem 56(19):9277–9285

    Article  CAS  PubMed  Google Scholar 

  79. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142(3):1193–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A et al (2007) Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol 145(2):389–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53(5):717–730

    Article  CAS  PubMed  Google Scholar 

  82. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM et al (2006) The cauliflower or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18(12):3594–3605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Deruere J, Romer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6(1):119–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W et al (2000) Elevation of the provitamin a content of transgenic tomato plants. Nat Biotechnol 18(6):666–669

    Article  CAS  PubMed  Google Scholar 

  85. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20(4):401–412X

    Article  Google Scholar 

  86. Ihmels J, Bergmann S, Barkai N (2004) Defining transcription modules using large-scale gene expression data. Bioinformatics 20(13):1993–2003

    Article  CAS  PubMed  Google Scholar 

  87. Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP et al (2006) Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol 142(2):762–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Gilberto Cardoso Costa PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendes, A., Soares, V., Costa, M. (2015). Carotenoid Biosynthesis Genomics. In: Chen, C. (eds) Pigments in Fruits and Vegetables. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2356-4_2

Download citation

Publish with us

Policies and ethics