Cerenkov Luminescence Imaging

  • Jan Grimm


Cerenkov luminescence imaging (CLI) is a new modality, utilizing the blue Cerenkov light emitted from radio-isotopes decaying with particle emission. This allows for the optical imaging of clinically approved isotopes, especially those used not only for positron emission tomography (PET) imaging but also some for radiotherapy. CLI has been applied in preclinical molecular imaging and has just made the step into clinical imaging, where one of CLI’s most promising applications is intraoperative imaging, bridging the gap between the few available targeted fluorescent agents and the multitude of clinically used radiotracers. Using CLI for intraoperative imaging would provide a much larger and readily available list of agents than currently available for fluorescence imaging and allows for preoperative PET and intraoperative imaging with the same agent. This chapter discusses the basics of CLI, its promises, and challenges with respect to its application in intraoperative imaging.


Cerenkov Cerenkov luminescence imaging CLI Intraoperative imaging Optical imaging PET Multimodality imaging 



This work and JG was partially supported by funding from the NIH NIBIB and NCI (NIH R01EB014944 and R01CA183953)


  1. 1.
    L’Annunziata MF. Radioactivity: introduction and history. 1st edn. Oxford: Elsevier; 2007.Google Scholar
  2. 2.
    Cerenkov PA. Visible emission of clean liquids by action of gamma-radiation. C R Dokl Akad Nauk SSSR. 1934;2:451–4.Google Scholar
  3. 3.
    Bolotovskii BM. Vavilov-Cherenkov radiation: its discovery and application. Phys Uspekhi. 2009;52(11):1099–110.CrossRefGoogle Scholar
  4. 4.
    Vavilov SI. On the possible causes of blue gamma-glow in liquids. C R Dokl Akad Nauk SSSR. 1934;2(8):457.Google Scholar
  5. 5.
    Frank I, Tamm I. Coherent visible radiation of fast electrons passing through matter. Compt Rend Dokl Akad Mauk SSSR. 1937;14:109–14.Google Scholar
  6. 6.
    Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Trans A Math Phys Eng Sci. 2011;369(1955):4605–19.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Liu H, Ren G, Miao Z, et al. Molecular optical imaging with radioactive probes. PLoS One. 2010;5(3):e9470.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov luminescence imaging of medical isotopes. J Nucl Med. 2010;51(7):1123–30.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Burch WM. Cerenkov light from 32 P as an aid to diagnosis of eye tumours. Nature. 1971;234(5328):358.CrossRefPubMedGoogle Scholar
  10. 10.
    Fazio GG, Jelley JV, Charman WN. Generation of Cherenkov light flashes by cosmic radiation within the eyes of the Apollo astronauts. Nature. 1970;228(5268):260–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Boschi F, Calderan L, D’Ambrosio D, et al. In vivo 18F-FDG tumour uptake measurements in small animals using Cerenkov radiation. Eur J Nucl Med Mol Imaging. 2011;(38):120–7.Google Scholar
  12. 12.
    Robertson R, Germanos MS, Manfredi MG, Smith PG, Silva MD. Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J Nucl Med. 2011;52(11):1764–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z. Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med. 2012;53(2):312–7.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Jeong SY, Hwang MH, Kim JE, et al. Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: initial feasibility study. Endocr J. 2011;58(7):575–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Wolfs E, Holvoet B, Gijsbers R, et al. Optimization of multimodal imaging of mesenchymal stem cells using the human sodium iodide symporter for PET and Cerenkov luminescence imaging. PLoS One. 2014;9(4):e94833.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Yang W, Qin W, Hu Z, et al. Comparison of Cerenkov luminescence imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 Cells. Nucl Med Biol. 2012;39(7):948–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang J, Hu H, Liang S, et al. Targeted radiotherapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer. J Control Release. 2013;172(1):322–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106(2745):130–1.CrossRefPubMedGoogle Scholar
  19. 19.
    De Grand AM, Frangioni JV. An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat. 2003;2(6):553–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V. Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Optics. 2009;14(6):064012.CrossRefGoogle Scholar
  21. 21.
    van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17(10):1315–9.Google Scholar
  22. 22.
    Povoski SP, Hall NC, Murrey DA Jr, et al. Multimodal imaging and detection strategy with 124 I-labeled chimeric monoclonal antibody cG250 for accurate localization and confirmation of extent of disease during laparoscopic and open surgical resection of clear cell renal cell carcinoma. Surg Innov. 2013;20(1):59–69.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Povoski SP, Hall NC, Martin EW Jr, Walker MJ. Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma. World J Surg Oncol. 2008;6:1.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ryan ER, Sofocleous CT, Schoder H, et al. Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268(1):288–95.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Ryan ER, Thornton R, Sofocleous CT, et al. PET/CT-guided interventions: personnel radiation dose. Cardiovasc Intervent Radiol. 2013;36(4):1063–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Mariani G, Erba P, Villa G, et al. Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: the nuclear medicine perspective. J Surg Oncol. 2004;85(3):112–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Tokin CA, Cope FO, Metz WL, et al. The efficacy of Tilmanocept in sentinel lymph mode mapping and identification in breast cancer patients: a comparative review and meta-analysis of the (9)(9)mTc-labeled nanocolloid human serum albumin standard of care. Clin Exp Metastasis. 2012;29(7):681–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Vermeeren L, Valdes Olmos RA, Meinhardt W, Horenblas S. Intraoperative imaging for sentinel node identification in prostate carcinoma: its use in combination with other techniques. J Nucl Med. 2011;52(5):741–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Dengel LT, More MJ, Judy PG, et al. Intraoperative imaging guidance for sentinel node biopsy in melanoma using a mobile gamma camera. Ann Surg. 2011;253(4):774–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41(3):166–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging. 2011;10(3):177–86.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Thorek DL, Abou DS, Beattie BJ, et al. Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG. J Nucl Med. 2012;53(9):1438–45.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Liu H, Carpenter CM, Jiang H, et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med. 2012;53(10):1579–84.CrossRefPubMedGoogle Scholar
  34. 34.
    Kothapalli SR, Liu H, Liao JC, Cheng Z, Gambhir SS. Endoscopic imaging of Cerenkov luminescence. Biomed Opt Express. 2012;3(6):1215–25.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Grimm J, Scheinberg DA. Will nanotechnology influence targeted cancer therapy? Semin Radiat Oncol. 2011;21(2):80–7.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Thorek DL, Ogirala A, Beattie BJ, Grimm J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat Med. 2013;19(10):1345–50.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Thorek D, Robertson R, Bacchus WA, et al. Cerenkov imaging—a new modality for molecular imaging. Am J Nucl Med Mol Imaging. 2012;2(2):163–73.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9(1):123–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Spinelli AE, D’Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol. 2010;55(2):483–95.CrossRefPubMedGoogle Scholar
  40. 40.
    ICRP. Radiological protection in biomedical research. A report of committee 3 adopted by the international commission on radiological protection. Ann ICRP. 1991;22(3):1–28, v–xxiv.CrossRefGoogle Scholar
  41. 41.
    Gollub MJ, Akhurst TJ, Williamson MJ, et al. Feasibility of ex vivo FDG PET of the colon. Radiology. 2009;252(1):232–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Abu-Rustum NR, Khoury-Collado F, Gemignani ML. Techniques of sentinel lymph node identification for early-stage cervical and uterine cancer. Gynecol Oncol. 2008;111(2 Suppl):S44–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Mariani G, Erba P, Manca G, et al. Radioguided sentinel lymph node biopsy in patients with malignant cutaneous melanoma: the nuclear medicine contribution. J Surg Oncol. 2004;85(3):141–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Thorek DL, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55(1):95–8.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Spinelli AE, Ferdeghini M, Cavedon C, et al. First human Cerenkography. J Biomed Opt. 2013;18(2):20502.CrossRefPubMedGoogle Scholar
  46. 46.
    Dothager RS, Goiffon RJ, Jackson E, Harpstrite S, Piwnica-Worms D. Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS One. 2010;5(10):e13300.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small. 2010;6(10):1087–91.CrossRefPubMedGoogle Scholar
  48. 48.
    Thorek DL, Das S, Grimm J. Molecular imaging using nanoparticle quenchers of Cerenkov luminescence. Small. 2014.;10(18):3729–34.Google Scholar
  49. 49.
    Thorek DL, Ogirala A, Beatty MW, Grimm J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat Med. 2013:19(10):1345–50.Google Scholar
  50. 50.
    Hu H, Cao X, Kang F, Wang M, Lin Y, Liu M, Li S, Yao L, Liang J, Liang J, Nie Y, Chen X, Wang J, Wu K. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;(in press).

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Molecular Pharmacology and Chemistry and Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations